Browse
Records Added in 2022
Records added in 2022
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Filter by month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 76 to 100 of 155. [First] Page: 1 2 3 4 5 6 7 Last
Techno-Economic Analysis of a Hyaluronic Acid Production Process Utilizing Streptococcal Fermentation
Rafael G. Ferreira, Adriano R. Azzoni, Maria Helena Andrade Santana, Demetri Petrides
October 18, 2022 (v1)
Keywords: Fermentation, hyaluronic acid, process simulation, Streptococcus, Technoeconomic Analysis
Hyaluronic acid (HA) is a polysaccharide of alternating d-glucuronic acid and N-acetyl-d-glucosamine residues present in the extracellular matrix of connective, epithelial, and nervous tissues. Due to its singular hydrating, rheological and adhesive properties, HA has found numerous cosmetic and medical applications. However, techno-economic analyses of high value-added bioproducts such as HA are scarce in the literature. Here, we present a techno-economic analysis of a process for producing HA using Streptococcus zooepidemicus, simulated in SuperPro Designer. In the baseline scenario, HA is produced by batch fermentation, reaching 2.5 g/L after 24 h. It is then centrifuged, diafiltered, treated with activated carbon and precipitated with isopropanol. The product is suitable for topical formulations and its production cost was estimated as 1115 $/kg. A similar scenario, based on fed-batch culture and assuming a titer of 5.0 g/L, led to a lower cost of 946 $/kg. Moreover, in two additio... [more]
Techno-Economic Analysis of Automated iPSC Production
Bastian Nießing, Raphael Kiesel, Laura Herbst, Robert H. Schmitt
October 18, 2022 (v1)
Subject: Other
Keywords: automation, digitalization, economic analysis, induced pluripotent stem cells (iPSC), StemCellFactory
Induced pluripotent stem cells (iPSC) open up the unique perspective of manufacturing cell products for drug development and regenerative medicine in tissue-, disease- and patient-specific forms. iPSC can be multiplied almost without restriction and differentiated into cell types of all organs. The basis for clinical use of iPSC is a high number of cells (approximately 7 × 107 cells per treatment), which must be produced cost-effectively while maintaining reproducible and high quality. Compared to manual cell production, the automation of cell production offers a unique chance of reliable reproducibility of cells in addition to cost reduction and increased throughput. StemCellFactory is a prototype for a fully automated production of iPSC. However, in addition to the already tested functionality of the system, it must be shown that this automation brings necessary economic advantages. This paper presents that fully automated stem cell production offers economic advantages in addition t... [more]
Insights into the Supercritical CO2 Extraction of Perilla Oil and Its Theoretical Solubility
Ming-Chi Wei, Chia-Sui Wang, Da-Hsiang Wei, Yu-Chiao Yang
October 18, 2022 (v1)
Subject: Other
Keywords: density-based models, essential oils, hydrodistillation, Perilla frutescens, perillaldehyde, supercritical carbon dioxide extraction
In the current research, the supercritical carbon dioxide (SCCO2) procedure was used to extract volatile oils from perilla leaves. The yields of the volatile oils and the four main constituents, limonene, perillaldehyde, β-caryophyllene, and (Z,E)-α-farnesene obtained by the SCCO2 procedure were 1.31-, 1.12-, 1.04-, 1.05-, and 1.07-fold higher than those obtained by the hydrodistillation technique, respectively. Furthermore, the duration and temperature of extraction were 40 min and 45 °C lower, respectively, in the former procedure compared to the latter technique. These advantages reveal that SCCO2 not only obtains high-quality extracts, but also meets the requirements of green environmental protection. The theoretical solubilities of the volatile oils acquired by the SCCO2 dynamic extraction at various temperatures and pressures were 1.385 × 10−3−8.971 × 10−3 (g oil/g CO2). Moreover, the three density-based models were well correlated with these theoretical solubility data, with a h... [more]
Liquid-Phase Removal of Methylene Blue as Organic Pollutant by Mesoporous Activated Carbon Prepared from Water Caltrop Husk Using Carbon Dioxide Activation
Yu-Quan Lin, Wen-Tien Tsai
October 13, 2022 (v1)
Subject: Materials
Keywords: adsorptive removal, CO2 activation, kinetic modeling, mesoporous activated carbon, methylene blue, water caltrop husk
In this work, a mesoporous activated carbon (AC) was prepared from a unique lignocellulosic biomass (water caltrop husk) in triplicate using a single-step physical activation process at lower temperature (i.e., 750 °C) and longer holding time (i.e., 90 min). Based on the pore properties and adsorption properties for removal of methylene blue (MB) as organic pollutant, the results proved that the resulting AC possesses a mesoporous feature with the Brunauer−Emmett−Teller (BET) surface area of 810.5 m2/g and mesopore volume of about 0.13 cm3/g. Due to its fast adsorption rate and maximal adsorption capacity fitted (126.6 mg/g), the mesoporous carbon material could be used as an excellent adsorbent for liquid-phase removal of MB. In addition, the pseudo-second-order model is well suited for describing the adsorption system between the cationic adsorbate and the resulting AC with oxygen surface groups.
