Browse
Subjects
Records with Subject: Process Monitoring
Showing records 141 to 165 of 316. [First] Page: 1 3 4 5 6 7 8 9 10 11 Last
Quantitative Methods to Support Data Acquisition Modernization within Copper Smelters
Alessandro Navarra, Ryan Wilson, Roberto Parra, Norman Toro, Andrés Ross, Jean-Christophe Nave, Phillip J. Mackey
May 27, 2021 (v1)
Keywords: adaptive finite differences, copper smelter, discrete event simulation, Industry 4.0, matte-slag chemistry, nickel-copper smelter, Peirce-smith converting, radiometric sensors
Sensors and process control systems are essential for process automation and optimization. Many sectors have adapted to the Industry 4.0 paradigm, but copper smelters remain hesitant to implement these technologies without appropriate justification, as many critical functions remain subject to ground operator experience. Recent experiments and industrial trials using radiometric optoelectronic data acquisition, coupled with advanced quantitative methods and expert systems, have successfully distinguished between mineral species in reactive vessels with high classification rates. These experiments demonstrate the increasing potential for the online monitoring of the state of a charge in pyrometallurgical furnaces, allowing data-driven adjustments to critical operational parameters. However, the justification to implement an innovative control system requires a quantitative framework that is conducive to multiphase engineering projects. This paper presents a unified quantitative framewor... [more]
Challenges and Opportunities on Nonlinear State Estimation of Chemical and Biochemical Processes
Ronald Alexander, Gilson Campani, San Dinh, Fernando V. Lima
May 27, 2021 (v1)
Keywords: extended Kalman filter, moving horizon estimation, nonlinear system, state estimation
This paper provides an overview of nonlinear state estimation techniques along with a discussion on the challenges and opportunities for future work in the field. Emphasis is given on Bayesian methods such as moving horizon estimation (MHE) and extended Kalman filter (EKF). A discussion on Bayesian, deterministic, and hybrid methods is provided and examples of each of these methods are listed. An approach for nonlinear state estimation design is included to guide the selection of the nonlinear estimator by the user/practitioner. Some of the current challenges in the field are discussed involving covariance estimation, uncertainty quantification, time-scale multiplicity, bioprocess monitoring, and online implementation. A case study in which MHE and EKF are applied to a batch reactor system is addressed to highlight the challenges of these technologies in terms of performance and computational time. This case study is followed by some possible opportunities for state estimation in the f... [more]
Denoising of Hydrogen Evolution Acoustic Emission Signal Based on Non-Decimated Stationary Wavelet Transform
Zazilah May, Md Khorshed Alam, Noor A’in A. Rahman, Muhammad Shazwan Mahmud, Nazrul Anuar Nayan
May 26, 2021 (v1)
Keywords: acoustic emission, denoising, hydrogen evolution, SHM, stationary wavelet transform
Monitoring the evolution of hydrogen gas on carbon steel pipe using acoustic emission (AE) signal can be a part of a reliable technique in the modern structural health-monitoring (SHM) field. However, the extracted AE signal is always mixed up with random extraneous noise depending on the nature of the service structure and experimental environment. The noisy AE signals often mislead the obtaining of the desired features from the signals for SHM and degrade the performance of the monitoring system. Therefore, there is a need for the signal denoising method to improve the quality of the extracted AE signals without degrading the original properties of the signals before using them for any knowledge discovery. This article proposes a non-decimated stationary wavelet transform (ND-SWT) method based on the variable soft threshold function for denoising hydrogen evolution AE signals. The proposed method filters various types of noises from the acquired AE signal and removes them efficiently... [more]
DOA Estimation in Non-Uniform Noise Based on Subspace Maximum Likelihood Using MPSO
Jui-Chung Hung
May 25, 2021 (v1)
Keywords: direction of arrival estimation, memetic algorithms, non-uniform noise, Particle Swarm Optimization, subspace maximum-likelihood
