Browse
Records Added in December 2020
Records added in December 2020
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 86 to 110 of 110. [First] Page: 1 2 3 4 5 Last
Electrophysiological Effects of Extracellular Vesicles Secreted by Cardiosphere-Derived Cells: Unraveling the Antiarrhythmic Properties of Cell Therapies
Lidia Gómez-Cid, Marina Moro-López, Ana S. de la Nava, Ismael Hernández-Romero, Ana I. Fernández, Susana Suárez-Sancho, Felipe Atienza, Lilian Grigorian-Shamagian, Francisco Fernández-Avilés
December 17, 2020 (v1)
Subject: Biosystems
Keywords: antiarrhythmic effects, cell therapy, conduction velocity, extracellular vesicles, optical mapping
Although cell-based therapies show potential antiarrhythmic effects that could be mediated by their paracrine action, the mechanisms and the extent of these effects were not deeply explored. We investigated the antiarrhythmic mechanisms of extracellular vesicles secreted by cardiosphere-derived cell extracellular vesicles (CDC-EVs) on the electrophysiological properties and gene expression profile of HL1 cardiomyocytes. HL-1 cultures were primed with CDC-EVs or serum-free medium alone for 48 h, followed by optical mapping and gene expression analysis. In optical mapping recordings, CDC-EVs reduced the activation complexity of the cardiomyocytes by 40%, increased rotor meandering, and reduced rotor curvature, as well as induced an 80% increase in conduction velocity. HL-1 cells primed with CDC-EVs presented higher expression of SCN5A, CACNA1C, and GJA1, coding for proteins involved in INa, ICaL, and Cx43, respectively. Our results suggest that CDC-EVs reduce activation complexity by inc... [more]
Numerical Investigation of a Portable Incinerator: A Parametric Study
Mohsen Saffari Pour, Ali Hakkaki-Fard, Bahar Firoozabadi
December 17, 2020 (v1)
Keywords: combustion, computational fluid dynamics (CFD), parametric study, portable incinerator
The application of incinerators for the municipal solid waste (MSW) is growing due to the ability of such instruments to produce energy and, more specifically, reduce waste volume. In this paper, a numerical simulation of the combustion process with the help of the computational fluid dynamics (CFD) inside a portable (mobile) incinerator has been proposed. Such work is done to investigate the most critical parameters for a reliable design of a domestic portable incinerator, which is suitable for the Iranian food and waste culture. An old design of a simple incinerator has been used to apply the natural gas (NG), one of the available cheap fossil fuels in Iran. After that, the waste height, place of the primary burner, and the flow rate of the cooling air inside the incinerator, as the main parameters of the design, are investigated. A validation is also performed for the mesh quality test and the occurrence of the chemical reactions near the burner of the incinerator. Results proved th... [more]
Temperature Variation at Solid-Fluid Interface of Thin Film Lubricated Contact Problems
Szabolcs Szávai, Sándor Kovács
December 17, 2020 (v1)
Keywords: FEM, film, lubrication, Simulation, TEHD, temperature, thin, variation
Many calculating methods have been already developed for solving contact problems of parts such as gears, cams, and followers under fluid film lubrication conditions considering the temperature and pressure dependence. Similarly, the determination of the elasto-hydrodynamic pressure distribution the processes taking place in the lubricant and the contacting bodies, as well as in their environment, have to be dealt with simultaneously for the determination of the temperature field. A system of equation for the modelling of thermo-elastohydrodynamic lubrication between two contacting bodies containing hydrodynamic, thermodynamic, and strength problems is a highly non-linear system which becomes even more so if the temperature and pressure dependence of the material properties are considered. To solve this system, scientists started to use the finite element formulation in the 1960s and it was found to be a promising and reliable method. Earlier, the lubrication analysts used only the h-v... [more]
A Hybrid of Particle Swarm Optimization and Harmony Search to Estimate Kinetic Parameters in Arabidopsis thaliana
Mohamad Saufie Rosle, Mohd Saberi Mohamad, Yee Wen Choon, Zuwairie Ibrahim, Alfonso González-Briones, Pablo Chamoso, Juan Manuel Corchado
December 17, 2020 (v1)
Subject: Biosystems
Keywords: Arabidopsis thaliana, Harmony Search, parameter estimation, Particle Swarm Optimization
