Browse
Subjects
Records with Subject: Reaction Engineering
Showing records 64 to 88 of 281. [First] Page: 1 2 3 4 5 6 7 8 Last
Charcoal as an Alternative Reductant in Ferroalloy Production: A Review
Gerrit Ralf Surup, Anna Trubetskaya, Merete Tangstad
May 26, 2021 (v1)
Keywords: bio-based reductant, charcoal, ferroalloy industry, kiln, pyrolysis
This paper provides a fundamental and critical review of biomass application as renewable reductant in integrated ferroalloy reduction process. The basis for the review is based on the current process and product quality requirement that bio-based reductants must fulfill. The characteristics of different feedstocks and suitable pre-treatment and post-treatment technologies for their upgrading are evaluated. The existing literature concerning biomass application in ferroalloy industries is reviewed to fill out the research gaps related to charcoal properties provided by current production technologies and the integration of renewable reductants in the existing industrial infrastructure. This review also provides insights and recommendations to the unresolved challenges related to the charcoal process economics. Several possibilities to integrate the production of bio-based reductants with bio-refineries to lower the cost and increase the total efficiency are given. A comparison of chall... [more]
Study of a Method to Effectively Remove Char Byproduct Generated from Fast Pyrolysis of Lignocellulosic Biomass in a Bubbling Fluidized Bed Reactor
Jong Hyeon Ha, In-Gu Lee
May 25, 2021 (v1)
Keywords: BFB reactor, bio-oil, biochar, fast pyrolysis, inner and outer tubes, wood sawdust
A critical issue in the design of bubbling fluidized bed reactors for biomass fast pyrolysis is to maintain the bed at a constant level to ensure stable operation. In this work, a bubbling fluidized bed reactor was investigated to deal with this issue. The reactor consists of inner and outer tubes and enables in situ control of the fluidized-bed level in the inner-tube reactor with a mechanical method during biomass fast pyrolysis. The significant fraction of biochar produced from the fast pyrolysis in the inner-tube reactor was automatically removed through the annulus between the inner and outer tubes. The effect of pyrolysis temperature (426−528 °C) and feeding rate (0.8−1.8 kg/h) on the yield and characteristics of bio-oil, biochar, and gaseous products were examined at a 15 L/min nitrogen carrier gas flow rate for wood sawdust with a 0.5−1.0 mm particle size range as a feed. The bio-oil reached a maximum yield of 62.4 wt% on a dry basis at 440 °C, and then slowly decreased with in... [more]
Equilibrium, Kinetic and Thermodynamic Studies for Sorption of Phosphate from Aqueous Solutions Using ZnO Nanoparticles
Tra Huong Do, Van Tu Nguyen, Quoc Dung Nguyen, Manh Nhuong Chu, Thi Cam Quyen Ngo, Lam Van Tan
May 25, 2021 (v1)
Keywords: aqueous solution, equilibrium, kinetic, nanoparticles, phosphate, thermodynamic, ZnO
In this study, ZnO nanoparticles were fabricated by using the hydrothermal method for adsorption of phosphate from wastewater. The obtained ZnO nanorods were characterized by powder X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), specific surface area (BET) and energy dispersive X-ray spectroscopy (EDS). The ZnO materials were applied for adsorption of phosphate from water using batch experiments. The effects of pH (4−10), adsorption time (30−240 min), the amount of adsorbent (0.1−0.7 g/L) and initial concentration of phosphate (147.637−466.209 mg/L) on the adsorption efficiency were investigated. The optimum condition was found at pH = 5 and at an adsorption time of 150 min. The adsorption was fitted well with the Langmuir isotherm and the maximum adsorption capacity was calculated to be 769.23 mg/g. These results show that ZnO nanomaterial would highly promising for adsorbing phosphate from water. The adsorption of phosphate on ZnO nanomaterials follows the... [more]
Direct Solid Oxide Electrolysis of Carbon Dioxide: Analysis of Performance and Processes
Severin Foit, Lucy Dittrich, Tobias Duyster, Izaak Vinke, Rüdiger-A. Eichel, L. G. J. (Bert) de Haart
May 24, 2021 (v1)
Keywords: Carbon Dioxide, carbon dioxide reduction, carbon dioxide utilization, CO2-electrolysis, high-temperature electrolysis, solid oxide electrolysis
Chemical industries rely heavily on fossil resources for the production of carbon-based chemicals. A possible transformation towards sustainability is the usage of carbon dioxide as a source of carbon. Carbon dioxide is activated for follow-up reactions by its conversion to carbon monoxide. This can be accomplished by electrochemical reduction in solid oxide cells. In this work, we investigate the process performance of the direct high-temperature CO2 electrolysis by current-voltage characteristics (iV) and Electrochemical Impedance Spectroscopy (EIS) experiments. Variations of the operation parameters temperature, load, fuel utilization, feed gas ratio and flow rate show the versatility of the procedure with maintaining high current densities of 0.75 up to 1.5 A·cm−2, therefore resulting in high conversion rates. The potential of the high-temperature carbon dioxide electrolysis as a suitable enabler for the activation of CO2 as a chemical feedstock is therefore appointed and shown.