In general, the performance of a direction of arrival (DOA) estimator may decay under a non-uniform noise and low signal-to-noise ratio (SNR) environment. In this paper, a memetic particle swarm optimization (MPSO) algorithm combined with a noise variance estimator is proposed, in order to address this issue. The MPSO incorporates re-estimation of the noise variance and iterated local search algorithms into the particle swarm optimization (PSO) algorithm, resulting in higher efficiency and a reduction in non-uniform noise effects under a low SNR. The MPSO procedure is as follows: PSO is initially utilized to evaluate the signal DOA using a subspace maximum-likelihood (SML) method. Next, the best position of the swarm to estimate the noise variance is determined and the iterated local search algorithm to reduce the non-uniform noise effect is built. The proposed method uses the SML criterion to rebuild the noise variance for the iterated local search algorithm, in order to reduce non-un... [more]
Analysis of Soot Deposition Mechanisms on Nickel-Based Anodes of SOFCs in Single-Cell and Stack Environment
Konrad Motylinski, Marcin Blesznowski, Marek Skrzypkiewicz, Michal Wierzbicki, Agnieszka Zurawska, Arkadiusz Baran, Maciej Bakala, Jakub Kupecki
May 17, 2021 (v1)
Keywords: Boudouard reaction, carbon deposition, SOFC
Solid oxide fuel cells (SOFCs) can be fueled with various gases, including carbon-containing compounds. High operating temperatures, exceeding 600 °C, and the presence of a porous, nickel-based SOFC anode, might lead to the formation of solid carbon particles from fuels such as carbon monoxide and other gases with hydrocarbon-based compounds. Carbon deposition on fuel electrode surfaces can cause irreversible damage to the cell, eventually destroying the electrode. Soot formation mechanisms are strictly related to electrochemical, kinetic, and thermodynamic conditions. In the current study, the effects of carbon deposition on the lifetime and performance of SOFCs were analyzed in-operando, both in single-cell and stack conditions. It was observed that anodic gas velocity has an impact on soot formation and deposition, thus it was also studied in depth. Single-anode-supported solid oxide fuel cells were fueled with gases delivered in such a way that the initial velocities in the anodic... [more]
PEMFC Transient Response Characteristics Analysis in Case of Temperature Sensor Failure
Jaeyoung Han, Sangseok Yu, Jinwon Yun
May 11, 2021 (v1)
Keywords: controller, dynamic system model, fault scenario, fault tolerance control, fuel cell vehicle, thermal management system
In this study, transient responses of a polymer electrolyte fuel cell system were performed to understand the effect of sensor fault signal on the temperature sensor of the stack and the coolant inlet. We designed a system-level fuel cell model including a thermal management system, and a controller to analyze the dynamic behavior of fuel cell system applied with variable sensor fault scenarios such as stuck, offset, and scaling. Under drastic load variations, transient behavior is affected by fault signals of the sensor. Especially, the net power of the faulty system is 45.9 kW. On the other hand, the net power of the fault free system is 46.1 kW. Therefore, the net power of a faulty system is about 0.2 kW lower than that of a fault-free system. This analysis can help in understanding the transient behavior of fuel cell systems at the system level under fault situations and provide a proper failure avoidance control strategy for the fuel cell system.
Motor Fault Detection Using Wavelet Transform and Improved PSO-BP Neural Network
Chun-Yao Lee, Yi-Hsin Cheng
April 30, 2021 (v1)
Keywords: back propagation neural network, Fault Detection, induction motors, particle swarm optimization wavelet transform
This paper proposes a motor fault detection method based on wavelet transform (WT) and improved PSO-BP neural network which is combined with improved particle swarm optimization (PSO) and a back propagation (BP) neural network with linearly increasing inertia weight. First, this research used WT to analyze the current signals of the healthy motor, bearing damage motor, stator winding inter-turn short circuit motor, and broken rotor bar motor. Second, features after completing the signal analysis were extracted, and three types of classifiers were used to classify. The results show that the improved PSO-BP neural network can effectively detect the cause of failure. In addition, in order to simulate the actual operating environment of the motor, this study added white noise with signal noise ratios of 30 dB, 25 dB, and 20 dB to verify that this model has a better anti-noise ability.