Recently, modelling and simulation have been used and applied to understand biological systems better. Therefore, the development of precise computational models of a biological system is essential. This model is a mathematical expression derived from a series of parameters of the system. The measurement of parameter values through experimentation is often expensive and time-consuming. However, if a simulation is used, the manipulation of computational parameters is easy, and thus the behaviour of a biological system model can be altered for a better understanding. The complexity and nonlinearity of a biological system make parameter estimation the most challenging task in modelling. Therefore, this paper proposes a hybrid of Particle Swarm Optimization (PSO) and Harmony Search (HS), also known as PSOHS, designated to determine the kinetic parameter values of essential amino acids, mainly aspartate metabolism, in Arabidopsis thaliana. Three performance measurements are used in this pap... [more]
Water Cycle Algorithm for Modelling of Fermentation Processes
Olympia Roeva, Maria Angelova, Dafina Zoteva, Tania Pencheva
December 17, 2020 (v1)
Keywords: fed-batch fermentation processes, Genetic Algorithm, parameter identification, water cycle algorithm
The water cycle algorithm (WCA), which is a metaheuristic method inspired by the movements of rivers and streams towards the sea in nature, has been adapted and applied here for the first time for solving such a challenging problem as the parameter identification of fermentation process (FP) models. Bacteria and yeast are chosen as representatives of FP models that are subjected to parameter identification due to their impact in different industrial fields. In addition, WCA is considered in comparison with the genetic algorithm (GA), which is another population-based technique that has been proved to be a promising alternative of conventional optimisation methods. The obtained results have been thoroughly analysed in order to outline the advantages and disadvantages of each algorithm when solving such a complicated real-world task. A discussion and a comparative analysis of both metaheuristic algorithms reveal the impact of WCA on model identification problems and show that the newly a... [more]
Estimating Limits of Detection and Quantification of Ibuprofen by TLC-Densitometry at Different Chromatographic Conditions
Josef Jampilek, Malgorzata Dolowy, Alina Pyka-Pajak
December 17, 2020 (v1)
Keywords: ibuprofen, limit of detection, limit of quantification, TLC-densitometry
Ibuprofen is one of the best-known nonsteroidal anti-inflammatory and analgesic drugs. Following the previous work, the current study is focused on estimating the effect of different chromatographic conditions on the sensitivity of thin-layer chromatography in combination with UV densitometry, i.e., the detection and quantification of ibuprofen in a wide range of its concentrations including the lowest limits of detection (LOD) and quantification (LOQ). For this purpose, a reliable and easy-to-use calculation procedure for LOD and LOQ determination is presented in this work. In addition, the impact of type plates and mobile phase composition on the LOD and LOQ, respectively, of this active substance is accurately described. The results of detection and the quantification level of ibuprofen obtained under applied chromatographic conditions confirmed the utility of silica gel plates as well as silica gel bonded phases (i.e., reversed-phase (RP) plates) in the thin-layer chromatography (T... [more]
Numerical Modeling of Equal and Differentiated Gas Injection in Ladles: Effect on Mixing Time and Slag Eye
Luis E. Jardón-Pérez, Carlos González-Rivera, Marco A. Ramirez-Argaez, Abhishek Dutta
December 17, 2020 (v1)
Keywords: dual gas injection, mixing time, numerical model, secondary refining, slag eye
Ladle refining plays a crucial role in the steelmaking process, in which a gas stream is bubbled through molten steel to improve the rate of removal of impurities and enhance the transport phenomena that occur in a metallurgical reactor. In this study, the effect of dual gas injection using equal (50%:50%) and differentiated (75%:25%) flows was studied through numerical modeling, using computational fluid dynamics (CFD). The effect of gas flow rate and slag thickness on mixing time and slag eye area were studied numerically and compared with the physical model. The numerical model agrees with the physical model, showing that for optimal performance the ladle must be operated using differentiated flows. Although the numerical model can predict well the hydrodynamic behavior (velocity and turbulent kinetic energy) of the ladle, there is a deviation from the experimental mixing time when using both equal and differentiated gas injection at a high gas flow rate and a high slag thickness. T... [more]
Influence of Different Smoking Procedures on Polycyclic Aromatic Hydrocarbons Formation in Traditional Dry Sausage Hercegovačka kobasica
Krešimir Mastanjević, Brankica Kartalović, Leona Puljić, Dragan Kovačević, Kristina Habschied
