Browse
Records Added in 2020
Records added in 2020
Filter by month: January | February | March | April | May | June | July | August | September | October | November | December
1189. LAPSE:2020.0076
Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump with Different Tip Clearances
January 19, 2020 (v1)
Subject: Modelling and Simulations
Keywords: axial flow pump, cavitation, tip clearance, tip leakage vortex
The tip gap existing between the blade tip and casing can give rise to tip leakage flow and interfere with the main flow, which causes unstable flow characteristics and intricate vortex in the passage. Investigation on the tip clearance effect is of great important due to its extensive applications in the rotating component of pumps. In this study, a scaling axial flow pump used in a south-north water diversion project with different sizes of tip clearances was employed to study the tip clearance effect on tip leakage vortex (TLV) characteristics. This analysis is based on a modified turbulence model. Validations were carried out using a high-speed photography technique. The tip clearance effect on the generation and evolution of TLV was investigated through the mean velocity, pressure, and vorticity fields. Results show that there are two kinds of TLV structures in the tip region. Accompanied by tip clearance increasing, the viscous loss in the tip area of the axial flow pump increase... [more]
1190. LAPSE:2020.0075
A Graphical Model to Diagnose Product Defects with Partially Shuffled Equipment Data
January 19, 2020 (v1)
Subject: Process Operations
Keywords: defect diagnosis, equipment data analysis, graphical model, multi-source data fusion, partially shuffled time series
The diagnosis of product defects is an important task in manufacturing, and machine learning-based approaches have attracted interest from both the industry and academia. A high-quality dataset is necessary to develop a machine learning model, but the manufacturing industry faces several data-collection issues including partially shuffled data, which arises when a product ID is not perfectly inferred and yields an unstable machine learning model. This paper introduces latent variables to formulate a supervised learning model that addresses the problem of partially shuffled data. The experimental results show that our graphical model deals with the shuffling of product order and can detect a defective product far more effectively than a model that ignores shuffling.
1191. LAPSE:2020.0074
Toxicological Activity of Some Plant Essential Oils Against Tribolium castaneum and Culex pipiens Larvae
January 19, 2020 (v1)
Subject: Biosystems
Keywords: Culex mosquitoes, essential oils, physiological effects, red flour beetle
In the present work, essential oils (EOs) from Schinus terebinthifolius (ripe and unripe fruits and leaves), Origanum majorana (air-dried aerial parts), and Psidium guajava (leaves) were assayed for their insecticidal activity against red flour beetle (Tribolium castaneum) and Culex mosquito larvae (Culex pipiens). Several components were identified in the EOs using Gas chromatography−mass spectrometry (GC/MS), of which Δ-3-carene (25.9%), γ-terpinene (19.4), and γ-elemene (7.1%) were the major ones in S. terebinthifolius ripe fruits, α-pinene (48.9%), germacrene D (12.9%), and α-thujene (7.7%) in S. terebinthifolius unripe fruits, γ-elemene (11.7%), spathulenol (10.1%), β-elemene (9.2%), and p-cymene (9.1%) in S. terebinthifolius leaves, α-pinene (25.5%), (E)-caryophyllene (15.7%), (E)-nerolidol (16.7%), and cedran-8-ol (8.8%) in P. guajava leaves, and terpinen-4-ol (21.7%), γ-terpinene (16.5%), and sabinene (10.1%) in O. majorana air-dried aerial parts. The lethal concentration (LC50... [more]
1192. LAPSE:2020.0073
Study of the Affinity Law of Energy and Cavitation Characteristics in Emergency Drainage Pumps at Different Rotating Speeds
January 19, 2020 (v1)
Subject: Other
Keywords: affinity, cavitation, emergency drainage pump, rotating speed
The affinity law is widely used in pump design and experiments. The applicability of the affinity law in an emergency drainage pump at different rotating speeds was studied. Experiments and numerical simulation through ANSYS CFX (Computational Fluid Dynamics X) 15.0 software were used to research the affinity law characteristics. Results show that the simulation of characteristics is basically consistent with the experimental curves. In small flow rate conditions, due to the existence of obvious differential pressure between the pressure side and the suction side in the impeller blade tip area, the leakage flow occurs at the tip clearance, which collides with the main stream at the inlet and generates vortices at the leading edge of the impeller. The tip leakage flows of the pump at four different rotating speeds were compared, and it was found that the tip leakage increased with increasing rotation speed, and at the same rotation speed, the tip leakage flow was large in the small flow... [more]