Adaptive Monitoring of Biotechnological Processes Kinetics
Velislava Lyubenova, Maya Ignatova, Olympia Roeva, Stefan Junne, Peter Neubauer
April 30, 2021 (v1)
Keywords: adaptive monitoring, bioprocess kinetics, software sensor, stirred tank reactor, tuning procedure
In this paper, an approach for the monitoring of biotechnological process kinetics is proposed. The kinetics of each process state variable is presented as a function of two time-varying unknown parameters. For their estimation, a general software sensor is derived with on-line measurements as inputs that are accessible in practice. The stability analysis with a different number of inputs shows that stability can be guaranteed for fourth- and fifth-order software sensors only. As a case study, the monitoring of the kinetics of processes carried out in stirred tank reactors is investigated. A new tuning procedure is derived that results in a choice of only one design parameter. The effectiveness of the proposed procedure is demonstrated with experimental data from Bacillus subtilis fed-batch cultivations.
Real-Time Nanoplasmonic Sensor for IgG Monitoring in Bioproduction
Thuy Tran, Olof Eskilson, Florian Mayer, Robert Gustavsson, Robert Selegård, Ingemar Lundström, Carl-Fredrik Mandenius, Erik Martinsson, Daniel Aili
April 29, 2021 (v1)
Keywords: bioprocess, IgG titer, nanoplasmonic, on-line, PAT, real-time
Real-time monitoring of product titers during process development and production of biotherapeutics facilitate implementation of quality-by-design principles and enable rapid bioprocess decision and optimization of the production process. Conventional analytical methods are generally performed offline/at-line and, therefore, are not capable of generating real-time data. In this study, a novel fiber optical nanoplasmonic sensor technology was explored for rapid IgG titer measurements. The sensor combines localized surface plasmon resonance transduction and robust single use Protein A-modified sensor chips, housed in a flexible flow cell, for specific IgG detection. The sensor requires small sample volumes (1−150 µL) and shows a reproducibility and sensitivity comparable to Protein G high performance liquid chromatography-ultraviolet (HPLC-UV). The dynamic range of the sensor system can be tuned by varying the sample volume, which enables quantification of IgG samples ranging from 0.0015... [more]
Cyclostationary Analysis towards Fault Diagnosis of Rotating Machinery
Shengnan Tang, Shouqi Yuan, Yong Zhu
April 26, 2021 (v1)
Keywords: cyclic spectral, cyclostationarity, fault diagnosis, rotating machinery
In the light of the significance of the rotating machinery and the possible severe losses resulted from its unexpected defects, it is vital and meaningful to exploit the effective and feasible diagnostic methods of its faults. Among them, the emphasis of the analysis approaches for fault type and severity is on the extraction of useful components in the fault features. On account of the common cyclostationarity of vibration signal under faulty states, fault diagnosis methods based on cyclostationary analysis play an essential role in the rotatory machine. Based on it, the fundamental definition and classification of cyclostationarity are introduced briefly. The mathematical principles of the essential cyclic spectral analysis are outlined. The significant applications of cyclostationary theory are highlighted in the fault diagnosis of the main rotating machinery, involving bearing, gear, and pump. Finally, the widely-used methods on the basis of cyclostationary theory are concluded, an... [more]
High-Throughput Raman Spectroscopy Combined with Innovate Data Analysis Workflow to Enhance Biopharmaceutical Process Development
Stephen Goldrick, Alexandra Umprecht, Alison Tang, Roman Zakrzewski, Matthew Cheeks, Richard Turner, Aled Charles, Karolina Les, Martyn Hulley, Chris Spencer, Suzanne S. Farid
April 16, 2021 (v1)
Keywords: cation exchange chromatography, high-throughput, mammalian cell culture, monitoring, process analytical technology, Raman spectroscopy, scale-down technologies
Raman spectroscopy has the potential to revolutionise many aspects of biopharmaceutical process development. The widespread adoption of this promising technology has been hindered by the high cost associated with individual probes and the challenge of measuring low sample volumes. To address these issues, this paper investigates the potential of an emerging new high-throughput (HT) Raman spectroscopy microscope combined with a novel data analysis workflow to replace off-line analytics for upstream and downstream operations. On the upstream front, the case study involved the at-line monitoring of an HT micro-bioreactor system cultivating two mammalian cell cultures expressing two different therapeutic proteins. The spectra generated were analysed using a partial least squares (PLS) model. This enabled the successful prediction of the glucose, lactate, antibody, and viable cell density concentrations directly from the Raman spectra without reliance on multiple off-line analytical devices... [more]