Gasification Applicability of Korean Municipal Waste Derived Solid Fuel: A Comparative Study
Sang Yeop Lee, Md Tanvir Alam, Gun Ho Han, Dong Hyuk Choi, Se Won Park
May 17, 2021 (v1)
Keywords: Biomass, Coal, gasification, municipal solid waste, solid recovered fuel, Syngas
Gaining energy independence by utilizing new and renewable energy resources has become imperative for Korea. Energy recovery from Korean municipal solid waste (MSW) could be a promising option to resolve the issue, as Korean MSW is highly recyclable due to its systematic separation, collection and volume-based waste disposal system. In this study, gasification experiments were conducted on Korean municipal waste-derived solid fuel (SRF) using a fixed bed reactor by varying the equivalence ratio (ER) to assess the viability of syngas production. Experiments were also conducted on coal and biomass under similar conditions to compare the experimental results, as the gasification applicability of coal and biomass are long-established. Experimental results showed that Korean SRF could be used to recover energy in form of syngas. In particular, 50.94% cold gas efficiency and 54.66% carbon conversion ratio with a lower heating value of 12.57 MJ/Nm3 can be achieved by gasifying the SRF at 0.4... [more]
Influences of Ash-Existing Environments and Coal Structures on CO2 Gasification Characteristics of Tri-High Coal
Lang Liu, Qingrui Jiao, Jian Yang, Bowen Kong, Shan Ren, Qingcai Liu
May 17, 2021 (v1)
Keywords: ash-free coal, CO2 gasification, coal structure, tri-high coal
Two kinds of tri-high coals were selected to determine the influences of ash-existing environments and coal structures on CO2 gasification characteristics. The TGA results showed that the gasification of ash-free coal (AFC) chars was more efficient than that of corresponding raw coal (RC) chars. To uncover the reasons, the structures of RCs and AFCs, and their char samples prepared at elevated temperatures were investigated with SEM, BET, XRD, Raman and FTIR. The BET, SEM and XRD results showed that the Ash/mineral matter is associated with coal, carbon forms the main structural framework and mineral matters are found embedded in the coal structure in the low-rank tri-high coal. The Raman and FTIR results show that the ash can hinder volatile matters from exposing to the coal particles. Those results indicate that the surface of AFC chars has more free active carbon sites than raw coal chars, which are favorable for mass transfer between C and CO2, thereby improving reactivity of the A... [more]
Thermo-Acoustic Catalytic Effect on Oxidizing Woody Torrefaction
Edgar A. Silveira, Luiz Gustavo Oliveira Galvão, Lucélia Alves de Macedo, Isabella A. Sá, Bruno S. Chaves, Marcus Vinícius Girão de Morais, Patrick Rousset, Armando Caldeira-Pires
May 17, 2021 (v1)
Keywords: catalytic effect, numerical modeling, severity factors, thermoacoustic, woody biomass torrefaction