1193. LAPSE:2020.0072
Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization
January 9, 2020 (v1)
Subject: Process Design
Keywords: blast furnace gas, CO2 utilization and storage, COG desulphurization, Coke oven gas, Economic and sensitivity analysis, methanol production
This paper documents a process for converting coke oven gas (COG) and blast furnace gas (BFG) from steel refineries into methanol. Specifically, we propose the use of blast furnace gas (BFG) as an additional carbon source. The high CO2 and CO content of BFG make it a good carbon resource. In the proposed process, CO2 is recovered from the BFG and blended with H2O, H2, and CH4-rich COG to reform methane. Optimized amounts of H2O and CO2 are used to adjust the (H2 – CO2)/(CO + CO2) molar ratio in order to maximize the amount of methanol that is produced. In addition, the desulphurization process was modified to enable the removal of sulfur compounds, especially thiophene, from the COG. The process design and simulation results reported herein were then used to determine any potential environmental and economic benefits. This research is based on off-gas conditions provided by ArcelorMittal Dofasco, Hamilton, Ontario. In order to determine which conditions are most desirable for this retr... [more]
1194. LAPSE:2020.0071
The Mechanism of the Effect of Al2O3 Content on the Liquid Phase Fluidity of Iron Ore Fines
January 7, 2020 (v1)
Subject: Materials
Keywords: Al2O3, consolidation strength, iron ore fines, liquid phase fluidity
The sintering process is significantly important for the ironmaking in China because of the large amount of sinter consumed. Al2O3 is an important element determining the quality and quantity of sinter. However, different conclusions have been made regarding the effects of Al2O3 on the amount and fluidity of the liquid phase formed in the sinter phase. Therefore, it is necessary to examine the effects of Al2O3 content on the amount and fluidity of the liquid phase. The present work investigated the effects of different Al2O3 contents of iron ore fines on the liquid phase formation, mineral composition, and consolidation strength. The results showed that a small amount of Al2O3 increased the amount of calcium ferrite, making the liquid phase formation easier. As the Al2O3 content in iron ore fines increased, the liquidity index decreased continuously, while the fluidity and the consolidation strength of the sintered body were directly related to the content squared. The quality of the s... [more]
1195. LAPSE:2020.0070
Quality Properties and Pyrolysis Characteristics of Cassava Rhizome Pellets Produced by Alternating between Pelletizing and Torrefaction
January 7, 2020 (v1)
Subject: Reaction Engineering
Keywords: cassava rhizome, pellets, pyrolysis characteristics, TGA, torrefaction
This work investigated quality properties of pellets of raw cassava rhizome (P-RC), pellets of pelletized cassava rhizome followed by torrefaction (T-CP), and pellets of torrefied cassava rhizome followed by pelletizing (P-TC). Torrefaction was conducted at temperatures of 230, 250, and 280 °C for 30 min. Pyrolysis characteristics of T-CP and P-TC at torrefied temperatures of 230 and 250 °C were studied using thermogravimetric analysis. It was found that at the similar torrefied temperature, P-TC had a higher bulk density, energy density, and pellet durability than that of T-CP and P-RC while T-CP had a higher HHV and moisture absorption than P-TC and P-RC. The bulk density of P-TC was 1.13−1.19 and 1.33−1.52 times higher than that of P-RC and T-CP, respectively. The HHV of T-CP was 1.07 and 1.29 times higher than P-TC and P-RC, respectively. The energy density of P-TC was 1.24−1.56 and 1.20−1.41 times higher than that of P-RC and T-CP. In terms of Pellet Fuel Institute (PFI) standard,... [more]
1196. LAPSE:2020.0069
Proactive Energy Optimization in Residential Buildings with Weather and Market Forecasts
January 7, 2020 (v1)
Subject: Energy Management
Keywords: dynamic optimization, Energy Storage, forecast, HEMS, home energy optimization, Model Predictive Control, moving horizon estimation, solar generation, thermal modeling
