Browse
Keywords
Records with Keyword: Technoeconomic Analysis
Showing records 76 to 100 of 108. [First] Page: 1 2 3 4 5 Last
Eco-technoeconomic analyses of NG-powered SOFC/GT hybrid plants accounting for long-term degradation effects via pseudo-steady-state model simulations
Haoxiang Lai, Thomas Adams II
August 2, 2022 (v1)
Models and codes that were used in this work. Please read the simulation instruction.
Is CCS really so expensive? An analysis of cascading costs and CO2 emissions reduction of industrial CCS implementation applied to a bridge
Sai Gokul Subraveti, Elda Rodriguez, Andrea Ramirez, Simon Roussanaly
July 19, 2022 (v1)
Subject: Energy Policy
Keywords: Bridge, Carbon Capture and Storage, CCS, Cement, Cost-Benefit analysis, Life Cycle Analysis, Steel, Technoeconomic Analysis
Carbon capture, transport, and storage (CCS) is an essential technology to mitigate global CO2 emissions from power and industry sectors. Despite the increasing recognition and interest in both the scientific community and stakeholders, current CCS deployment is far behind targeted ambitions. A key reason is that CCS is often perceived as too expensive to reduce CO2 emissions. The costs of CCS have however traditionally been looked at from the industrial plant point of view which does not necessarily reflect the end-user’s perspective. This paper addresses the incomplete view by investigating the impact of implementing CCS in industrial facilities on the overall costs and CO2 emissions of end-user products and services. As an example, this work examines the extent to which an increase in costs of raw materials (cement and steel) due to CCS impact the costs of building a bridge. Our results show that although CCS significantly increases the cost of cement and steel, the subsequent incre... [more]
Supplemental Data for “Process Design and Techno-Economic Analysis of Biomass Pyrolysis By-Product Utilization in the Ontario and Aichi Steel Industries”
Jamie Rose, Thomas A. Adams II
November 5, 2021 (v1)
This is supplemental data for a paper submitted to the PSE 2021+ conference. It includes values used to calculate emissions reductions and financial value of biomass pyrolysis by-product utilization.
Valorization of Biomass Pyrolysis By-Products for Heat Production in the Ontario Steel Industry: A Techno-Economic Analysis
Jamie Rose, Thomas A. Adams II
November 5, 2021 (v1)
As part of efforts to reduce carbon emissions in the iron and steel industry, which are especially pertinent in Canada due to rising carbon taxes, Canadian producers have been investigating the effects of replacing coal used in pulverized coal injection with biochar. Although there has been research into the economic value and effect on net life cycle emissions of using the biochar product itself, there are no comprehensive techno-economic analyses which investigate the value and potential uses of the by-products of biomass pyrolysis. These by-products include volatile organic compounds, known collectively as tar or bio-oil, and light gases, which are mainly hydrogen, carbon monoxide, carbon dioxide, and methane. Since only 20-30% of the mass of pyrolyzed biomass is actually converted to char, with the rest converted to the by-products, [1] usage of these by-products is likely the key to increasing the value of biochar to a degree that makes up for the market price of biochar currently... [more]
At what pressure shall CO2 be transported by ship? An in-depth cost comparison of 7 and 15 barg shipping.
Simon Roussanaly, Han Deng, Geir Skaugen, Truls Gundersen
July 7, 2021 (v1)
Subject: Optimization
Keywords: Carbon Capture and Storage, CO2 shipping, CO2 transport, Optimal transport pressure, Technoeconomic Analysis
While pipeline transport traditionally has been regarded as the best option for CO2 transport due to its low cost over short distances and important economies of scale, interest in vessel-based transport of CO2 is growing. While virtually all recent literature has focused on low pressure transport (at 7 barg and -46°C), the issue of optimal transport conditions, in terms of pressure, temperature and gas composition, is becoming more relevant as carbon capture and storage chains based on ship transport move closer towards implementation.