December 17, 2020 (v1)
Keywords: industrial smoking, PAH, smoking with open fire
The concentrations of 16 polycyclic aromatic hydrocarbons (PAH) in smoked dry sausage Hercegovačka kobasica were investigated. The sausages were stuffed in two different casings (collagen and natural) and smoked in traditional and industrial smokehouses. The highest concentration of PAH 16 were detected in sausages in natural casings smoked in the traditional manner. The samples smoked in the industrial chamber stuffed in collagen casing showed the lowest PAH 16 content. The content of PAH 4 in sausage smoked in the traditional way and stuffed in natural casing averaged 24.46 µg/kg, which is more the double of maximum prescribed concentration of 12 µg/kg. The concentration of cancerogenic benzo[a]pyrene averaged 7.79 µg/kg in sausage stuffed in natural casing and smoked in the traditional way, which is almost four times the legislative prescribed values (2 µg/kg). Sausage smoked in the traditional manner and stuffed in collagen casing showed lower values for PAH 4 (13.88 µg/kg) and ben... [more]
Analysis of Power Input of an In-Line Rotor-Stator Mixer for Viscoplastic Fluids
Mehmet Ayas, Jan Skocilas, Tomas Jirout
December 17, 2020 (v1)
Keywords: Herschel–Bulkley model, in-line rotor-stator mixer, laminar regime, Otto-Metzner coefficient, power draw
In this work, the power draw and shear profile of a novel in-line rotor-stator mixer were studied experimentally and the laminar flow regime was simulated. The power draw of the rotor-stator mixer was investigated experimentally using viscoplastic shear-thinning fluid and the results of the obtained power consumptions were verified through simulations. The power draw constant and Otto-Metzner coefficient were determined from the result of experimental data and through simulations. A new method is suggested for the determination of the Otto-Metzner coefficient for the Herschel−Bulkley model and the term efficiency is introduced. It was shown that the proposed method can be applied successfully for the prediction of the Otto-Metzner coefficient for the mixing of viscoplastic shear-thinning fluids. The effect of geometry and rotor speed on power consumption and shear rate profile in the investigated mixer is discussed from the results of the simulations. It was found that numerical method... [more]
Protective Effects of Active Compounds from Salviae miltiorrhizae Radix against Glutamate-Induced HT-22 Hippocampal Neuronal Cell Death
Hung Manh Phung, Sullim Lee, Ki Sung Kang
December 17, 2020 (v1)
Subject: Biosystems
Keywords: glutamate, HT-22, oxidative stress, Salvia miltiorrhiza Radix, tanshinone IIA
Oxidative stress is considered one of the factors that cause dysfunction and damage of neurons, causing diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), and Parkinson’s disease (PD).Recently, natural antioxidant sources have emerged as one of the main research areas for the discovery of potential neuroprotectants that can be used to treat neurological diseases. In this research, we assessed the neuroprotective effect of a 70% ethanol Salvia miltiorrhiza Radix (SMR) extract and five of its constituent compounds (tanshinone IIA, caffeic acid, salvianolic acid B, rosmarinic acid, and salvianic acid A) in HT-22 hippocampal cells. The experimental data showed that most samples were effective in attenuating the cytotoxicity caused by glutamate in HT-22 cells, except for rosmarinic acid and salvianolic acid B. Of the compounds tested, tanshinone IIA (TS-IIA) exerted the strongest effect in protecting HT-22 cells against glutamate neurotoxin. Treatment with 400 n... [more]
Discrete Output Regulator Design for the Linearized Saint−Venant−Exner Model
Guilherme Ozorio Cassol, Stevan Dubljevic
December 17, 2020 (v1)
Keywords: discrete regulator, output regulation, system of hyperbolic PDEs, tracking
This manuscript addresses the regulator design in the discrete-time setting for the unstable linearized Saint−Venant−Exner model, which describes the dynamics of a sediment-filled water canal. The proposed regulator ensures the closed-loop stability and proper tracking of polynomial and periodic reference signals using output feedback in a sample-data setting. To design this regulator, the system discrete representation is achieved by the application of the structure-preserving Cayley-Tustin time discretization and the direct relation with the regulator in the continuous-time setting is shown. The regulator design in the continuous-time setting is developed using the backstepping methodology ensuring the closed-loop stability and the observer design, while the Sylvester equations are solved to achieve proper tracking. Finally, the numerical simulation results are presented to show the performance of the regulator.