The torrefaction (mild pyrolysis) process modifies biomass chemical and physical properties and is applied as a thermochemical route to upgrade solid fuel. In this work, the catalytic effect of thermo-acoustic on oxidizing woody torrefaction is assessed. The combined effect of two acoustic frequencies (1411, 2696 Hz) and three temperatures (230, 250, and 290 °C) was evaluated through weight loss and its deviation curves, calculated torrefaction severity index (TSI), as well as proximate, calorific, and compression strength analysis of Eucalyptus grandis. A new index to account for the catalytic effects on torrefaction (TCEI) was introduced, providing the quantitative analysis of acoustic frequencies influence. A two-step consecutive reaction numerical model allowed the thermo-acoustic experiment evaluation. For instance, the thermogravimetric profiles revealed that the acoustic field has a catalytic effect on wood torrefaction and enhances the biomass oxidation process for severe treat... [more]
Thermal Decontamination of Spent Activated Carbon Contaminated with Radiocarbon and Tritium
Hee-Chul Yang, Min-Woo Lee, Hee-Chul Eun, Hyung-Ju Kim, Keunyoung Lee, Bum-Kyung Seo
May 17, 2021 (v1)
Keywords: radiocarbon, reactivation, spent activated carbon, thermal desorption, tritium
The thermal desorption of tritium (3H, T) and radiocarbon (14C) from spent activated carbon was investigated and three thermal desorption steps were established: the vaporization of homogeneously condensed molecules, the desorption of molecules physically binding with the carbon surface, and the decomposition of chemisorbed molecules. A model-free kinetic analysis was conducted to establish the optimum condition of vacuum thermal desorption. Physisorbed species, including tritiated water (HTO) and 14CO2, were effectively removed by vacuum thermal desorption. However, a fraction of 14C, which may take the form of carbon molecules in pyrocarbon form during the heating process, was not removed, even at a high temperature of 1000 °C under a vacuum of 0.3−0.5 Pa. Oxidative peeling of the pore surfaces by filling the evacuated pores with pure oxygen via vacuum thermal desorption and heating to 700 °C was found to be effective for reducing the level of 14C to a level below the established fre... [more]
Kinetics and Modeling of Aqueous Phase Radical Homopolymerization of 3-(Methacryloylaminopropyl)trimethylammonium Chloride and its Copolymerization with Acrylic Acid
Ikenna H. Ezenwajiaku, Emmanuel Samuel, Robin A. Hutchinson
May 11, 2021 (v1)
Keywords: aqueous phase polymerization, modeling and simulation, polyelectrolytes, radical polymerization
The radical homopolymerization kinetics of 3-(methacryloylaminopropyl) trimethylammonium chloride (MAPTAC) and its batch copolymerization with nonionized acrylic acid (AA) in aqueous solution are investigated and modeled. The drift in monomer composition is measured during copolymerization by in situ NMR over a range of initial AA molar fractions and monomer weight fractions up to 0.35 at 50 °C. The copolymer becomes enriched in MAPTAC for monomer mixtures containing up to 60 mol% MAPTAC, but is enriched in AA for MAPTAC-rich mixtures; this azeotropic behavior is dependent on initial monomer content, as electrostatic interactions from the cationic charges influence the system reactivity ratios. Models for MAPTAC homopolymerization and AA-MAPTAC copolymerization are developed to represent the rates of monomer conversion and comonomer composition drifts over the complete range of experimental conditions.