This study focuses on an in-depth comparison of the two primary and relevant transport pressures, 7 and 15 barg, for annual volumes up to 20 MtCO2/y and transport distances up to 2000 km. We also address the impact of a number of key factors on optimal transport conditions, including (a) transport between harbours versus transport to an offshore site, (b) CO2 pressure prior to conditioning, (c) the presence of impurities and of purity constraints, and... [more]
Techno-Economic Analysis of a Kilo-Watt Scale Hydrogen-Bromine Flow Battery System for Sustainable Energy Storage
Yohanes Antonius Hugo, Wiebrand Kout, Guido Dalessi, Antoni Forner-Cuenca, Zandrie Borneman, Kitty Nijmeijer
June 2, 2021 (v1)
Keywords: hydrogen bromine flow battery (HBFB), levelized cost of storage, market barriers, stack lifetime, Technoeconomic Analysis
Transitioning to a renewable energy economy requires the widespread integration of solar and wind power, which are intermittent, into the electricity grid. To this goal, it is paramount to develop cost-competitive, reliable, location-independence, and large-scale energy storage technologies. The hydrogen bromine flow battery (HBFB) is a promising technology given the abundant material availability and its high power density. Here, the aim is to perform a comprehensive techno-economic analysis of a 500 kW nominal power/5 MWh HBFB storage system, based on the levelized cost of storage approach. Then, we systematically analyze stack and system components costs for both the current base and a future scenario (2030). We find that, for the base case, HBFB capital investments are competitive to Li-ion battery technology, highlighting the potential of large-scale HBFB market introduction. Improving the stack performance and reducing the stack and system costs are expected to result in ~62% red... [more]
Optimal Sizing and Techno-Economic Analysis of Hybrid Renewable Energy Systems—A Case Study of a Photovoltaic/Wind/Battery/Diesel System in Fanisau, Northern Nigeria
Nasser Yimen, Theodore Tchotang, Abraham Kanmogne, Idriss Abdelkhalikh Idriss, Bashir Musa, Aliyu Aliyu, Eric C. Okonkwo, Sani Isah Abba, Daniel Tata, Lucien Meva’a, Oumarou Hamandjoda, Mustafa Dagbasi
May 17, 2021 (v1)
Keywords: break-even grid extension distance, Genetic Algorithm, greenhouse gas emissions analysis, hybrid renewable energy systems, Modelling, net present value, Nigeria, replacement project, rural electrification, simple payback period, simulation and optimization, sub-Saharan Africa, Technoeconomic Analysis
Hybrid Renewable Energy Systems (HRESs) have been touted as an appropriate way for supplying electricity to remote and off-grid areas in developing countries, especially in sub-Saharan Africa (SSA), where rural electrification challenges are the most pronounced. This study proposes a two-step methodology for optimizing and analyzing a stand-alone photovoltaic/wind/battery/diesel hybrid system to meet the electricity needs of Fanisua, an off-grid and remote village of northern Nigeria. In the first step, the MATLAB environment was used to run simulations and optimize the system via the genetic algorithm. Then, techno-economic and emissions analysis was carried out in the second step to compare the proposed system to the existing traditional modes of rural electrification in sub-Saharan Africa, namely, the grid-extension and diesel generator. The break-even distance parameter was adopted in the comparison with grid-extension. Besides, the hypothetical project of replacing the diesel gene... [more]
A Kraft Mill-Integrated Hydrothermal Liquefaction Process for Liquid Fuel Co-Production
Benjamin H. Y. Ong, Timothy G. Walmsley, Martin J. Atkins, Michael R. W. Walmsley
April 26, 2021 (v1)
Keywords: black liquor, hydrothermal liquefaction, process integration, Technoeconomic Analysis, total site heat integration, utility system
There is a growing awareness of the need to mitigate greenhouse gas emissions and the inevitable depletion of fossil fuel. With the market pull for the growth in sustainable and renewable alternative energy, the challenge is to develop cost-effective, large-scale renewable energy alternatives for all energy sectors, of which transport fuels are one significant area. This work presents a summary of novel methods for integrating kraft mills with a hydrothermal liquefaction process. The application of these methods has resulted in a proposed kraft mill-integrated design that produces a liquid fuel and could provide net mitigation of 64.6 kg CO2-e/GJ, compared to conventional petrol and diesel fuels, at a minimum fuel selling price of 1.12−1.38 NZD/LGE of fuel, based on the case study. This paper concludes that a hydrothermal liquefaction process with product upgrading has promising economic potential and environmental benefits that are significantly amplified by integrating with an existi... [more]
SuperPro Designer®, User-Oriented Software Used for Analyzing the Techno-Economic Feasibility of Electrical Energy Generation from Sugarcane Vinasse in Colombia
Licelly Canizales, Fredy Rojas, Carlos A. Pizarro, Nelson. H. Caicedo-Ortega, M. F. Villegas-Torres
April 16, 2021 (v1)
Keywords: anaerobic digestion, sensitivity analysis, sugarcane-based vinasse, SuperPro Designer®, Technoeconomic Analysis
SuperPro Designer® is a process simulator software used for analyzing the techno-economic feasibility of large-scale bioprocesses. Its predetermined built-in features allow for easy implementation by non-experts, but a lack of examples limits its appropriation. This study aims to validate the implementation of SuperPro Designer® by non-experts for the techno-economic analysis of anaerobic digestion in Colombia, using vinasse as feedstock. These results demonstrate the financial feasibility of such a process when a processing flow rate of 25 m3/h is ensured. Additionally, this study validates the manageability of the tool for assessing the economic feasibility of a technology, a key practice during technology development regardless of the area of expertise.