Position Deviation Control of Drilling Machine Using a Nonlinear Adaptive Backstepping Controller Based on a Disturbance Observer
Huifu Ji, Songyong Liu
October 13, 2022 (v1)
Keywords: deviation control, drilling machine, nonlinear adaptive backstepping controller disturbance observer, parameter uncertainties
Thin coal seam mining is a development direction to solve the problem of energy supply at this stage, which cannot be realized by small working space, low automation, and drilling deviation. In this paper, a nonlinear adaptive backstepping controller based on a disturbance observer is proposed and used on a coal auger for position tracking control to achieve directional drilling. Firstly, a nonlinear dynamic model for the deflection control mechanism is built with the consideration of parameter uncertainties and external disturbances. Then, the parameter uncertainty and external disturbance are regarded as a system compound disturbance. Furthermore, a disturbance observer is designed to estimate the system compound disturbance and a nonlinear adaptive backstepping controller was proposed to compensate the system compound disturbance. The upper bound of the compound disturbance, which can effectively reduce the chattering in the directional control process, cannot be obtained easily. A... [more]
Technologies and Extraction Methods of Polyphenolic Compounds Derived from Pomegranate (Punica granatum) Peels. A Mini Review
Dimitrios Lampakis, Prodromos Skenderidis, Stefanos Leontopoulos
October 13, 2022 (v1)
Keywords: bioactivity, extraction technologies, functional foods, pomegranate peels
The interest in using plant by-product extracts as functional ingredients is continuously rising due to environmental and financial prospects. The development of new technologies has led to the achievement of aqueous extracts with high bioactivity that is preferable due to organic solvents nonuse. Recently, widely applied and emerging technologies, such as Simple Stirring, Pressure-Applied Extraction, Enzymatic Extraction, Ultrasound-Assisted Extraction, Pulsed Electric Fields, High Hydrostatic Pressure, Ohmic Heating, Microwave Assistant Extraction and the use of “green” solvents such as the deep eutectic solvents, have been investigated in order to contribute to the minimization of disadvantages on the extraction of bioactive compounds. This review is focused on bioactive compounds derived from pomegranate (Punica granatum) peels and highlighted the most attractive extraction methods. It is believed that these findings could be a useful tool for the pomegranate juices industry to app... [more]
A Review on Temperature Control of Proton Exchange Membrane Fuel Cells
Qinghe Li, Zhiqiang Liu, Yi Sun, Sheng Yang, Chengwei Deng
October 13, 2022 (v1)
Subject: Other
Keywords: cold start, cooling system, proton exchange membrane fuel cell, temperature control, temperature distribution
This paper provides a comprehensive review of the temperature control in proton exchange membrane fuel cells. Proton exchange membrane (PEM) fuel cells inevitably emit a certain amount of heat while generating electricity, and the fuel cell can only exert its best performance in the appropriate temperature range. At the same time, the heat generated cannot spontaneously keep its temperature uniform and stable, and temperature control is required. This part of thermal energy can be classified into two groups. On the one hand, the reaction heat is affected by the reaction process; on the other hand, due to the impedance of the battery itself to the current, the ohmic polarization loss is caused to the battery. The thermal effect of current generates Joule heat, which is manifested by an increase in temperature and a decrease in battery performance. Therefore, it is necessary to design and optimize the battery material structure to improve battery performance and adopt a suitable cooling... [more]
Design, Modelling, and Experimental Validation of a Scalable Continuous-Flow Hydrothermal Liquefaction Pilot Plant
Ib Johannsen, Björn Kilsgaard, Viktor Milkevych, Dale Moore
October 13, 2022 (v1)
Keywords: biofuel, chemical process engineering, heat transfer, Hydrothermal Liquefaction, non-isothermal fluid flow, pilot plant, plug flow reactor, process modelling, sustainable fuel
In this study, the design and practical implementation of a novel, scalable plug-flow pilot plant for hydrothermal liquefaction of organic feedstock is presented. The overall discussion comprises the system’s design, process modelling, and simulation, as well as results for an experimental validation of the proposed design with a focus on fluid dynamics and heat transfer. The design criteria take into account the scalability of the plug-flow processing system, optimized non-isothermal flow conditions of highly viscous liquids in a tubular system at harsh process conditions, specifically high pressure and medium temperatures, and overall maintenance suitability. A novel forced flow oscillation system as well as unique heat exchange design to reduce the energy consumption during system operation, maximize local flow mixing, and minimize plugging are proposed and experimentally tested. To achieve a better understanding and optimization of Hydrothermal Liquefaction (HTL) (and other) proces... [more]