Suzuki−Miyaura Reactions of (4-bromophenyl)-4,6-dichloropyrimidine through Commercially Available Palladium Catalyst: Synthesis, Optimization and Their Structural Aspects Identification through Computational Studies
Ayesha Malik, Nasir Rasool, Iram Kanwal, Muhammad Ali Hashmi, Ameer Fawad Zahoor, Gulraiz Ahmad, Ataf Ali Altaf, Syed Adnan Ali Shah, Sadia Sultan, Zainul Amiruddin Zakaria
May 4, 2021 (v1)
Keywords: DFT, FMO, Pd catalyst, reactivity descriptors, Suzuki–Miyaura
5-(4-bromophenyl)-4,6-dichloropyrimidine was arylated with several aryl/heteroaryl boronic acids via the Suzuki cross-coupling reaction by using Pd(0) catalyst to yield novel pyrimidine analogs (3a-h). It was optimized so that good yields were obtained when 5 mol % Pd(PPh3)4 was used along with K3PO4 and 1,4-Dioxane. Electron-rich boronic acids were succeeded to produce good yields of products. Density functional theory (DFT) calculations were also applied on these new compounds to analyze their reactivity descriptors and electronic and structural relationship. According to DFT studies, compound 3f is the most reactive one, while 3g is the most stable one. As per DFT studies, the hyperpolarizability (β) values of these compounds do not show them as very good non-linear optical (NLO) materials. Compound 3f has the highest β value among all the compounds under study but still it is not high enough to render it a potent NLO material.
Initiator Feeding Policies in Semi-Batch Free Radical Polymerization: A Monte Carlo Study
Ali Seyedi, Mohammad Najafi, Gregory T. Russell, Yousef Mohammadi, Eduardo Vivaldo-Lima, Alexander Penlidis
April 29, 2021 (v1)
Keywords: initiator feeding policies, methyl methacrylate, Monte Carlo simulation, polymer microstructure, styrene
A Monte Carlo simulation algorithm is developed to visualize the impact of various initiator feeding policies on the kinetics of free radical polymerization. Three cases are studied: (1) general free radical polymerization using typical rate constants; (2) diffusion-controlled styrene free radical polymerization in a relatively small amount of solvent; and (3) methyl methacrylate free radical polymerization in solution. The number- and weight-average chain lengths, molecular weight distribution (MWD), and polymerization time were computed for each initiator feeding policy. The results show that a higher number of initiator shots throughout polymerization at a fixed amount of initiator significantly increases average molecular weight and broadens MWD. Similar results are also observed when most of the initiator is added at higher conversions. It is demonstrated that one can double the molecular weight of polystyrene and increase its dispersity by 50% through a four-shot instead of a sin... [more]
Photochemical Oxidation Process of Copper from Electroplating Wastewater: Process Performance and Kinetic Study
Aji Prasetyaningrum, Teguh Riyanto, Mohamad Djaeni, Widayat Widayat
April 29, 2021 (v1)
Keywords: advanced oxidation process, Cu, kinetics, ozone, photochemical oxidation, ultraviolet irradiation
An investigation of the process of ozone combined with ultraviolet radiation has been carried out in order to establish the kinetics for photochemical oxidation of copper (Cu) from electroplating wastewater. The effects of operating parameters, including initial Cu concentration, ozone dosage, UV irradiation intensity, and pH value on the photochemical oxidation of Cu have been studied comprehensively. The Cu concentration during the reaction was identified using atomic absorption spectroscopy (AAS) method. The solid product was analyzed using X-ray diffraction (XRD) and scanning electron microscope−energy-dispersive X-ray (SEM−EDX) methods. It was found that the UV-Ozone process has high performance on Cu removal compared to UV and Ozone processes due to the high production rate of HO• radicals. It was also found that the solid product from the UV-Ozone process was CuO monoclinic crystal phase. The initial Cu concentration, ozone dosage, and pH value were significantly affected the Cu... [more]
Phosphorus-Doped Carbon Supported Vanadium Phosphate Oxides for Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran
Sha Wen, Kai Liu, Yi Tian, Yanping Xiang, Xianxiang Liu, Dulin Yin
April 29, 2021 (v1)
Keywords: 2,5-diformylfuran, 5-hydroxymethylfurfural, Catalysis, selective oxidation, vanadium phosphate oxides
2,5-diformylfuran (DFF) is an important downstream product obtained by selective oxidation of the biomass-based platform compound 5-hydroxymethylfurfural (HMF). In this study, a phosphorus-doped carbon (P-C) supported vanadium phosphate oxide (VPO) catalyst was successfully prepared and showed remarkably high catalytic activity in the selective oxidation of HMF to produce DFF with air as an oxidant. The effects of the reaction temperature, reaction time, solvent, catalyst amount, and VPO loading amount were investigated. The results showed that an HMF conversion rate of 100% and a DFF yield of 97.0% were obtained under suitable conditions, and DMSO was found to be the most suitable solvent under an air atmosphere.