Integrated Biorefinery of Empty Fruit Bunch from Palm Oil Industries to Produce Valuable Biochemicals
Rendra Hakim Hafyan, Lupete K. Bhullar, Shuhaimi Mahadzir, Muhammad Roil Bilad, Nik Abdul Hadi Nordin, Mohd Dzul Hakim Wirzal, Zulfan Adi Putra, Gade Pandu Rangaiah, Bawadi Abdullah
November 9, 2020 (v1)
Keywords: empty fruit bunch, fuzzy analytical hierarchy process, inherent safety, integrated biorefinery, life cycle assessment, multi-objective optimization, palm oil industry, technique for order preference by similarity to ideal solution, Technoeconomic Analysis
Empty fruit bunch (EFB) utilization to produce valuable bio-chemicals is seen as an economical and sustainable alternative to waste management in palm oil industries. This work proposed an integrated biorefinery configuration of EFB valorization considering sustainability pillars—namely, economic, environmental, and safety criteria. Techno-economic analysis, life cycle assessment, and hazard identification ranking methods were used to estimate annual profit, global warming potential (GWP), fire explosion damage index (FEDI), and toxicity damage index (TDI) of the proposed integrated biorefinery. A multi-objective optimization problem was then formulated and solved for simultaneous maximization of profit and minimization of GWP, FEDI and TDI. The resulting Pareto-optimal solutions convey the trade-off among the economic, environmental, and safety performances. To choose one of these optimal solutions for implementation, a combined approach of fuzzy analytical hierarchy process and a tec... [more]
Techno-economic Assessment of Optimised Vacuum Swing Adsorption for Post-Combustion CO2 capture from Steam-Methane Reformer Flue Gas
Gokul Sai Subraveti, Simon Roussanaly, Rahul Anantharaman, Luca Riboldi, Arvind Rajendran
August 18, 2020 (v1)
Keywords: Carbon dioxide capture and storage, Metal Organic Framework, optimisation, Steam-methane reforming, Technoeconomic Analysis, vacuum swing adsorption
This study focuses on the techno-economic assessment integrated with detailed optimisation of a four step vacuum swing adsorption (VSA) process for post-combustion CO2 capture and storage (CCS) from steam-methane reformer dried flue gas containing 20 mol% CO2. The comprehensive techno-economic optimisation model developed herein takes into account VSA process model, peripheral component models, vacuum pump performance, scale-up, process scheduling and a thorough cost model. Three adsorbents, namely, Zeolite 13X and two metal-organic frameworks, UTSA-16 and IISERP MOF2 are optimised to minimise the CO2 capture cost. Monoethanolamine (MEA)-based absorption technology serves as a baseline case to assess and compare optimal techno-economic performances of VSA technology for three adsorbents. The results show that the four step VSA process with IISERP MOF2 outperforms other two adsorbents with a lowest CO2 capture cost (including flue gas pre-treatment) of 33.6 € per tonne of CO2 avoided an... [more]
Design and Eco-techno-economic Analyses of SOFC/GT Hybrid Systems Accounting for Long-term Degradation Effects
Haoxiang Lai, Nor Farida Harun, David Tucker, Thomas Adams II
November 24, 2020 (v2)
Models and codes that were used in this work. Please read the simulation instruction.
Design and Eco-techno-economic Analyses of SOFC/Gas Turbine Hybrid Systems Accounting for Long-Term Degradation
Haoxiang Lai, David Tucker, Nor Farida Harun, Thomas Adams II
June 30, 2020 (v1)
Solid oxide fuel cells (SOFCs) are a promising next-generation technology for power production from fossil fuels. Because they convert chemical energy into electricity electrochemically, they are generally more efficient than combustion-based power plants due to the thermodynamic limitations of combustion cycles, and accordingly, have lower carbon intensities [1]. However, one of the main drawbacks of SOFCs (and SOFC stacks) is that they can degrade over time in a variety of ways, including accruing damage to the anode, cathode, interconnects, and other cell or stack components. SOFCs are most commonly used in “constant power” mode, in which the fuel flow rate and current density are increased over time to counteract the degradation effects and yield a constant power output. However, higher flow rates cause the degradation rates to grow even faster, resulting in a lifetime potentially as short as 1.5 years [2].