Conceptual Design of a Negative Emissions Polygeneration Plant for Multiperiod Operations Using P-Graph
Jean Pimentel, Ákos Orosz, Kathleen B. Aviso, Raymond R. Tan, Ferenc Friedler
October 13, 2022 (v1)
Keywords: carbon dioxide removal, multiperiod optimization, negative emissions technologies, power-to-x, process network synthesis
Reduction of CO2 emissions from industrial facilities is of utmost importance for sustainable development. Novel process systems with the capability to remove CO2 will be useful for carbon management in the future. It is well-known that major determinants of performance in process systems are established during the design stage. Thus, it is important to employ a systematic tool for process synthesis. This work approaches the design of polygeneration plants with negative emission technologies (NETs) by means of the graph-theoretic approach known as the P-graph framework. As a case study, a polygeneration plant is synthesized for multiperiod operations. Optimal and alternative near-optimal designs in terms of profit are identified, and the influence of network structure on CO2 emissions is assessed for five scenarios. The integration of NETs is considered during synthesis to further reduce carbon footprint. For the scenario without constraint on CO2 emissions, 200 structures with profit... [more]
Biocatalytic Approach for Novel Functional Oligoesters of ε-Caprolactone and Malic Acid
Diana Maria Dreavă, Ioana Cristina Benea, Ioan Bîtcan, Anamaria Todea, Eugen Șișu, Maria Puiu, Francisc Peter
October 13, 2022 (v1)
Subject: Materials
Keywords: biobased monomers, enzymatic polymerization, green polymers, lipase, malic acid, oligoesters, ε-caprolactone
Biocatalysis has developed in the last decades as a major tool for green polymer synthesis. The particular ability of lipases to catalyze the synthesis of novel polymeric materials has been demonstrated for a large range of substrates. In this work, novel functional oligoesters were synthesized from ε-caprolactone and D,L/L-malic acid by a green and sustainable route, using two commercially available immobilized lipases as catalysts. The reactions were carried out at different molar ratios of the comonomers in organic solvents, but the best results were obtained in solvent-free systems. Linear and cyclic oligomeric products with average molecular weights of about 1500 Da were synthesized, and the formed oligoesters were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The oligoester synthesis was not enantioselective in the studied reaction conditions. The operational stability of both biocatalysts (Novozyme 435 and GF-... [more]
Study on Nonlinear Stochastic Process of Deck Slamming on Floating Offshore Platform
Hyun-Seung Nam, Yonghwan Kim
October 13, 2022 (v1)
Subject: Other
Keywords: deck slamming, Hermite-moment method, joint probability distribution, nonlinear stochastic process, slamming occurrence
In this paper, a semi-analytic method is introduced to predict the deck-slamming probability and corresponding loads. This method is based on a nonlinear statistical approach that takes into account the linear and second-order components of the relative wave elevation up to the second order. The linear and second-order wave elevation is assumed to be a two-term Volterra series. The joint probability density function of the relative wave elevation and velocity are formulated using the Hermite-moment method, and the probability distributions of the wave crest and relative wave velocity are calculated. These probability distributions are verified using the data sampled from the linear and second-order relative wave elevation. Based on this formulation, the probabilities of deck slamming and slamming-induced loads are estimated. This method is applied to a tension leg platform (TLP) model, and the effects of the second-order component of the relative wave elevation on the deck slamming are... [more]
Bimetallic Pt-Co Nanoparticle Deposited on Alumina for Simultaneous CO and Toluene Oxidation in the Presence of Moisture
Peng Peng, Jun Li, Shengpeng Mo, Qi Zhang, Taiming Shen, Qinglin Xie
October 13, 2022 (v1)
Subject: Materials
Keywords: bimetallic alloy, catalytic oxidation, moisture, Pt-based catalysts, Toluene