Membrane System-Based Improved Neural Networks for Time-Series Anomaly Detection
Wenxiang Guo, Xiyu Liu, Laisheng Xiang
April 16, 2021 (v1)
Keywords: anomaly detection, convolutional neural networks, long short-term memory, membrane systems, time series
Anomaly detection in time series has attracted much attention recently and is quite a challenging task. In this paper, a novel deep-learning approach (AL-CNN) that classifies the time series as normal or abnormal with less domain knowledge is proposed. The proposed algorithm combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) to effectively model the spatial and temporal information contained in time-series data, the techniques of Squeeze-and-Excitation are applied to implement the feature recalibration. However, the difficulty of selecting multiple parameters and the long training time of a single model make AL-CNN less effective. To alleviate these challenges, a hybrid dynamic membrane system (HM-AL-CNN) is designed which is a new distributed and parallel computing model. We have performed a detailed evaluation of this proposed approach on three well-known benchmarks including the Yahoo S5 datasets. Experiments show that the proposed method possessed a rob... [more]
Solid Circulating Velocity Measurement in a Liquid−Solid Micro-Circulating Fluidised Bed
Orlando L. do Nascimento, David A. Reay, Vladimir Zivkovic
April 16, 2021 (v1)
Keywords: circulating fluidised bed, digital PIV, liquid–solid fluidisation, micro-fluidised bed, wall effects
Liquid−solid circulating fluidised beds (CFB) possess many qualities which makes them useful for industrial operations where particle−liquid contact is vital, e.g., improved heat transfer performance, and consequent uniform temperature, limited back mixing, exceptional solid−liquid contact. Despite this, circulating fluidised beds have seen no application in the micro-technology context. Liquid−solid micro circulating fluidised bed (µCFBs), which basically involves micro-particles fluidisation in fluidised beds within the bed of cross-section or inner diameter at the millimetre scale, could find potential applications in the area of micro-process and microfluidics technology. From an engineering standpoint, it is vital to know the solid circulating velocity, since that dictates the bed capability and operability as processing equipment. Albeit there are several studies on solid circulating velocity measurement in CFBs, this article is introducing the first experimental study on solid c... [more]
Autonomous Indoor Scanning System Collecting Spatial and Environmental Data for Efficient Indoor Monitoring and Control
Dongwoo Park, Soyoung Hwang
March 14, 2021 (v1)
Keywords: autonomous scanning, environmental data, indoor spatial data, IoT (Internet of Things), mobile application, sensor
As various activities related to entertainment, business, shopping, and conventions are done increasingly indoors, the demand for indoor spatial information and indoor environmental data is growing. Unlike the case of outdoor environments, obtaining spatial information in indoor environments is difficult. Given the absence of GNSS (Global Navigation Satellite System) signals, various technologies for indoor positioning, mapping and modeling have been proposed. Related business models for indoor space services, safety, convenience, facility management, and disaster response, moreover, have been suggested. An autonomous scanning system for collection of indoor spatial and environmental data is proposed in this paper. The proposed system can be utilized to collect spatial dimensions suitable for extraction of a two-dimensional indoor drawing and obtainment of spatial imaging as well as indoor environmental data on temperature, humidity and particulate matter. For these operations, the sys... [more]
A Review on Fault Detection and Process Diagnostics in Industrial Processes
You-Jin Park, Shu-Kai S. Fan, Chia-Yu Hsu
March 14, 2021 (v1)
Keywords: data-driven methods, Fault Detection, fault diagnosis, fault prognosis, hybrid method, industrial process, knowledge-based methods, model-based methods
The main roles of fault detection and diagnosis (FDD) for industrial processes are to make an effective indicator which can identify faulty status of a process and then to take a proper action against a future failure or unfavorable accidents. In order to enhance many process performances (e.g., quality and throughput), FDD has attracted great attention from various industrial sectors. Many traditional FDD techniques have been developed for checking the existence of a trend or pattern in the process or whether a certain process variable behaves normally or not. However, they might fail to produce several hidden characteristics of the process or fail to discover the faults in processes due to underlying process dynamics. In this paper, we present current research and developments of FDD approaches for process monitoring as well as a broad literature review of many useful FDD approaches.