Enhanced Degradation of Phenolic Compounds in Coal Gasification Wastewater by Methods of Microelectrolysis Fe-C and Anaerobic-Anoxic—Oxic Moving Bed Biofilm Reactor (A2O-MBBR)
Do Tra Huong, Van Tu Nguyen, Xuan Linh Ha, Hien Lan Nguyen Thi, Thi Thoa Duong, Duy Chinh Nguyen, Hong-Tham Nguyen Thi
April 27, 2021 (v1)
Keywords: A2O-MBBR, coal gasification wastewater, Fe-C materials, internal electrolysis
The coal gasification wastewater figures prominently among types of industrial effluents due to its complex and phenolic composition, posing great difficulty for conventional water treatment processes. Since the coking wastewater is toxic and mutagenic to humans and animals, treatment of coal gasification wastewater is genuinely necessary. In this study, we established a lab-scale A2O (Anaerobic-Anoxic—Oxic) with moving bed biological reactor (MBBR) system and evaluated some water indicators of wastewater pretreated with internal electrolysis, of wastewater output of the established A2O-MBBR system, and of the wastewater treated by the combination thereof. The wastewater was taken from a coking plant at Thai Nguyen Iron and Steel Joint Stock Company in Vietnam. COD, BOD5, NH4+-N, phenol, and pH of the input coal gasification wastewater were 2359, 1105, 319, 172 mg/L, and 8 ± 0.1, respectively. The conditions of internal electrolysis were as follows: 720 min of reaction time, pH = 4, 25... [more]
Behavior of Cd during Coal Combustion: An Overview
Lucie Bartoňová, Helena Raclavská, Bohumír Čech, Marek Kucbel
April 27, 2021 (v1)
Keywords: cadmium, chlorine, coal combustion, emissions, retention, volatility, wastes
Due to the unfavorable combination of its toxicity and high volatility, Cd is contained in most lists of potentially hazardous air pollutants with the greatest environmental and human-health concerns. The review paper evaluates the behavior of Cd during combustion (incineration) processes and its redistribution among condensed fractions (bottom ash/slag, fly ash) and volatilized fractions (that passes through most particulate control devices). The paper addresses all important effects of Cd interactions, such as presence of organic or inorganic chlorides, moisture levels, S, P and Na concentrations, flue gas composition etc. Possibilities of using various adsorbents (either within in-furnace regime or applied in post-combustion zone) are evaluated as well. Special attention is paid to mitigating its emissions factors; decreasing Cd volatility and facilitating Cd retention are discussed with the view of various combustion (incineration) conditions and the feed fuel composition.