Carbon monoxide (CO) and hydrocarbons (HCs) generally have competitive adsorption on the active site of noble-metal nano-catalysts, thus developing an effective way to reduce the passivation of competitive reaction with each other is an urgent problem. In this study, we successfully synthesized transition metal-noble metal (Pt-M) alloys via introducing inexpensive metal elements (M = Ni, Co and Cu) into Pt particles and then deposited on alumina support to form Pt-based catalysts. Subsequently, we choose CO and toluene as polluting gases to evaluate the catalytic activities of Pt-M/Al2O3 catalysts. Introducing inexpensive metal elements (M = Ni, Co, and Cu) significantly changed the physicochemical properties and catalytic activities of these Pt-based catalysts. It can be found that the Pt-Co/Al2O3 catalyst exhibited outstanding catalytic activity for CO and toluene oxidation under mixed gas atmosphere, compared with other Pt-based catalysts, which is due to the higher dispersity, more... [more]
Biotransformation of Citrus Waste-I: Production of Biofuel and Valuable Compounds by Fermentation
Neelima Mahato, Kavita Sharma, Mukty Sinha, Archana Dhyani, Brajesh Pathak, Hyeji Jang, Seorin Park, Srinath Pashikanti, Sunghun Cho
October 13, 2022 (v1)
Subject: Other
Keywords: bio-waste, bioethanol, biofuel, biogas, biotransformation, citrus waste, Fermentation
Citrus is the largest grown fruit crop on the globe with an annual production of ~110−124 million tons. Approximately, 45−55% of the whole fruit post-processing is generally discarded as waste by the food processing industries. The waste is a huge problem to the environment in terms of land and water pollution along with displeasure from aesthetic viewpoint and spread of diseases owing to its huge content of fermentable sugars. The waste can be utilized as a raw material feedstock for producing a number of valuable chemicals and products, such as bioethanol, biogas, bio-oil, organic acids, enzymes, and so on. The production of these chemicals from waste biomass gives an inexpensive alternative to the harsh chemicals used during industrial synthesis processes as well as the possibility of controlling pollution from the waste discarded to the environment. The derived chemicals can be further utilized in the production of industrially important chemicals, as solvents and building blocks o... [more]
Recovery of Raw Materials from Ceramic Waste Materials for the Refractory Industry
Severin Seifert, Sebastian Dittrich, Jürgen Bach
October 13, 2022 (v1)
Subject: Materials
Keywords: electrodynamic fragmentation, innovative process, recycling, refractory, regenerate
Products of the refractory industry are key for the production of heavy industry goods such as steel and iron, cement, aluminum and glass. Corresponding industries are dependent on thermal processes to manufacture their products, which in turn would not be possible if there were no refractory materials, such as refractory bricks or refractory mixes. For the production of refractory materials, primary raw materials or semi-finished products such as corundum, bauxite or zircon are used. Industrial recycling of refractory raw materials would reduce dependencies, conserve resources and reduce global CO2 emissions. Today, only a small quantity of the refractory materials used can be recycled because raw materials (regenerates) obtained from end-of-life materials are of insufficient quality. In this study, regenerates from different refractory waste products could be obtained using the innovative processing method of electrodynamic fragmentation. It was shown that these regenerates have a hi... [more]
A Fault Identification Method in Distillation Process Based on Dynamic Mechanism Analysis and Signed Directed Graph
Wende Tian, Shifa Zhang, Zhe Cui, Zijian Liu, Shaochen Wang, Ya Zhao, Hao Zou
October 13, 2022 (v1)
Keywords: distillation process, fault identification, mechanism analysis, SDG model
Due to the complexity of materials and energy cycles, the distillation system has numerous working conditions difficult to troubleshoot in time. To address the problem, a novel DMA-SDG fault identification method that combines dynamic mechanism analysis based on process simulation and signed directed graph is proposed for the distillation process. Firstly, dynamic simulation is employed to build a mechanism model to provide the potential relationships between variables. Secondly, sensitivity analysis and dynamic mechanism analysis in process simulation are introduced to the SDG model to improve the completeness of this model based on expert knowledge. Finally, a quantitative analysis based on complex network theory is used to select the most important nodes in SDG model for identifying the severe malfunctions. The application of DMA-SDG method in a benzene-toluene-xylene (BTX) hydrogenation prefractionation system shows sound fault identification performance.