Multivariate Six Sigma: A Case Study in Industry 4.0
Daniel Palací-López, Joan Borràs-Ferrís, Larissa Thaise da Silva de Oliveria, Alberto Ferrer
March 14, 2021 (v1)
Keywords: Industry 4.0, latent variables models, multivariate data analysis, PCA, PLS, Six Sigma
The complex data characteristics collected in Industry 4.0 cannot be efficiently handled by classical Six Sigma statistical toolkit based mainly in least squares techniques. This may refrain people from using Six Sigma in these contexts. The incorporation of latent variables-based multivariate statistical techniques such as principal component analysis and partial least squares into the Six Sigma statistical toolkit can help to overcome this problem yielding the Multivariate Six Sigma: a powerful process improvement methodology for Industry 4.0. A multivariate Six Sigma case study based on the batch production of one of the star products at a chemical plant is presented.
Fault Detection and Isolation for a Cooling System of Fuel Cell via Model-based Analysis
Jaesu Han, Sangseok Yu, Jaeyoung Han
March 14, 2021 (v1)
Keywords: cooling system, detection and isolation, fuel cell vehicle, Kalman filter, parity equation, sensor fault, state observer
The development of fuel cell electric vehicles in recent years has led to increased interest in the use of fuel cells as sources of renewable energy. To achieve successful commercialization of fuel cell vehicles, it will be necessary to guarantee the safety, reliability, and lifetime of fuel cell systems by predictive fault detection and isolation (FDI). In this study, the parity equation, an observer, and a Kalman filter are employed together to compare the characteristics of FDI, focusing on the sensors of the thermal management system. Residuals corresponding to the difference between temperature outputs of linear models under driving cycles and nonlinear temperature outputs are used to isolate faults. Then, assessment of three model-based sensor FDI schemes is used to isolate sensor faults using the Cumulative Sum Control Chart (CUSUM) method. Generated residuals are evaluated by CUSUM to detect the presence of a sensor fault. As a result, isolated sensor faults are assessed.
Fault Detection and Isolation System Based on Structural Analysis of an Industrial Seawater Reverse Osmosis Desalination Plant
Gustavo Pérez-Zuñiga, Raul Rivas-Perez, Javier Sotomayor-Moriano, Victor Sánchez-Zurita
March 1, 2021 (v1)
Keywords: diagnostic test, model based fault diagnosis, seawater reverse osmosis desalination plant, structural analysis, water scarcity
Currently, the use of industrial seawater reverse osmosis desalination (ISROD) plants has increased in popularity in light of the growing global demand for freshwater. In ISROD plants, any fault in the components of their control systems can lead to a plant malfunction, and this condition can originate safety risks, energy waste, as well as affect the quality of freshwater. This paper addresses the design of a fault detection and isolation (FDI) system based on a structural analysis approach for an ISROD plant located in Lima (Peru). Structural analysis allows obtaining a plant model, which is useful to generate diagnostic tests. Here, diagnostic tests via fault-driven minimal structurally overdetermined (FMSO) sets are computed, and then, binary integer linear programming (BILP) is used to select the FMSO sets that guarantee isolation. Simulations shows that all the faults of interest (sensors and actuators faults) are detected and isolated according to the proposed design.