Recent research has found that by operating in “constant voltage” mode,... [more]
Techno-Economic Analysis of CO2 Capture Technologies in Offshore Natural Gas Field: Implications to Carbon Capture and Storage in Malaysia
Norhasyima Rahmad Sukor, Abd Halim Shamsuddin, Teuku Meurah Indra Mahlia, Md Faudzi Mat Isa
May 22, 2020 (v1)
Keywords: carbon capture and storage (CCS), Carbon Dioxide Capture, offshore gas field, Technoeconomic Analysis
Growing concern on global warming directly related to CO2 emissions is steering the implementation of carbon capture and storage (CCS). With Malaysia having an estimated 37 Tscfd (Trillion standard cubic feet) of natural gas remains undeveloped in CO2 containing natural gas fields, there is a need to assess the viability of CCS implementation. This study performs a techno-economic analysis for CCS at an offshore natural gas field in Malaysia. The framework includes a gas field model, revenue model, and cost model. A techno-economic spreadsheet consisting of Net Present Value (NPV), Payback Period (PBP), and Internal Rate of Return (IRR) is developed over the gas field’s production life of 15 years for four distinctive CO2 capture technologies, which are membrane, chemical absorption, physical absorption, and cryogenics. Results predict that physical absorption solvent (Selexol) as CO2 capture technology is most feasible with IRR of 15% and PBP of 7.94 years. The output from the techno-... [more]
Oxidative Coupling of Methane in Membrane Reactors; A Techno-Economic Assessment
Aitor Cruellas, Jelle Heezius, Vincenzo Spallina, Martin van Sint Annaland, José Antonio Medrano, Fausto Gallucci
May 8, 2020 (v1)
Keywords: chemical processes, fuel-switching scenario, membrane reactors, methane coupling, Modelling, oxygen selective membrane, Technoeconomic Analysis
Oxidative coupling of methane (OCM) is a process to directly convert methane into ethylene. However, its ethylene yield is limited in conventional reactors by the nature of the reaction system. In this work, the integration of different membranes to increase the overall performance of the large-scale oxidative coupling of methane process has been investigated from a techno-economic point of view. A 1D membrane reactor model has been developed, and the results show that the OCM reactor yield is significantly improved when integrating either porous or dense membranes in packed bed reactors. These higher yields have a positive impact on the economics and performance of the downstream separation, resulting in a cost of ethylene production of 595−625 €/tonC2H4 depending on the type of membranes employed, 25−30% lower than the benchmark technology based on oil as feedstock (naphtha steam cracking). Despite the use of a cryogenic separation unit, the porous membranes configuration shows gener... [more]
Feasibility Assessment of Two Biogas-Linked Rural Campus Systems: A Techno-Economic Case Study
Liqin Zhu, Congguang Zhang
April 1, 2020 (v1)
Keywords: biomass conversion, eco-campus, sustainable development, Technoeconomic Analysis
The principle of sustainable development is becoming more and more prominent in various schools, and the eco-campus in rural areas often has more room for display. The identification and assessment of cost-effective biomass resources appropriate for recycling represent an opportunity that may significantly improve the comprehensive efficiency of an eco-campus system, resulting in remarkable investment savings, pollution reduction, as well as reducing energy consumption and resources waste. The economic feasibility of two biogas-linked rural campus systems (Fanjiazhai Middle School, FJZ and Xidazhai Middle School, XDZ, Yangling, China), as well as their key technologies, is investigated, the two systems respectively represent two biobased agricultural production modes. It is found that the initial investment, operating investment, and total revenue of FJZ system is 1.37 times, 2.39 times, and 1.71 times of XDZ system respectively, thus indicating that FJZ campus is proved to be a “large... [more]
Techno-Economic Implications of Fed-Batch Enzymatic Hydrolysis
Ellen Argo, Deepak R. Keshwani
December 16, 2019 (v1)
Keywords: cellulosic ethanol, fed-batch hydrolysis, process simulation, Technoeconomic Analysis
Fed-batch enzymatic hydrolysis has the potential to improve the overall process of converting cellulosic biomass into ethanol. This paper utilizes a process simulation approach to identify and quantify techno-economic differences between batch and fed-batch enzymatic hydrolysis in cellulosic ethanol production. The entire process of converting corn stover into ethanol was simulated using SuperPro Designer simulation software. The analysis was conducted for a plant capacity of 2000 metric tons of dry biomass per day. A literature review was used to identify baseline parameters for the process. The sensitivity of the ethanol production cost to changes in sugar conversion efficiency, plant capacity, biomass cost, power cost, labor cost, and enzyme cost was evaluated using the process simulation. For the base scenario, the ethanol unit production cost was approximately $0.10/gallon lower for fed-batch hydrolysis. The greatest differences were seen in facilities costs, labor costs, and capi... [more]
Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle
Alberto Benato, Alarico Macor
December 10, 2019 (v1)
Keywords: biogas engine, fluid selection, Optimization, organic Rankine cycle, Technoeconomic Analysis, waste heat recovery
Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs). Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC) technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real... [more]
A Feasibility Study of Cellulosic Isobutanol Production—Process Simulation and Economic Analysis
Avraam Roussos, Nikiforos Misailidis, Alexandros Koulouris, Francesco Zimbardi, Demetri Petrides
December 3, 2019 (v1)
Keywords: isobutanol, Monte Carlo simulation, process simulation, Technoeconomic Analysis
Renewable liquid biofuels for transportation have recently attracted enormous global attention due to their potential to provide a sustainable alternative to fossil fuels. In recent years, the attention has shifted from first-generation bioethanol to the production of higher molecular weight alcohols, such as biobutanol, from cellulosic feedstocks. The economic feasibility of such processes depends on several parameters such as the cost of raw materials, the fermentation performance and the energy demand for the pretreatment of biomass and downstream processing. In this work, two conceptual process scenarios for isobutanol production, one with and one without integrated product removal from the fermentor by vacuum stripping, were developed and evaluated using SuperPro Designer®. In agreement with previous publications, it was concluded that the fermentation titer is a crucial parameter for the economic competitiveness of the process as it is closely related to the energy requirements f... [more]
Impact of Fractionation Process on the Technical and Economic Viability of Corn Dry Grind Ethanol Process
Chinmay Kurambhatti, Deepak Kumar, Vijay Singh
November 24, 2019 (v1)
Subject: Energy Policy
Keywords: corn fiber, corn processing, dry fractionation, dry grind, Ethanol, Technoeconomic Analysis, wet fractionation
Use of corn fractionation techniques in dry grind process increases the number of coproducts, enhances their quality and value, generates feedstock for cellulosic ethanol production and potentially increases profitability of the dry grind process. The aim of this study is to develop process simulation models for eight different wet and dry corn fractionation techniques recovering germ, pericarp fiber and/or endosperm fiber, and evaluate their techno-economic feasibility at the commercial scale. Ethanol yields for plants processing 1113.11 MT corn/day were 37.2 to 40 million gal for wet fractionation and 37.3 to 31.3 million gal for dry fractionation, compared to 40.2 million gal for conventional dry grind process. Capital costs were higher for wet fractionation processes ($92.85 to $97.38 million) in comparison to conventional ($83.95 million) and dry fractionation ($83.35 to $84.91 million) processes. Due to high value of coproducts, ethanol production costs in most fractionation proc... [more]
CO2 Hydrogenation to Methanol by a Liquid-Phase Process with Alcoholic Solvents: A Techno-Economic Analysis
Harri Nieminen, Arto Laari, Tuomas Koiranen
September 5, 2019 (v1)
Keywords: alcohol promoted, CO2 hydrogenation, liquid-phase process, methanol synthesis, process simulation, Technoeconomic Analysis
Synthesis of methanol from recirculated CO2 and H2 produced by water electrolysis allows sustainable production of fuels and chemical storage of energy. Production of renewable methanol has, however, not achieved commercial breakthrough, and novel methods to improve economic feasibility are needed. One possibility is to alter the reaction route to methanol using catalytic alcoholic solvents, which makes the process possible at lower reaction temperatures. To estimate the techno-economic potential of this approach, the feasibilities of the conventional gas-phase process and an alternative liquid-phase process employing 2-butanol or 1-butanol solvents were compared by means of flowsheet modelling and economic analysis. As a result, it was found that despite improved methanol yield, the presence of solvent adds complexity to the process and increases separation costs due to the high volatility of the alcohols and formation of azeotropes. Hydrogen, produced from wind electricity, was the m... [more]
Integrating Genome-Scale and Superstructure Optimization Models in Techno-Economic Studies of Biorefineries
Amir Akbari, Paul I. Barton
July 31, 2019 (v1)
Subject: Biosystems
Keywords: algal biorefinery, disjunctive programming, genome-scale models, life-cycle analysis, mixed-integer nonlinear programming, superstructure optimization, Technoeconomic Analysis