Cumulative Production of Bioactive Rg3, Rg5, Rk1, and CK from Fermented Black Ginseng Using Novel Aspergillus niger KHNT-1 Strain Isolated from Korean Traditional Food
Jin Kyu Park, Dong Uk Yang, Lakshminarayanan Arunkumar, Yaxi Han, Seung Jin Lee, Muhammad Huzaifa Arif, Jin Feng Li, Yue Huo, Jong Pyo Kang, Van An Hoang, Jong Chan Ahn, Deok Chun Yang, Se Chan Kang
October 13, 2022 (v1)
Keywords: Aspergillus niger, B16BL6 (Murine melanoma) cell line, ginseng, Ginseng Lateral root (GLR), Ginseng Main root (GMR), ginsenosides, human keratinocyte cell line (HaCaT) cells, processing, soybean
Ginseng is an ancient herb widely consumed due to its healing property of active ginsenosides. Recent researchers were explored to increase its absorption and bioavailability of ginsenosides at the metabolic sites, due to its pharmacological activity. The purpose of this study was to investigate the isolation and characteristics of components obtained by a shorter steaming cycle (seven cycles) of white ginseng to fermented black ginseng, using a novel strain of Aspergillus niger KHNT-1 isolated from fermented soybean. The degree of bioactive of Rg3 increased effectively during the steaming process, and biotransformation converted the color towards black along active ginsenosides. Glycol moiety associated with C-3, C-6, or C-20 underwent rapid biotransformation and hydrolysis, such as Rb1, Rb2, Rc, Rd → Rg3, F2, and was converted to CK. Dehydration produces Rg3 → Rk1, Rg5. Rh2 → Rk2; thus, converted fermented black ginseng was solvent-extracted, and the isolated components were identifi... [more]
Enhanced Degradation of Sulfonamide Antibiotics by UV Irradiation Combined with Persulfate
Zhentao Liu, Wanpeng Hu, Haiping Zhang, Hui Wang, Ping Sun
October 13, 2022 (v1)
Subject: Other
Keywords: advanced oxidation process, persulfate, removal efficiency, sulfonamide antibiotics, UV irradiation
In this study, the degradation of sulfonamide antibiotics was investigated through persulfate-enhanced UV advanced oxidation process. Factors that may affect the degradation efficiency were analyzed. Results showed that the persulfate imposed a significant enhancement on the UV oxidation process during the sulfathiazole degradation. The combined process of UV/persulfate can effectively remove about 96% of sulfathiazole within 60 min. With the increase in the dosage of persulfate, the removal efficiency increased as well. Different water matrix almost had no effect on the removal efficiency. Two intermediates were found during the sulfathiazole degradation. It can be predicted that the combined process of UV/persulfate has a broad application prospect for removing sulfonamide antibiotics in water treatment.