Development of an Oxygen Pressure Estimator Using the Immersion and Invariance Method for a Particular PEMFC System
Ángel Hernández-Gómez, Victor Ramirez, Belem Saldivar
March 1, 2021 (v1)
Keywords: estimator development, Lyapunov’s Theorem application, non-linear system, PEMFC system, sensor replacement
The fault detection method has been used usually to give a diagnosis of the performance and efficiency in the proton exchange membrane fuel cell (PEMFC) systems. To be able to use this method a lot of sensors are implemented in the PEMFC to measure different parameters like pressure, temperature, voltage, and electrical current. However, despite the high reliability of the sensors, they can fail or give erroneous measurements. To address this problem, an efficient solution to replace the sensors must be found. For this reason, in this work, the immersion and invariance method is proposed to develop an oxygen pressure estimator based on the voltage, electrical current density, and temperature measurements. The estimator stability region is calculated by applying Lyapunov’s Theorem and constraints to achieve stability are established for the oxygen pressure, electrical current density, and temperature. Under these estimator requirements, oxygen pressure measurements of high reliability a... [more]
Temporal-Spatial Neighborhood Enhanced Sparse Autoencoder for Nonlinear Dynamic Process Monitoring
Nanxi Li, Hongbo Shi, Bing Song, Yang Tao
February 22, 2021 (v1)
Keywords: Bayesian, dynamic process, Fault Detection, sparse autoencoder, temporal-spatial neighborhood
Data-based process monitoring methods have received tremendous attention in recent years, and modern industrial process data often exhibit dynamic and nonlinear characteristics. Traditional autoencoders, such as stacked denoising autoencoders (SDAEs), have excellent nonlinear feature extraction capabilities, but they ignore the dynamic correlation between sample data. Feature extraction based on manifold learning using spatial or temporal neighbors has been widely used in dynamic process monitoring in recent years, but most of them use linear features and do not take into account the complex nonlinearities of industrial processes. Therefore, a fault detection scheme based on temporal-spatial neighborhood enhanced sparse autoencoder is proposed in this paper. Firstly, it selects the temporal neighborhood and spatial neighborhood of the sample at the current time within the time window with a certain length, the spatial similarity and time serial correlation are used for weighted reconst... [more]
Actuator and Sensor Fault Classification for Wind Turbine Systems Based on Fast Fourier Transform and Uncorrelated Multi-Linear Principal Component Analysis Techniques
Yichuan Fu, Zhiwei Gao, Yuanhong Liu, Aihua Zhang, Xiuxia Yin
February 22, 2021 (v1)
Keywords: additive white Gaussian noises (AWGN), fast Fourier transform (FFT), fault classification, fault diagnosis, multi-linear principal component analysis (MPCA), uncorrelated multi-linear principal component analysis (UMPCA), wind turbine systems
In response to the high demand of the operation reliability and predictive maintenance, health monitoring and fault diagnosis and classification have been paramount for complex industrial systems (e.g., wind turbine energy systems). In this study, data-driven fault diagnosis and fault classification strategies are addressed for wind turbine energy systems under various faulty scenarios. A novel algorithm is addressed by integrating fast Fourier transform and uncorrelated multi-linear principal component analysis techniques in order to achieve effective three-dimensional space visualization for fault diagnosis and classification under a variety of actuator and sensor faulty scenarios in 4.8 MW wind turbine benchmark systems. Moreover, comparison studies are implemented by using multi-linear principal component analysis with and without fast Fourier transform, and uncorrelated multi-linear principal component analysis with and without fast Fourier transformation data pre-processing, resp... [more]
Improvement of Fast Kurtogram Combined with PCA for Multiple Weak Fault Features Extraction
Yongxing Song, Jingting Liu, Linhua Zhang, Dazhuan Wu
February 22, 2021 (v1)
Keywords: demodulation, fast kurtogram, multiple weak fault features extraction, principal component analysis