Enhancing the Performance of HPAM Polymer Flooding Using Nano CuO/Nanoclay Blend
Saket Kumar, Roshan Tiwari, Maen Husein, Nitesh Kumar, Upendra Yadav
December 17, 2020 (v1)
Subject: Materials
Keywords: CEOR, nanoclay, nanohybrid, nanoparticle, polymer flooding, rheology
A single polymer flooding is a widely employed enhanced oil recovery method, despite polymer vulnerability to shear and thermal degradation. Nanohybrids, on the other hand, resist degradation and maintain superior rheological properties at different shear rates. In this article, the effect of coupling CuO nanoparticles (NPs) and nanoclay with partially hydrolyzed polyacrylamide (HPAM) polymer solution on the rheological properties and the recovery factor of the nanohybrid fluid was assessed. The results confirmed that the NP agents preserved the polymer chains from degradation under mechanical, chemical (i.e., salinity), and thermal stresses and maintained good extent of entanglement among the polymer chains, leading to a strong viscoelastic attribute, in addition to the pseudoplastic behavior. The NP additives increased the viscosity of the HPAM polymer at shear rates varying from 10−100 s−1. The rheological properties of the nanohybrid systems varied with the NP additive content, whi... [more]
Application of Detrended Fluctuation Analysis and Yield Stability Index to Evaluate Near Infrared Spectra of Green and Roasted Coffee Samples
Eszter Benes, Marietta Fodor, Sándor Kovács, Attila Gere
December 17, 2020 (v1)
Keywords: Coffea arabica, detrended fluctuation analysis, different roasting levels, grouping, yield stability index
Coffee quality, and therefore its price, is determined by coffee species and varieties, geographic location, the method used to process green coffee beans, and particularly the care taken during coffee production. Determination of coffee quality is often done by the nondestructive and fast near infrared spectroscopy (NIRS), which provides a huge amount of data about the samples. NIRS data require sophisticated, multivariate data analysis methods, such as principal component analysis, or linear discriminant analysis. Since the obtained data are a set of spectra, they can also be analyzed by signal processing methods. In the present study, the applications of two novel methods, detrended fluctuation analysis (DFA) and yield stability index (YSI), is introduced on NIR spectra of different roasting levels of coffee samples. Fourteen green coffee samples from all over the world have been roasted on three different levels and their NIR spectra were analyzed. DFA successfully differentiated t... [more]
Real-Time Decision-Support System for High-Mix Low-Volume Production Scheduling in Industry 4.0
Balázs Kocsi, Michael Maiko Matonya, László Péter Pusztai, István Budai
December 17, 2020 (v1)
Keywords: decision-support system, HMLV production, Industry 4.0, real-time production-scheduling techniques, risk analysis, RPA
Numerous organizations are striving to maximize the profit of their businesses by the effective implementation of competitive advantages including cost reduction, quick delivery, and unique high-quality products. Effective production-scheduling techniques are methods that many firms use to attain these competitive advantages. Implementing scheduling techniques in high-mix low-volume (HMLV) manufacturing industries, especially in Industry 4.0 environments, remains a challenge, as the properties of both parts and processes are dynamically changing. As a reaction to these challenges in HMLV Industry 4.0 manufacturing, a newly advanced and effective real-time production-scheduling decision-support system model was developed. The developed model was implemented with the use of robotic process automation (RPA), and it comprises a hybrid of different advanced scheduling techniques obtained as the result of analytical-hierarchy-process (AHP) analysis. The aim of this research was to develop a... [more]
Evolution of Specific Heat Capacity with Temperature for Typical Supports Used for Heterogeneous Catalysts
Xiaojia Lu, Yanjun Wang, Lionel Estel, Narendra Kumar, Henrik Grénman, Sébastien Leveneur
December 17, 2020 (v1)
Subject: Materials
Keywords: heterogeneous catalytic material, micro-calorimeter C80, specific heat capacity
Heterogeneous catalysts are widely used in the chemical industry. Compared with homogeneous catalysts, they can be easily separated from the reaction mixture. To design and optimize an efficient and safe chemical process one needs to calculate the energy balance, implying the need for knowledge of the catalyst’s specific heat capacity. Such values are typically not reported in the literature, especially not the temperature dependence. To fill this gap in knowledge, the specific heat capacities of commonly utilized heterogeneous catalytic supports were measured at different temperatures in a Tian−Calvet calorimeter. The following materials were tested: activated carbon, aluminum oxide, amberlite IR120 (H-form), H-Beta-25, H-Beta-38, H-Y-60, H-ZSM-5-23, H-ZSM-5-280, silicon dioxide, titanium dioxide, and zeolite 13X. Polynomial expressions were successfully fitted to the experimental data.