This work explores the development of a home energy management system (HEMS) that uses weather and market forecasts to optimize the usage of home appliances and to manage battery usage and solar power production. A Moving Horizon Estimation (MHE) application is used to find the unknown home model parameters. These parameters are then updated in a Model Predictive Controller (MPC) which optimizes and balances competing comfort and economic objectives. Combining MHE and MPC applications alleviates model complexity commonly seen in HEMS by using a lumped parameter model that is adapted to fit a high-fidelity model. Heating, ventilation, and air conditioning (HVAC) on/off behaviors are simulated by using Mathematical Program with Complementarity Constraints (MPCCs) and solved in near real time with a non-linear solver. Removing HVAC on/off as a discrete variable and replacing it with an MPCC reduces solve time. The results of this work indicate that energy management optimization significa... [more]
1197. LAPSE:2020.0068
Multivariate Analysis and Machine Learning for Ripeness Classification of Cape Gooseberry Fruits
January 7, 2020 (v1)
Subject: Intelligent Systems
Keywords: Cape gooseberry, color space combination, color space selection, food engineering
This paper explores five multivariate techniques for information fusion on sorting the visual ripeness of Cape gooseberry fruits (principal component analysis, linear discriminant analysis, independent component analysis, eigenvector centrality feature selection, and multi-cluster feature selection.) These techniques are applied to the concatenated channels corresponding to red, green, and blue (RGB), hue, saturation, value (HSV), and lightness, red/green value, and blue/yellow value (L*a*b) color spaces (9 features in total). Machine learning techniques have been reported for sorting the Cape gooseberry fruits’ ripeness. Classifiers such as neural networks, support vector machines, and nearest neighbors discriminate on fruit samples using different color spaces. Despite the color spaces being equivalent up to a transformation, a few classifiers enable better performances due to differences in the pixel distribution of samples. Experimental results show that selection and combination o... [more]
1198. LAPSE:2020.0067
Interception Characteristics and Pollution Mechanism of the Filter Medium in Polymer-Flooding Produced Water Filtration Process
January 7, 2020 (v1)
Subject: Interdisciplinary
Keywords: filter medium pollution, filtration, interception characteristics, polymer-flooding produced water
Polymer flooding enhances oil recovery, but during the application of this technology, it also creates a large amount of polymer-contained produced water that poses a threat to the environment. The current processing is mainly focused on being able to meet the re-injection requirements. However, many processes face the challenges of purifying effect, facilities pollution, and economical justification in the field practice. In the present work, to fully understand the structure and principle of the oil field filter tank, and based on geometric similarity and similar flow, a set of self-designed filtration simulation devices is used to study the treatment of polymer-contained produced water in order to facilitate the satisfaction of the water injection requirements for medium- and low-permeability reservoirs. The results show that, due to the existence of polymers in oil field produced water, a stable colloidal system is formed on the surface of the filter medium, which reduces the adsor... [more]
1199. LAPSE:2020.0066
Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface
January 7, 2020 (v1)
Subject: Numerical Methods and Statistics
Keywords: inclined surface, Keller-Box method, MHD, micropolar nanofluid, power law fluid
Brownian motion and thermophoresis diffusions are the fundamental ideas of abnormal upgrading in thermal conductivity via binary fluids (base fluid along with nanoparticles). The influence of Brownian motion and thermophoresis are focused on in the Buongiorno model. In this problem, we considered the Buongiorno model with Brownian motion and thermophoretic effects. The nonlinear ordinary differential equations are recovered from the partial differential equations of the boundary flow via compatible similarity transformations and then employed to the Keller-box scheme for numerical results. The physical quantities of our concern including skin friction, Nusselt number, and Sherwood number along with velocity, temperature and concentration profile against involved effects are demonstrated. The impacts of the involved flow parameters are drawn in graphs and tabulated forms. The inclination effect shows an inverse relation with the velocity field. Moreover, the velocity profile increases w... [more]
1200. LAPSE:2020.0065
Systematic Separation and Purification of Alkaloids from Euchresta tubulosa Dunn. by Various Chromatographic Methods
January 7, 2020 (v1)