The Effects of Port Water Injection on Spark Ignition Engine Performance and Emissions Fueled by Pure Gasoline, E5 and E10
Farhad Salek, Meisam Babaie, Maria Dolores Redel-Macias, Ali Ghodsi, Seyed Vahid Hosseini, Amir Nourian, Martin L Burby, Ali Zare
April 26, 2021 (v1)
Keywords: E10 biofuel, Ethanol, NOx, start of combustion, water port injection
It has been proven that vehicle emissions such as oxides of nitrogen (NOx) are negatively affecting the health of human beings as well as the environment. In addition, it was recently highlighted that air pollution may result in people being more vulnerable to the deadly COVID-19 virus. The use of biofuels such as E5 and E10 as alternatives of gasoline fuel have been recommended by different researchers. In this paper, the impacts of port injection of water to a spark ignition engine fueled by gasoline, E5 and E10 on its performance and NOx production have been investigated. The experimental work was undertaken using a KIA Cerato engine and the results were used to validate an AVL BOOST model. To develop the numerical analysis, design of experiment (DOE) method was employed. The results showed that by increasing the ethanol fraction in gasoline/ethanol blend, the brake specific fuel consumption (BSFC) improved between 2.3% and 4.5%. However, the level of NOx increased between 22% to 48... [more]
Hydrothermal Carbonization of Olive Tree Pruning as a Sustainable Way for Improving Biomass Energy Potential: Effect of Reaction Parameters on Fuel Properties
Judith González-Arias, Marta Elena Sánchez, Elia Judith Martínez, Camila Covalski, Ana Alonso-Simón, Rubén González, Jorge Cara-Jiménez
April 16, 2021 (v1)
Keywords: bioconversion, bioenergy, biofuel, combustion, hydrochar, hydrothermal carbonization, olive tree pruning biomass
Hydrothermal carbonization (HTC) allows the conversion of organic waste into a solid product called hydrochar with improved fuel properties. Olive tree pruning biomass (OTP), a very abundant residue in Mediterranean countries, was treated by HTC to obtain a solid fuel similar to coal that could be used in co-combustion processes. Three different reaction temperatures (220, 250, and 280 °C) and reaction times (3, 6, and 9 h) were selected. The hydrochars obtained were extensively analyzed to study their behavior as fuel (i.e., ultimate, proximate, fiber and thermogravimetric analysis, Fourier-transform infrared spectroscopy (FTIR), activation energy, and combustion performance). The concentrations of cellulose, hemicellulose, and lignin in the samples depict a clear and consistent trend with the chemical reactions carried out in this treatment. Regarding O/C and H/C ratios and HHV, the hydrochars generated at more severe conditions are similar to lignite coal, reaching values of HHV up... [more]
Enhanced Adsorptive Removal of β-Estradiol from Aqueous and Wastewater Samples by Magnetic Nano-Akaganeite: Adsorption Isotherms, Kinetics, and Mechanism
Anele Mpupa, Azile Nqombolo, Boris Mizaikoff, Philiswa Nosizo Nomngongo
April 16, 2021 (v1)
Keywords: adsorptive removal, akaganeite nanorods, desirability function, endocrine disruptors, β-estradiol
A surfactant-free method was used to synthesize iron oxyhydroxide (akaganeite, β-FeOOH) nanorods and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS), and transmission electron microscopy (TEM). The synthesized nanoadsorbent was applied for the adsorptive removal of β-estradiol from aqueous solutions. The parameters affecting the adsorption were optimized using a multivariate approach based on the Box−Behnken design with the desirability function. Under the optimum conditions, the equilibrium data were investigated using two and three parameter isotherms, such as the Langmuir, Freundlich, Dubinin−Radushkevich, Redlich−Peterson, and Sips models. The adsorption data were described as Langmuir and Sips isotherm models and the maximum adsorption capacities in Langmuir and Sips of the β-FeOOH nanorods were 97.0 and 103 mg g−1, respectively. The adjusted non-l... [more]