Synthesis and Characterization of CoxOy−MnCO3 and CoxOy−Mn2O3 Catalysts: A Comparative Catalytic Assessment Towards the Aerial Oxidation of Various Kinds of Alcohols
Osamah Alduhaish, Syed Farooq Adil, Mohamed E. Assal, Mohammed Rafi Shaik, Mufsir Kuniyil, Khalid M. Manqari, Doumbia Sekou, Mujeeb Khan, Aslam Khan, Ahmed Z. Dewidar, Abdulrahman Al-Warthan, Mohammed Rafiq H. Siddiqui
December 17, 2020 (v1)
Keywords: alcohols, catalyst, cobalt oxide, manganese carbonate, oxidation, oxygen
CoxOy−manganese carbonate (X%)(CoxOy−MnCO3 catalysts (X = 1−7)) were synthesized via a straightforward co-precipitation strategy followed by calcination at 300 °C. Upon calcination at 500 °C, these were transformed to CoxOy−dimanganese trioxide i.e., (X%)CoxOy−Mn2O3. A relative catalytic evaluation was conducted to compare the catalytic efficiency of the two prepared catalysts for aerial oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) using O2 molecule as a clean oxidant without utilizing any additives or alkalis. Amongst the different percentages of doping with CoxOy (0−7% wt./wt.) on MnCO3 support, the (1%)CoxOy−MnCO3 catalyst exhibited the highest catalytic activity. The influence of catalyst loading, calcination temperature, reaction time, and temperature and catalyst dosage was thoroughly assessed to find the optimum conditions of oxidation of benzyl alcohol (BzOH) for getting the highest catalytic efficiency. The (1%)CoxOy−MnCO3 catalyst which calcined at 300 °C displaye... [more]
Scale-Up of Mixing Equipment for Suspensions
Tomáš Jirout, František Rieger, Dorin Ceres
December 17, 2020 (v1)
Keywords: axial agitator, Mixing, scale-up, suspension
This paper deals with the scale-up of equipment for the mixing of suspensions. The measurement of just-suspended agitator speeds was carried out with standard, pitched, four-blade turbines and folded, four-blade turbines in three vessels (290 mm, 600 mm, and 800 mm in diameter) for several particle sizes and concentrations. The results of measurements confirmed that scale-up based on dimensionless Froude number dependence, on the relative particle size and concentration, can be used. On the basis of the results, a scale-up rule for agitator speeds in a given suspension and equipment geometry was recommended, and various conclusions reported by different investigators were discussed.