Multi-Enzyme Systems in Flow Chemistry
Pedro Fernandes, Carla C. C. R. de Carvalho
October 13, 2022 (v1)
Subject: Biosystems
Keywords: immobilization, microreactor, reaction cascade, scale-up, whole cell
Recent years have witnessed a growing interest in the use of biocatalysts in flow reactors. This merging combines the high selectivity and mild operation conditions typical of biocatalysis with enhanced mass transfer and resource efficiency associated to flow chemistry. Additionally, it provides a sound environment to emulate Nature by mimicking metabolic pathways in living cells and to produce goods through the systematic organization of enzymes towards efficient cascade reactions. Moreover, by enabling the combination of enzymes from different hosts, this approach paves the way for novel pathways. The present review aims to present recent developments within the scope of flow chemistry involving multi-enzymatic cascade reactions. The types of reactors used are briefly addressed. Immobilization methodologies and strategies for the application of the immobilized biocatalysts are presented and discussed. Key aspects related to the use of whole cells in flow chemistry are presented. The... [more]
Biofunctional Peptide-Modified Extracellular Vesicles Enable Effective Intracellular Delivery via the Induction of Macropinocytosis
Ikuhiko Nakase
October 13, 2022 (v1)
Subject: Biosystems
Keywords: biofunctional peptides, exosomes, intracellular delivery systems, macropinocytosis
We previously reported that macropinocytosis (accompanied by actin reorganization, ruffling of the plasma membrane, and engulfment of large volumes of extracellular fluid) is an important process for the cellular uptake of extracellular vesicles, exosomes. Accordingly, we developed techniques to induce macropinocytosis by the modification of biofunctional peptides on exosomal membranes, thereby enhancing their cellular uptake. Arginine-rich cell-penetrating peptides have been shown to induce macropinocytosis via proteoglycans; accordingly, we developed peptide-modified exosomes that could actively induce macropinocytotic uptake by cells. In addition, the activation of EGFR induces macropinocytosis; based on this knowledge, we developed artificial leucine-zipper peptide (K4)-modified exosomes. These exosomes can recognize E3 sequence-fused EGFR (E3-EGFR), leading to the clustering and activation of E3-EGFR by coiled-coil formation (E3/K4), which induces cellular exosome uptake by macrop... [more]
Apple Fermented Products: An Overview of Technology, Properties and Health Effects
Raquel P. F. Guiné, Maria João Barroca, Teodora Emilia Coldea, Elena Bartkiene, Ofélia Anjos
October 13, 2022 (v1)
Keywords: acetic fermentation, alcoholic fermentation, apple pomace, cider, malolactic fermentation, probiotic beverage, spirit, vinegar
As an easily adapted culture, with overloaded production in some parts of the globe, apples and their by-products are being redirected to pharmaceutical, canning and beverages industries, both alcoholic and non-alcoholic. Fermentation is generally considered to increase the bioavailability of bioactive compounds found in apple, by impacting, through a high degree of changes, the product’s properties, including composition and health-promoting attributes, as well as their sensory profile. Probiotic apple beverages and apple vinegar are generally considered as safe and healthy products by the consumers. Recently, contributions to human health, both in vivo and in vitro studies, of non-alcoholic fermented apple-based products have been described. This review highlighted the advances in the process optimization of apple-based products considering vinegar, cider, pomace, probiotic beverages and spirits’ technologies. The different processing impacts on physical-chemical, nutritional and sen... [more]
On Electromobility Development and the Calculation of the Infrastructural Country Electromobility Coefficient
Erika Feckova Skrabulakova, Monika Ivanova, Andrea Rosova, Elena Gresova, Marian Sofranko, Vojtech Ferencz
October 13, 2022 (v1)
Subject: Energy Policy
Keywords: charging stations, electric vehicles, electromobility, infrastructural country electromobility coefficient, infrastructure development
The question of electromobility is greatly discussed theme of the present especially in connection with the reduction of greenhouse gas emissions. In order to fulfill decarbonization targets, incentives of many countries lead to the support of electromobility. In this paper we ask to which extend are Visegrád Group countries prepared for the widespread utilization of electric cars and define a new coefficient K called the infrastructural country electromobility coefficient. Its computing is covered by appropriate analysis and calculations done previously. Several indices that keep particular information about the state of preparation for electromobility are defined and debated here, as well. Their product forms the coefficient K. Obtained results include outcomes and discussion regarding the level of infrastructural electromobility preparedness for the chosen states, among which we extra focus on the position of Slovakia compared to the European Union average and European electromobili... [more]
Position Control Study on Pump-Controlled Servomotor for Steam Control Valve