Subject: Other
Keywords: alkaloids, chemical structures, chromatographic methods, Euchresta tubulosa Dunn., systematic separation
High-speed countercurrent chromatography (HSCCC) and silica gel column chromatography were used to separate and purify alkaloids from Chinese herbal medicine Euchresta tubulosa Dunn. The purpose of this study is to provide a system mode for rapid separation of alkaloids from natural products. In the experiment, the eluent of silica gel column chromatography was screened by thin layer chromatography (TLC) to obtain four components with different polarity. Then, the two-phase solvent systems of different components were selected and purified by HSCCC. Four alkaloids with relatively high content were obtained by this mode successfully, including matrine (28 mg), oxymatrine (32 mg), N-formyl cytisine (24 mg), and cytisine (58 mg). The purity was higher than 91% by high performance liquid chromatography−ultraviolet (HPLC-UV) and their chemical structures were identified by nuclear magnetic resonance (NMR) and electron ionization mass spectrometry (EI-MS). The results showed that the combina... [more]
1201. LAPSE:2020.0064
An Incubation System to Enhance Biogas and Methane Production: A Case Study of an Existing Biogas Plant in Umbria, Italy
January 7, 2020 (v1)
Subject: Process Design
Keywords: anaerobic digestion, biogas, CSTR, maize silage, olive pomace, pig slurry
The pre-incubation of digestate and recycling of microbes inside a continuously stirred tank reactor (CSTR) are effective ways to optimize the anaerobic digestion process and improve the performance of biogas and methane production, also in existing biogas plants. In this study, a digestate incubation system using a nutrient mix to boost the activity of microbes was coupled to a CSTR to boost biogas and methane production. This system has been tested both on a lab scale and on an industrial scale. On a pilot scale, the system achieved an increase of +16.47 v% in biogas production with respect to the conventional anaerobic digestion process, and an increase of +2 v% in methane content (from 65.94 v% to 67.84 v%). On an industrial scale, the use of this incubation reactor with a capacity of 1 m3 has led to an increase in methane yield of 12 v%. This system allows to maintain the syntrophic relationship between acid-producing bacteria and methanogens and contemporary push the development... [more]
1202. LAPSE:2020.0063
Measuring the Renewable Energy Efficiency at the European Union Level and Its Impact on CO2 Emissions
January 7, 2020 (v1)
Subject: Energy Policy
Keywords: carbon emissions, energy productivity, EU, GDP, panel data, Renewable and Sustainable Energy
Low carbon emissions have a great importance in our life. The increasing importance of carbon emission levels have attracted the interests of researchers and academics in the field. In this article, a panel data econometric model is developed to measure the relationship between renewable energy, energy productivity, population, urbanization, motorization, and Gross Domestic Product (GDP) per capita and their impacts on carbon dioxide CO2 emissions. Data used in this study was collected from the European Statistical Office (EUROSTAT) and five statistical hypotheses were tested and validated through a multilinear regression model using the Econometric Views (Eviews) 10.0 statistical software. The Hausman test was used to choose between a model with fixed effects and a model with random effects, and the variance inflection factor (VIF) was used to test the collinearity between the independent variables. The author’s findings indicate that renewable energy at the European Union (EU) level... [more]
1203. LAPSE:2020.0062
Flexible Energy Storage System—An Introductory Review of Textile-Based Flexible Supercapacitors
January 7, 2020 (v1)
Subject: Energy Management
Keywords: cyclic chronopotentiometry, cyclic voltammetry, electrochemical impedance spectroscopy, flexible, polymeric electrolytes, supercapacitors, textile-based
Recently, researchers have become interested in exploring applications of rechargeable battery storage technology in different disciplines, which can help our daily life, such as textile-based supercapacitors. This paper briefly describes this development and classification of supercapacitors. Besides, various types of materials which are commonly used to prepare supercapacitors, such as carbons, metal oxides, alkaline earth metal salts and polymers, are introduced. Moreover, applications and methodology to prepare textile materials with supercapacitors are described. Finally, the commonly used non-destructive measuring methods for textile-based supercapacitors are also introduced.