Detection of E. coli O157:H7 in Food Using Automated Immunomagnetic Separation Combined with Real-Time PCR
Ji Young Park, Min-Cheol Lim, Kisang Park, Gyeongsik Ok, Hyun-Joo Chang, Nari Lee, Tae Jung Park, Sung-Wook Choi
December 17, 2020 (v1)
Keywords: automation, foodborne pathogen, immunomagnetic separation, pretreatment, real-time PCR
In this study, we describe the development of an automated immunomagnetic separation device combined with real-time polymerase chain reaction (PCR) for detecting foodborne bacteria. Immunomagnetic separation (IMS) is a well-known method for the separation and concentration of target bacteria from a large volume of food samples. Magnetic beads functionalized with an antibody provide selectivity for target bacteria such as Escherichia coli O157:H7. Moreover, compared to conventional methods, real-time PCR enables high-sensitivity detection of target bacteria. The method proposed in this study involves three steps: (1) pre-enrichment, (2) automated IMS and concentration of target bacteria, and (3) detection of target bacteria by real-time PCR. Using food samples with a working sample volume as large as 250 mL, the whole process only requires 3 h. As a result, target bacteria in the range of 101−102 colony-forming units per mg or g of sample can be detected in food samples, such as milk, g... [more]
A Novel Geometric Error Compensation Method for Gantry-Moving CNC Machine Regarding Dominant Errors
Hong Lu, Qian Cheng, Xinbao Zhang, Qi Liu, Yu Qiao, Yongquan Zhang
December 17, 2020 (v1)
Keywords: compensation method, gantry-type CNC machine, geometric error, multi-body system, VLGSA
Gantry-type computer numerical control (CNC) machines are widely used in the manufacturing industry. A novel structure with moveable gantry is proposed to improve the traditional gantry-type machine structure’s disadvantage of taking up too much space. Geometric errors have direct impacts on the actual position of the tool, which significantly reduces the accuracy of machines. Errors of different components are always coupled and have uncertain effects on the total geometric error. Thus, it is essential to find an effective way to identify the dominant errors and do targeted compensation. First, a novel identification method using value leaded global sensitivity analysis (VLGSA) is proposed to find the dominant errors. In VLGSA, weighting factors which show the influence of the error range are used to modify the multi-body system (MBS) error model. Results show that the dominant errors in three directions respectively contribute 80%, 86% and 85% of the total error in their directions.... [more]
Comprehensive Improvement of Mixed-Flow Pump Impeller Based on Multi-Objective Optimization
Mengcheng Wang, Yanjun Li, Jianpin Yuan, Fan Meng, Desmond Appiah, Jiaqi Chen
December 17, 2020 (v1)
Keywords: 3D inverse design, circulation, Computational Fluid Dynamics, mixed-flow pump, multi-objective optimization
The spanwise distribution of impeller exit circulation (SDIEC) has a significant effect on the impeller performance, therefore, there is a need for its consideration in the optimization design of mixed-flow pumps. In this study, a combination optimization system, including a 3D inverse design method (IDM), computational fluid dynamics (CFD), Latin hypercube sampling (LHS) method, response surface model (RSM), and non-dominated sorting genetic algorithm (NSGA-Ⅱ) was used to improve the performance of the mixed-flow pump after considering the effect of SDIEC on the performance of the impeller. The CFD results confirm the accuracy and credibility of the optimization results because of the good agreement the CFD results established with the experimental measurements. Compared with the original impeller, the pump efficiency of the preferred impeller at 0.8Qdes, 1.0Qdes, and 1.2Qdes improved by 0.63%, 3.39%, and 3.77% respectively. The low-pressure region on the blade surface reduced by 96.9... [more]
Techno-Economic Evaluation of Biorefineries Based on Low-Value Feedstocks Using the BioSTEAM Software: A Case Study for Animal Bedding
Miguel Sanchis-Sebastiá, Joaquín Gomis-Fons, Mats Galbe, Ola Wallberg
December 17, 2020 (v1)
Keywords: animal bedding, bioethanol, biorefinery, BioSTEAM, techno-economics
Biofuels are still too costly to compete in the energy market and it has been suggested that low-value feedstocks could provide an opportunity for the production of low-cost biofuels; however, the lower quality of these feedstocks requires the introduction of a conditioning step in the biorefinery process. The aim of this study was to evaluate whether feedstock savings cover the cost of conditioning in the case of animal bedding. The BioSTEAM software was used to simulate a wheat straw biorefinery and an animal bedding biorefinery, whose economic performance was compared. The wheat straw biorefinery could deliver ethanol at a minimum selling price of USD 0.61 per liter, which is similar to prices in the literature. The cost of producing ethanol in the animal bedding biorefinery without water recycling was almost 40% higher, increasing the minimum selling price to USD 1.1 per liter of ethanol. After introducing water recycling in the conditioning step, the animal bedding biorefinery cou... [more]
Numerical Analysis of the Flow around Two Square Cylinders in a Tandem Arrangement with Different Spacing Ratios Based on POD and DMD Methods