Genome-scale models have become indispensable tools for the study of cellular growth. These models have been progressively improving over the past two decades, enabling accurate predictions of metabolic fluxes and key phenotypes under a variety of growth conditions. In this work, an efficient computational method is proposed to incorporate genome-scale models into superstructure optimization settings, introducing them as viable growth models to simulate the cultivation section of biorefinaries. We perform techno-economic and life-cycle analyses of an algal biorefinery with five processing sections to determine optimal processing pathways and technologies. Formulation of this problem results in a mixed-integer nonlinear program, in which the net present value is maximized with respect to mass flowrates and design parameters. We use a genome-scale metabolic model of Chlamydomonas reinhardtii to predict growth rates in the cultivation section. We study algae cultivation in open ponds, in... [more]
Maximizing Our Impact: A call for the standardization of techno-economic analyses for sustainable energy systems design research
Thomas A Adams II
July 17, 2019 (v3)
Keywords: eco-Technoeconomic Analysis, Life Cycle Analysis, Standardization, Technoeconomic Analysis
This presentation makes the case for the development of a new ISO standard for conduction eco-technoeconomic analyses (eTEAs) within the field of energy systems engineering and chemical process systems engineering. The talk provides a motivating example of a recent study that showed how standardization of eTEAs made it possible to make fair comparisons between different types of power plants using carbon capture and sequestration by using eTEAs reported in the literature that have been converted to certain standards. That lead to informed decisions which were not possible without standardization methods, because it major variables are controlled such that analyses can focus on the value of the process concept itself rather than external factors like size, financing, and case-specific assumptions. Then, the talk outlines how the proposed ISO standards would work, their goals and scope, examples of standard practices, methods, and assumptions that could be used and what they might look l... [more]
Valorization of Shale Gas Condensate to Liquid Hydrocarbons through Catalytic Dehydrogenation and Oligomerization
Taufik Ridha, Yiru Li, Emre Gençer, Jeffrey J. Siirola, Jeffrey T. Miller, Fabio H. Ribeiro, Rakesh Agrawal
April 8, 2019 (v1)
Keywords: process synthesis and design, shale gas condensate, shale gas condensate-to-heavier liquids, Technoeconomic Analysis
The recent shale gas boom has transformed the energy landscape of the United States. Compared to natural gas, shale resources contain a substantial amount of condensate and natural gas liquids (NGLs). Many shale basin regions located in remote areas are lacking the infrastructure to distribute the extracted NGLs to other regions—particularly the Gulf Coast, a major gas processing region. Here we present a shale gas transformation process that converts NGLs in shale resources into liquid hydrocarbons, which are easier to transport from these remote basins than NGL or its constituents. This process involves catalytic dehydrogenation followed by catalytic oligomerization. Thermodynamic process analysis shows that this process has the potential to be more energy efficient than existing NGL-to-liquid fuel (NTL) technologies. In addition, our estimated payback period for this process is within the average lifetime of shale gas wells. The proposed process holds the promise to be an energy eff... [more]
Finding the Signal in the Noise: Determining North America’s best path forward for sustainable energy
Thomas A Adams II
August 1, 2019 (v3)
Keywords: Calcium Looping, Carbon Dioxide Capture, Chemical Looping, Life Cycle Analysis, Meta-Study, Oxyfuels, Postcombustion Capture, Solid Oxide Fuel Cells, Technoeconomic Analysis
One of the largest engineering challenges of our time is finding technical solutions that permit the use of our energy resources in a sustainable way. In order to achieve meaningful and positive change, new energy systems must adhere to the triple bottom line of sustainability. This means that new technical solutions must be economically, socio-politically, and environmentally sustainable, such that they can be rapidly adopted and accepted. The engineering literature is full of a great many technical proposals for new energy systems, but it turns out to be quite hard to objectively look at them all, see through the hype, and decide which are the best and most promising technologies in which to invest our research and development dollars. In this talk, I will present a case study with the results of our recent meta-study covering over 100 candidate electricity generation systems with carbon dioxide capture, in order to determine which are the most promising classes of technologies. I wi... [more]
Showing records 76 to 100 of 108. [First] Page: 1 2 3 4 5 Last
[Show All Keywords]