Demodulation plays an important role in fault feature extraction for rotating machinery. The fast kurtogram method was proved to be effective for rotating machinery demodulation. However, the demodulation effectiveness of fast kurtogram was poor for multiple fault features extraction under low signal-to-noise ratio. In this paper, an improved method of fast kurtogram, called P-kurtogram, is presented. The proposed method extracted the multiple weak fault features from multiple envelope signals-based principal component analysis. Compared with extracting features from one envelope signal of fast kurtogram, P-kurtogram showed a better demodulation performance for multiple faults. Combined with principal component analysis method, the proposed method also showed a good performance under low signal-to-noise ratio(SNR). By simulation analysis, the P-kurtogram method showed good performance for multiple modulation features extraction and robust performance in demodulation under low SNR. Then... [more]
Research on the Dynamic Characteristics of Mechanical Seal under Different Extrusion Fault Degrees
Yin Luo, Yakun Fan, Yuejiang Han, Weqi Zhang, Emmanuel Acheaw
February 22, 2021 (v1)
Keywords: dynamic characteristics, extrusion fault, fluent, mechanical seal, numerical simulation, sealing performance
In order to explore the dynamic characteristics of the mechanical seal under different fault degrees, this paper selected the upstream pumping mechanical seal as the object of study. The research established the rotating ring-fluid film-stationary ring 3D model, which was built to analyze the fault mechanism. To study extrusion fault mechanism and characteristics, different dynamic parameters were used in the analysis process. Theoretical analysis, numerical simulation, and comparison were conducted to study the relationship between the fault degree and dynamic characteristics. It is the first time to research the dynamic characteristics of mechanical seals in the specific extrusion fault. This paper proved feasibility and effectiveness of the new analysis method. The fluid film thickness and dynamic characteristics could reflect the degree of the extrusion fault. Results show that the fluid film pressure fluctuation tends to be more intensive under the serious extrusion fault conditio... [more]
Establish Induction Motor Fault Diagnosis System Based on Feature Selection Approaches with MRA
Chun-Yao Lee, Meng-Syun Wen
February 22, 2021 (v1)
Keywords: artificial neural network, correlation and fitness value-based feature selection, correlation-based feature selection, Fault Detection, feature selection, multiresolution analysis
This paper proposes a feature selection (FS) approach, namely, correlation and fitness value-based feature selection (CFFS). CFFS is an improvement feature selection approach of correlation-based feature selection (CFS) for the common failure cases of the induction motor. CFFS establishes the induction motor fault detection (FD) system with artificial neural network (ANN). This study analyzes the current signal of the induction motor with multiresolution analysis (MRA), extracts the features, and uses feature selection approaches (ReliefF, CFS, and CFFS) to reduce the number of features and maintain the accuracy of the induction motor fault detection system. Finally, the induction motor fault detection system is trained by the feature selection approaches selected features. The best induction motor fault detection system will be established through the comparison of the efficiency of these FS approaches.
Dynamics Analysis of Misalignment and Stator Short-Circuit Coupling Fault in Electric Vehicle Range Extender
Xiaowei Xu, Jingyi Feng, Hongxia Wang, Nan Zhang, Xiaoqing Wang
February 22, 2021 (v1)
Keywords: dynamic analysis, electric vehicle range extender, failure mechanism analysis, misalignment and stator short-circuit coupling fault, numerical analysis
Due to the complex structure and wide excitation of the range extender, the misalignment and stator short-circuit coupling fault can easily occur. Therefore, it is necessary to study the coupling fault mechanism of the range extender, analyze the cause of the fault and the fault evolution law, and research the coupling fault characteristics. To reveal the mechanism of misalignment and stator-short-circuit coupling fault, the misalignment mechanism was analyzed and the bending and torsion electromagnetic stiffness of the generator in the stator short-circuit fault was derived. Then the dynamic model of bending and torsion coupling for the generator was established. Furthermore, we used the Runge-Kutta method to study the vibration response characteristics of generator rotor under coupling fault. Then through finite element analysis, the feasibility of coupled fault diagnosis was verified. The results show that the response of the generator rotor not only has the frequency component of s... [more]
Showing records 141 to 165 of 316. [First] Page: 1 3 4 5 6 7 8 9 10 11 Last
[Show All Subjects]