1204. LAPSE:2020.0061
Experimental and Numerical Study on Gas-Liquid Two-Phase Flow Behavior and Flow Induced Noise Characteristics of Radial Blade Pumps
January 7, 2020 (v1)
Subject: Modelling and Simulations
Keywords: gas-liquid two-phase flow, miniature drainage pump, pressure, radiate noise
Miniature drainage pumps with a radial blade are widely used in situations with critical constant head and low noise requests, but the stable operation state is often broken up by the entraining gas. In order to explore the internal flow characteristics under gas−liquid two phase flow, pump performance and emitted noise measurements were processed under different working conditions. Three-dimensional numerical calculations based on the Euler inhomogeneous model and obtained experimental boundaries were carried out under different inlet air void fractions (IAVFs). A hybrid numerical method was proposed to obtain the flow-induced emitted noise characteristics. The results show there is little influence on pump characteristics when the IAVF is less than 1%. The pump head slope degradation was found to increase with air content. The bubbles adhere to the impeller hub on the blade’s suction side and spread to the periphery with a big IAVF, leading to unstable operation. It is obvious that v... [more]
1205. LAPSE:2020.0060
A Process for the Recovery of Gallium from Gallium Arsenide Scrap
January 7, 2020 (v1)
Subject: Process Design
Keywords: Ga recovery, GaAs scrap, leaching-ion exchange
The recovery of gallium (Ga) from gallium arsenide (GaAs) scrap using a leaching-ion exchange method was investigated. The ground GaAs scrap was leached, using 2.0 N nitric acid at 30 °C for 1.0 h, and the dissolution of Ga and arsenic (As) reached 98%. The pregnant solution with a 1/20 dilution ratio was then passed through a weak acid chelating resin Diaion CR-11. Highly charged Ga3+ has the ability to form complexes with the chelating resin and separate from the coexisting H3AsO4 in the leachate with very low pH. The loaded column was eluted with 0.1 M H2SO4, and the final concentrated solution had 4.5 g/L of Ga with 99.3% purity. The effluent from the column was further processed to remove As by ferric arsenicate precipitation, and reused continuously as the dilution water for raw leachate.