Guishan Yan, Zhenlin Jin, Tiangui Zhang, Penghui Zhao
October 13, 2022 (v1)
Keywords: position control, pump-controlled servomotor, sliding mode variable structure, steam control valve, steam turbine
In steam turbine control and actuation, the steam control valve plays a key role in operability and reliability. The electrohydraulic regulating system for the steam control valve, usually called the servomotor, needs to be reliable and high performing under nonlinear excitation interference in actual conditions. Currently, electrohydraulic servo valve control technology is widely used in servomotors. Although this technology has good control performance, it still has some technical defects, such as poor antipollution ability, low energy efficiency, large volume size, and limited installation space. Aiming at the abovementioned technical shortcomings of electrohydraulic servo valve control technology, a servomotor-pump-hydraulic cylinder volume control scheme is proposed in this paper, forming a pump-controlled servomotor for the steam control valve. By analyzing the working principle of the pump-controlled servomotor position control in the steam control valve, the mathematical model... [more]
Improved Hybrid Heuristic Algorithm Inspired by Tissue-Like Membrane System to Solve Job Shop Scheduling Problem
Xiang Tian, Xiyu Liu
October 13, 2022 (v1)
Keywords: hybrid heuristic algorithm, job shop scheduling problem, tissue-like membrane system
In real industrial engineering, job shop scheduling problem (JSSP) is considered to be one of the most difficult and tricky non-deterministic polynomial-time (NP)-hard problems. This study proposes a new hybrid heuristic algorithm for solving JSSP inspired by the tissue-like membrane system. The framework of the proposed algorithm incorporates improved genetic algorithms (GA), modified rumor particle swarm optimization (PSO), and fine-grained local search methods (LSM). To effectively alleviate the premature convergence of GA, the improved GA uses adaptive crossover and mutation probabilities. Taking into account the improvement of the diversity of the population, the rumor PSO is discretized to interactively optimize the population. In addition, a local search operator incorporating critical path recognition is designed to enhance the local search ability of the population. Experiment with 24 benchmark instances show that the proposed algorithm outperforms other latest comparative alg... [more]
Sequential Abatement of FeII and CrVI Water Pollution by Use of Walnut Shell-Based Adsorbents
Marius Gheju, Ionel Balcu
October 13, 2022 (v1)
Subject: Materials
Keywords: acid mine drainage, heavy metals, hexavalent chromium, innovative adsorbent, sustainable water treatment, water treatment residuals
In this study walnut shells, an inexpensive and readily available waste, were used as carbonaceous precursor for preparation of an innovative adsorbent (walnut-shell powder (WSP)) which was successfully tested for the removal of FeII from synthetic acid mine drainage (AMD). Then, the exhausted iron-contaminated adsorbent (WSP-FeII) was recovered and treated with sodium borohydride for the reduction of adsorbed FeII to Fe0. The resulting material (WSP-Fe0) was subsequently tested for the removal of CrVI from aqueous solutions. Treatability batch experiments were employed for both FeII and CrVI-contaminated solutions, and the influence of some important experimental parameters was studied. In addition, the experimental data was interpreted by applying three kinetic models and the mechanism of heavy metal removal was discussed. The overall data presented in this study indicated that fresh WSP and WSP-Fe0 can be considered as promising materials for the removal of FeII and CrVI, respective... [more]
Preparation and Characterization of the Sulfur-Impregnated Natural Zeolite Clinoptilolite for Hg(II) Removal from Aqueous Solutions
Marin Ugrina, Martin Gaberšek, Aleksandra Daković, Ivona Nuić
October 13, 2022 (v1)
Subject: Materials
Keywords: chemical modification, leaching, mercury sorption, natural zeolite clinoptilolite, sulfur impregnation
Sulfur-impregnated zeolite has been obtained from the natural zeolite clinoptilolite by chemical modification with Na2S at 150 °C. The purpose of zeolite impregnation was to enhance the sorption of Hg(II) from aqueous solutions. Chemical analysis, acid and basic properties determined by Bohem’s method, chemical behavior at different pHo values, zeta potential, cation-exchange capacity (CEC), specific surface area, X-ray powder diffraction (XRPD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetry with derivative thermogravimetry (TG-DTG) were used for detailed comparative mineralogical and physico-chemical characterization of natural and sulfur-impregnated zeolites. Results revealed that the surface of the natural zeolite was successfully impregnated with sulfur species in the form of FeS and CaS. Chemical modification caused an increase in basicity and the net negative surface charge... [more]
Showing records 76 to 100 of 155. [First] Page: 1 2 3 4 5 6 7 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Filter by month: January | February | March | April | May | June | July | August | September | October | November | December