Feng Wang, Xiaodong Zheng, Jianming Hao, Hua Bai
December 17, 2020 (v1)
Keywords: dynamic mode decomposition, flow characteristics, numerical analysis, proper orthogonal decomposition, two square cylinders
To more clearly understand the changes in flow characteristics around two square cylinders with different spacing ratios, the main mode of the flow field was extracted by using the Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) methods. The changes in the main mode of the flow field at different spacing ratios and the difference of the time series were analyzed and compared. This processing can separate the mixed information in the flow field and obtain the dominant modes in the flow field. These main modes can clearly reflect the dominant flow characteristics in the flow field. The analysis results show that when L/D = 2, the flow field structure is consistent with the flow field around a single square cylinder. When L/D = 2.5−3.5, the vortex shedding from upstream cylinders combines with the vortex near the downstream cylinders. This mutual coupling causes a significant change in the drag coefficient value of the downstream cylinder. When L/D = 4, the main... [more]
Potential Cultivation of Lactobacillus pentosus from Human Breastmilk with Rapid Monitoring through the Spectrophotometer Method
Toan Nguyen-Sy, Guo Yong Yew, Kit Wayne Chew, Thi Dong Phuong Nguyen, Thi Ngoc Thu Tran, Thi Dieu Huong Le, Chau Tuan Vo, Hoang Kim Pham Tran, Muhammad Mubashir, Pau Loke Show
December 17, 2020 (v1)
Subject: Biosystems
Keywords: bacteria sequencing, breast milk, Lactobacillus isolation, lag phase
The present study focused on the development of a new method to determine the lag phase of Lactobacillus in breast milk which was attained during the 1st, 3rd, and 6th month (M1, M3, and M6). The colonies’ phylogenetic analysis, derived from the 16S rRNA gene sequences, was evaluated with genus Lactobacillus pentosus and achieved a similarity value of 99%. Raman spectroscopy in optical densities of 600 nm (OD600) were used for six consecutive days to observe the changes of the cell growth rate. The values of OD600 were well fitted with the regression model. From this work, M1 was found to be the longest lag phase in 18 h, and it was 17% to 27% longer compared to M3 and M6, respectively. However, the samples of M3 and M6 showed the shortest duration in reaching 0.5 of OD600 nm (16 h) which was enhanced by 80% and 96% compared to M1, respectively. These studies will be of significance when applied in determining the bacteria growth curve and in assessing the growth behavior for the strai... [more]
Seawater Desalination: A Review of Forward Osmosis Technique, Its Challenges, and Future Prospects
Aondohemba Aende, Jabbar Gardy, Ali Hassanpour
December 17, 2020 (v1)
Keywords: desalination technologies, draw solutions, forward osmosis, membrane fouling, water desalination, water scarcity
Currently over 845 million people are believed to be living under severe water scarcity, and an estimated 2.8 billion people across the globe are projected to come under serious water scarcity by the year 2025, according to a United Nations (UN) report. Seawater desalination has gained more traction as the solution with the most potential for increasing global freshwater supplies amongst other solutions. However, the economic and energy costs associated with the major desalination technologies are considered intrinsically prohibitive largely due to their humongous energy requirements alongside the requirements of complex equipment and their maintenance in most cases. Whilst forward osmosis (FO) is being touted as a potentially more energy efficient and cost-effective alternative desalination technique, its efficiency is challenged by draw solutes and the draw solutes recovery step in FO applications alongside other challenges. This paper looks at the present situation of global water s... [more]
The Influence of the Porous Structure of Activated Coke for the Treatment of Gases from Coal Combustion on Its Mechanical Strength
Zhongjie Hu, Heng Zhou, Weili Zhang, Shengli Wu
December 17, 2020 (v1)
Subject: Materials
Keywords: abrasive resistance, activated coke, circular sorbent, compression strength, gas cleaning, pore diameter distribution, porosity characteristics
This study investigated influences of the open/close states of pores and porosity distribution of activated coke on the mechanical strength of common activated coke for the purification of coal-fired flue gas by analyzing pore structure, abrasive resistance, and compression strengths of 9 types of desulfurization and denitration activated cokes. Research conclusions are conducive to disclosing the influences of porosity characteristics of activated coke for the purification of coal-fired flue gas on mechanical strength, decreasing the physical consumption of activated coke in the recycling of flue gas purification systems, and lowering the purification cost of coal-fired flue gas. According to research results, pores in the ranges of 0−2 nm and 2−500 nm of activated coke are further developed after recycling using the coal-fired flue gas purification system, and the average compression strength of activated coke is about 70% of the added fresh activated coke. However, the abrasive resi... [more]
Showing records 86 to 110 of 110. [First] Page: 1 2 3 4 5 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December