Cu(II) and As(V) Adsorption Kinetic Characteristic of the Multifunctional Amino Groups in Chitosan
Byungryul An
April 16, 2021 (v1)
Keywords: Adsorption, amino group, anion, cation, kinetic, multifunction
Amino groups in the chitosan polymer play as a functional group for the removal of cations and anions depending on the degree of protonation, which is determined by the solution pH. A hydrogel beadlike porous adsorbent was used to investigate the functions and adsorption mechanism of the amino groups by removal of Cu(II) as a cation and As(V) as an anion for a single and mixed solution. The uptakes of Cu(II) and As(V) were 5.2 and 5.6 μmol/g for the single solution and 5.9 and 3.6 μmol/g for the mixed solution, respectively. The increased total capacity in the presence of both the cation and anion indicated that the amino group (NH2 or NH3+) species was directly associated for adsorption. The application of a pseudo second-order (PSO) kinetic model was more suitable and resulted in an accurate correlation coefficient (R2) compared with the pseudo first-order (PFO) kinetic model for all experimental conditions. Due to poor linearization of the PFO reaction model, we attempted to divide... [more]
Degradation of Direct Blue 1 through Heterogeneous Photocatalysis with TiO2 Irradiated with E-Beam
Elvia Gallegos, Florinella Muñoz Bisesti, Katherine Vaca-Escobar, Cristian Santacruz, Lenys Fernández, Alexis Debut, Patricio J. Espinoza-Montero
April 16, 2021 (v1)
Keywords: Adsorption, Direct Blue 1, electron-beam, heterogeneous photocatalysis, irradiated TiO2
Most dyes used in the textile industry are chemically stable and poorly biodegradable, therefore, they are persistent in the environment and difficult to degrade by conventional methods. An alternative treatment for this kind of substance is heterogeneous photocatalysis using TiO2, so, in this work, it is proposed to degrade Direct Blue 1 (DB1) using microparticulate TiO2 irradiated with e-beam at three different doses: 5, 10 and 20 kGy (J/kg). The DB1 degradation was implemented in a batch reactor (DB1 initial concentration = 50 mg L−1, pH 2.5, TiO2 concentration = 200 mg L−1). We have demonstrated that the photocatalytic power of TiO2, when irradiated with e-beam (5, 10, 20 kGy), varies slightly, with minor effects on photodegradation performance. However, the dose of 10 kGy showed a slightly better result, according to the DB1 photodegradation rate constant. Adsorption process was not affected by irradiation; its isotherm was fitted to Freundlich’s mathematical model. The DB1 photod... [more]
Supported Palladium Nanocatalysts: Recent Findings in Hydrogenation Reactions
Marta A. Andrade, Luísa M. D. R. S. Martins
April 16, 2021 (v1)
Keywords: carbon material, catalyst, hydrogenation, mesoporous silica, MOF, nanoparticles, palladium, supported, zeolite
Catalysis has witnessed a dramatic increase on the use of metallic nanoparticles in the last decade, opening endless opportunities in a wide range of research areas. As one of the most investigated catalysts in organic synthesis, palladium finds numerous applications being of significant relevance in industrial hydrogenation reactions. The immobilization of Pd nanoparticles in porous solid supports offers great advantages in heterogeneous catalysis, allowing control of the major factors that influence activity and selectivity. The present review deals with recent developments in the preparation and applications of immobilized Pd nanoparticles on solid supports as catalysts for hydrogenation reactions, aiming to give an insight on the key factors that contribute to enhanced activity and selectivity. The application of mesoporous silicas, carbonaceous materials, zeolites, and metal organic frameworks (MOFs) as supports for palladium nanoparticles is addressed.