1206. LAPSE:2020.0059
Numerical Investigation of Design and Operating Parameters of Thermal Gradient Continuous-Flow PCR Microreactor Using One Heater
January 7, 2020 (v1)
Subject: Modelling and Simulations
Keywords: continuous-flow microreactor, Lab on Chip (LOC), point-of-care, one heater, PCR kinetics, polymerase chain reaction (PCR)
To respond to the dire need for miniaturization and process simplification of continuous-flow PCR (CF-PCR) device, this paper represents design and operation guide of a novel metal alloy assisted hybrid microdevice (polydimethylsiloxane (PDMS) and glass) for CF-PCR employing one heater. In this research, the specific objectives are to determine whether one heater chip design will be flexible enough when the size of DNA base pair is varied and to investigate whether one heater CF-PCR device will be able to resolve the longstanding problem of thermal crosstalk. Furthermore, the parametric study is performed to determine which of the fourteen parameters have the greatest impact on the performance of one heater CF-PCR device. The main objective of this parametric study is to distinguish between the parameters that are either critical to the chip performance or can be freely specified. It is found that substrate thickness, flow rate, channel spacing, aspect ratio, channel pass length and ex... [more]
1207. LAPSE:2020.0058
Design and Implementation of the Off-Line Robust Model Predictive Control for Solid Oxide Fuel Cells
January 7, 2020 (v1)
Subject: Process Control
Keywords: control synthesis, off-line calculation, robust model predictive control, solid oxide fuel cell
An off-line robust linear model predictive control (MPC) using an ellipsoidal invariant set is synthesized based on an uncertain polytopic approach and then implemented to control the temperature and fuel in a direct internal reforming solid oxide fuel cell (SOFC). The state feedback control is derived by minimizing an upper bound on the worst-case performance cost. The simulation results indicate that the synthesized robust MPC algorithm can control and guarantee the stability of the SOFC; although there are uncertainties in some model parameters, it can keep both the temperature and fuel at their setpoints.
1208. LAPSE:2020.0057
Optimization of the Technology Transfer Process Using Gantt Charts and Critical Path Analysis Flow Diagrams: Case Study of the Korean Automobile Industry
January 7, 2020 (v1)
Subject: Information Management
Keywords: automobile industry, Critical Path Analysis, Gantt Chart method, operation network diagram’s planning, optimization and modelling, project management, technology transfer process
This research is focused on the technology transfer process in the automobile industry using project management tools. The aim of this research is the development of a technology-transfer model using Gantt charts and Critical Path Analysis flow diagrams to achieve a sustainable planning process in the global environment. To achieve this goal, the authors use Gantt charts and Critical Path Analysis flow diagrams. The hypothesis and three research questions are presented, which suggest a relationship between project management tools and the sustainable planning process of technology transfer. During the research, we use the case study of the Korean automobile industry as an excellent example of the technology-transfer process in global markets. A single project of technology transfer is discussed: the technology knowledge transfer from Korean headquarters to a Russian manufacturing subsidiary (Hyundai Motor Corporation). Quantitative data were collected through the open resources of the... [more]
1209. LAPSE:2020.0056
A Risk Aversion Dispatching Optimal Model for a Micro Energy Grid Integrating Intermittent Renewable Energy and Considering Carbon Emissions and Demand Response
January 7, 2020 (v1)
Subject: Planning & Scheduling
Keywords: demand response, distributed energy, micro energy grid, risk aversion, uncertainty
This paper focuses on an optimal schedule for a micro energy grid considering the maximum total carbon emission allowance (MTEA). Firstly, the paper builds an energy devices operation model and demand response (DR) model. Secondly, to maximize the economical operation revenue, the basic scheduling model for the micro energy grid is constructed. Thirdly, the conditional value at risk method and robust stochastic theory are introduced to describe the uncertainty of wind power, photovoltaic power, and load, and a risk aversion model is proposed. Finally, this paper selects the Xinxiang active distribution network demonstration project in Jining, China as an example. The results show that: (1) a micro energy grid can make the most use of the complementary characters of different energy sources to meet different energy demands for electricity, heat, cold, and gas; (2) the risk aversion scheduling model can represent the influence of uncertainty variables in objective functions and constrain... [more]
1210. LAPSE:2020.0055
Activation Energy and Second Order Slip in Bioconvection of Oldroyd-B Nanofluid over a Stretching Cylinder: A Proposed Mathematical Model
January 7, 2020 (v1)
Subject: Modelling and Simulations
Keywords: activation energy, motile microorganisms, Oldroyd-B nanofluid, shooting technique, stretching cylinder
The thermal performances based on the interaction of nanoparticles are the topic of great interest in recent years. In the current continuation, we have utilized the activation energy and thermal radiation consequences in the bioconvection flow of magnetized Oldroyd-B nanoparticles over a stretching cylinder. As a novelty, the second order slip features (Wu’s slip) and convective Nield boundary assumptions are also introduced for the flow situation. The heat performances of nanofluids are captured with an evaluation of the famous Buongiorno’s model which enables us to determine the attractive features of Brownian motion and thermophoretic diffusion. The suggested thermal system is based on the flow velocity, nanoparticles temperature, nanoparticles volume fraction and motile microorganisms. The governing flow equations for the flow problem are constituted with relevant references for which numerically solution is developed via shooting algorithm. A detailed graphically analysis for the... [more]
1211. LAPSE:2020.0054
Numerical Simulation on Hydraulic Characteristics of Nozzle in Waterjet Propulsion System
January 7, 2020 (v1)
Subject: Modelling and Simulations
Keywords: efficiency, energy loss, hydraulic performance, nozzle, numerical simulation, waterjet propulsion
As an important over-current component of the waterjet propulsion system, the main function of a nozzle is to transform the mechanical energy of the propulsion pump into the kinetic energy of the water and eject the water flow to obtain thrust. In this study, the nozzle with different geometry and parameters was simulated based on computational fluid dynamics simulation and experiment. Numerical results show a good agreement with experimental results. The results show that the nozzle with a circular shape outlet shrinks evenly. Under the designed flow rate condition, the velocity uniformity of the circular nozzle is 0.26% and 0.34% higher than that of the elliptical nozzle and the rounded rectangle nozzle, respectively. The pump efficiency of the circular nozzle is 0.31% and 0.14% higher than that of the others. The pressure recovery and hydraulic loss of the circular nozzle are superior. The hydraulic characteristics of the propulsion pump and waterjet propulsion system are optimal wh... [more]
1212. LAPSE:2020.0053
Evolutionary Observer Ensemble for Leak Diagnosis in Water Pipelines
January 7, 2020 (v1)
Subject: Process Monitoring
Keywords: fault diagnosis, Genetic Algorithm, leak isolation, nonlinear observer
This work deals with the Leak Detection and Isolation (LDI) problem in water pipelines based on some heuristic method and assuming only flow rate and pressure head measurements at both ends of the duct. By considering the single leak case at an interior node of the pipeline, it has been shown that observability is indeed satisfied in this case, which allows designing an observer for the unmeasurable state variables, i.e., the pressure head at leak position. Relying on the fact that the origin of the observation error is exponentially stable if all parameters (including the leak coefficients) are known and uniformly ultimately bounded otherwise, the authors propose a bank of observers as follows: taking into account that the physical pipeline parameters are well-known, and there is only uncertainty about leak coefficients (position and magnitude), a pair of such coefficients is taken from a search space and is assigned to an observer. Then, a Genetic Algorithm (GA) is exploited to minim... [more]
1213. LAPSE:2020.0052
Experimental Study on Spray Breakup in Turbulent Atomization Using a Spiral Nozzle
January 7, 2020 (v1)
Subject: Other
Keywords: droplet size, droplet velocity, gas absorption, spiral nozzle, spray atomization
Spiral nozzles are widely used in wet scrubbers to form an appropriate spray pattern to capture the polluting gas/particulate matterwith the highest possible efficiency. Despite this fact, and a fact that it is a nozzle with a very atypical spray pattern (a full cone consisting of three concentric hollow cones), very limited amount of studies have been done so far on characterization of this type of nozzle. This work reports preliminary results on the spray characteristics of a spiral nozzle used for gas absorption processes. First, we experimentally measured the pressure impact footprint of the spray generated. Then effective spray angles were evaluated from the photographs of the spray and using the pressure impact footprint records via Archimedean spiral equation. Using the classical photography, areas of primary and secondary atomization were determined together with the droplet size distribution, which were further approximated using selected distribution functions. Radial and tan... [more]