Novel Application of Pretreatment and Diagnostic Method Using Dynamic Pressure Fluctuations to Resolve and Detect Issues Related to Biogenic Residue Ash in Chemical Looping Gasification
Andrea Di Giuliano, Ibai Funcia, Raúl Pérez-Vega, Javier Gil, Katia Gallucci
March 14, 2021 (v1)
Keywords: agglomeration, ash behavior, biogenic residues, chemical looping gasification, oxygen carriers, pressure fluctuation analysis, pretreatments for biomasses
Biogenic residues are a promising feedstock to produce liquid biofuels via chemical looping gasification (CLG), but they form ashes with a high inorganic matter content, thus causing agglomeration and deposition in CLG-fluidized beds made of oxygen carriers (OC). The aim of this work is to develop pretreatments for residual biomasses to prevent this issue. Raw forest pine (as a reference material) and wheat straw residues were considered. The latter were pretreated by torrefaction at 250, 260, or 270 °C and through the washing of torrefied biomasses. Torrefaction encouraged a de-chlorinating effect, while washing allowed the removal of 30−40% of S, 60−70% of K, and 40−50% of P. The analysis of pressure fluctuation signals (standard deviations and dominant frequencies) was utilized to verify the improvement of the performance of treated biomass in fluidized beds: three OCs were, respectively, coupled with ashes from all biomasses, then fluidized from 700 to 1000 °C at two and three time... [more]
Influences of Water Content in Feedstock Oil on Burning Characteristics of Fatty Acid Methyl Esters
Cherng-Yuan Lin, Lei Ma
March 14, 2021 (v1)
Keywords: added water content, burning characteristics, distillation temperature, fatty acid methyl ester, fuel structure
Strong alkaline-catalyst transesterification with short-chain alcohol is generally used for biodiesel production due to its dominant advantages of shorter reaction time and higher conversion rate over other reactions. The existence of excess water content in the feedstock oil might retard the transesterification rate and in turn deteriorate the fuel characteristics of the fatty acid methyl esters. Hence, optimum water content in the raw oil, aimed towards both lower production cost and superior fuel properties, becomes significant for biodiesel research and industrial practices. Previous studies only concerned the influences of water contents on the yield or conversion rate of fatty acid methyl esters through transesterification of triglycerides. The effects of added water in the reactant mixture on burning characteristics of fatty acid methyl esters are thus first investigated in this study. Raw palm oil was added with preset water content before being transesterified. The experimenta... [more]
Synthesis of Silicon Hybrid Phenolic Resins with High Si-Content and Nanoscale Phase Separation Structure
Wenjie Yuan, Fenghua Chen, Shan Li, Youpei Du, Zhenhua Luo, Yanan Sun, Hao Li, Tong Zhao
March 14, 2021 (v1)
Keywords: ablative property, nanoscale phase separation, oxidation resistance, silicon hybrid phenolic resin
In this paper, a set of silicon hybrid phenolic resins (SPF) with high Si-content were prepared by mixing phenolic resins with self-synthesized silicon resins. In order to obtain the nanoscale phase structure, condensation degree and the amount of Si-OH groups in silicon resins were controlled by the amount of inhibitor ethanol in the hydrolytic condensation polymerization of siloxane. Increasing the amount of ethanol resulted in more silanol groups and a lower degree of condensation for silicon resins, which then led to more formation of Si-O-Ph bonds in hybrid resin and improved compatibility between silicon resin and phenolic resin. When 400% ethanol by weight of siloxane was used in the sample SPF-4, nanoscale phase separation resulted. The residual weight of the cured SPF-4 at 1000 °C (R1000) significantly increased compared to pure phenolic resins. The result of the oxyacetylene flame ablation and the Cone Calorimeter test confirmed the improved ablative property and flammability... [more]
Lipase-Catalysed In Situ Transesterification of Waste Rapeseed Oil to Produce Diesel-Biodiesel Blends
Egle Sendzikiene, Migle Santaraite, Violeta Makareviciene
March 14, 2021 (v1)
Keywords: biodiesel, diesel fuel, in-situ transesterification, lipase
Rapeseed oil of high acidity, an agricultural industry by-product unsuitable for food, was used as an inexpensive raw material for the production of biodiesel fuel. The use of rapeseed oil that is unsuitable for food and lipase as a catalyst makes the biodiesel production process environmentally friendly. Simultaneous oil extraction and in situ transesterification using diesel as an extraction solvent was investigated to obtain a diesel-biodiesel blend. The diesel and rapeseed oil blend ratio was 9:1 (w/w). The enzymatic production of biodiesel from rapeseed oil with high acidity and methanol using eleven different lipases as biocatalysts was studied. The most effective biocatalyst, lipase—Lipozyme TL IM (Thermomyces lanuginosus), which is suitable for in situ transesterification—was selected, and the conversion of rapeseed oil into fatty acid methyl ester was evaluated. The influence of the amount of methanol and lipase, the reaction temperature and the reaction time were investigated... [more]
Showing records 64 to 88 of 281. [First] Page: 1 2 3 4 5 6 7 8 Last
[Show All Subjects]