Browse
Records Added in July 2021
Records added in July 2021
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 76 to 100 of 104. [First] Page: 1 2 3 4 5 Last
Functionality of Special Beer Processes and Potential Health Benefits
Liana Claudia Salanță, Teodora Emilia Coldea, Maria Valentina Ignat, Carmen Rodica Pop, Maria Tofană, Elena Mudura, Andrei Borșa, Antonella Pasqualone, Ofélia Anjos, Haifeng Zhao
July 19, 2021 (v1)
Keywords: beer, craft beer, functional, low-alcohol beers, nonalcoholic beer, process
Consumers’ demand for functional fermented food that can fulfill nutritional needs and help maintain a balanced diet while also having a positive impact on one’s health status is increasing all over the world. Thus, healthy choices could include beverages with nutrients and bioactive compounds which can be used as an effective disease-prevention strategy. Regular beer has certain health benefits which inspire further research with the prospect of obtaining special functional beers with little or no alcohol content. As observed, the special beer market remains highly dynamic and is predicted to expand even further. Therefore, brewers need to keep up with the consumers’ interests and needs while designing special beers, namely nonalcoholic beers (NABs), low-alcohol beers (LABs), and craft beers (CBs). Thus, understanding the potential uses of bioactive compounds in special beer, the wide range of therapeutic effects, and the possible mechanisms of action is essential for developing healt... [more]
Economic and Environmental Assessment of Catalytic and Thermal Pyrolysis Routes for Fuel Production from Lignocellulosic Biomass
Akshay D. Patel, Masoud Zabeti, K. Seshan, Martin K. Patel
July 19, 2021 (v1)
Keywords: abatement cost, biofuel, Catalysis, economics, lifecycle environmental impacts, lignocellulosic biomass, pyrolysis, Renewable and Sustainable Energy
Meeting the transport needs of a growing world population makes it imperative to develop renewable and sustainable routes to production of liquid fuels. With a market-driven economic structure and pressing environmental issues, it is essential that these new routes provide environmental benefits while being economically viable. Conversion of second-generation lignocellulosic biomass resources to fuels via pyrolysis represents an important technological route. In this article, we report comparative assessment of the economic and lifecycle environmental aspects for catalytic and thermal pyrolysis. The goal of this assessment is two-fold: one is to understand the potential of this conversion route via the catalytic and thermal processes and second is to provide feedback for further development of catalysts for various stages of this conversion. The complete assessment is interdisciplinary in nature and connects the laboratory experiments with contextual sustainability assessment. Three ca... [more]
Numerical and Experimental Study on Waviness Mechanical Seal of Reactor Coolant Pump
Xiaodong Feng, Wentao Su, Yu Ma, Lei Wang, Heping Tan
July 19, 2021 (v1)
Keywords: leakage rate, liquid film, mechanical seal, reactor coolant pump (RCP), waviness
Based on the fluid hydrodynamic lubrication theory, a mathematical model of liquid film lubrication was established for the waviness hydrodynamic mechanical seal of a reactor coolant pump. The influences of the waviness amplitude and pressure on the sealing performance were investigated by the numerical simulation. The numerical results showed that the leakage rate increases linearly as the pressure and waviness amplitude increase under the force balance condition. The minimum liquid film thickness decreases first and then increase as the pressure increases. Stationary slide rings with three different waviness amplitudes were processed using the pre-deformation method and tested at different pressure and temperature. The experiments showed that all the three kinds of seal have good stability under different pressure conditions. The experimental results showed that the leakage rate is influenced by the pressure, waviness amplitude, and temperature, and the leakage rate increases as the... [more]
Renewable Energy Sources in Transport on the Example of Methyl Esters and Bioethanol
Adam Kupczyk, Joanna Mączyńska-Sęczek, Ewa Golisz, Piotr F. Borowski
July 19, 2021 (v1)
Subject: Energy Policy
Keywords: CO2 emission reduction, mechanical engineering, eco-mobility, esters, processes, renewable energy sources
The aim of this article is to show how the situation of domestic biofuels in Poland and the alternative fuels sector is changing. On the basis of our own research and the available literature, changes in the production potential of Poland in the field of alternative fuels/biofuels are examined. Moreover, the reasons for changes in the production structure are analyzed. The flexibility of production potential to changes in legal conditions is assessed, and the value of sectors and their future are determined. This paper discusses legal and market aspects related to selected renewable energy sources used in Polish transport. Based on a review of literature and statistical data, the production and use of methyl esters and bioethanol are characterized in detail. Analysis of legal regulations enables the presentation of targets regarding renewable energy source (RES) use in transport by 2030. The results of studies conducted in 2020 are discussed with regard to the value (attractiveness) of... [more]
Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits
Goreti Botelho, Ofélia Anjos, Letícia M. Estevinho, Ilda Caldeira
July 19, 2021 (v1)
Keywords: human health, legal limits, manufacturing processes, Methanol, quality control, spirits, volatile composition
Spirits are alcoholic beverages commonly consumed in European countries. Their raw materials are diverse and include fruits, cereals, honey, sugar cane, or grape pomace. The main aim of this work is to present and discuss the source, quality control, and legal limits of methanol in spirits produced using fruit and honey spirits. The impact of the raw material, alcoholic fermentation, and the distillation process and aging process on the characteristics and quality of the final distilled beverage are discussed. In addition, a critical view of the legal aspects related to the volatile composition of these distillates, the origin and presence of methanol, and the techniques used for quantification are also described. The methanol levels found in the different types of spirits are those expected based on the specific raw materials of each and, almost in all studies, respect the legal limits.
Numerical Study on Bubble Rising in Complex Channels Saturated with Liquid Using a Phase-Field Lattice-Boltzmann Method
Kang Yu, Yumei Yong, Chao Yang
July 19, 2021 (v1)
Keywords: bubble evolution, complex channel, flow pattern, multiphase system, packed bed reactor, phase-field LB model
Packed bed reactors have been widely applied in industrial production, such as for catalytic hydrogenation. Numerical simulations are essential for the design and scale-up of packed beds, especially direct numerical simulation (DNS) methods, such as the lattice-Boltzmann method (LBM), which are the focus of future researches. However, the large density difference between gas and liquid in packed beds often leads to numerical instability near phase interface when using LBM. In this paper, a lattice-Boltzmann (LB) model based on diffuse-interface phase-field is employed to simulate bubble rising in complex channels saturated with liquid, while the numerical problems caused by large liquid-to-gas density ratio are solved. Among them, the channel boundaries are constructed with regularly arranged circles and semicircles, and the bubbles pass through the channels accompanied by deformation, breakup, and coalescence behaviors. The phase-field LB model is found to exhibit good numerical stabi... [more]
Study of Dynamics of Heat Transfer in the Flat-Plate Solar Collector
Joanna Aleksiejuk-Gawron, Andrzej Chochowski
July 19, 2021 (v1)
Keywords: heat exchanger, heat transfer, solar collector, step response, thermoelectric analogy
Flat plate solar collector has been presented as an example of a heat-exchanger with two input signals, solar radiation intensity and temperature of working medium on the input, and one output signal, the temperature of a working medium on the output. The dynamics of heat exchange were analyzed for two models of a solar collector—an analog one using a thermoelectric analogy, and a digital one—determined experimentally in on-line mode using the parametric identification method. The characteristics of both models were compared in terms of their step and frequency response for selected construction and operational parameters. Tests of step responses determined for the analog model indicate that the dynamics of heat exchange in the solar collector depending on two input signals is varied. For step-forcing of input signals of the analog model, in both cases, a stable steady state is achieved, but while the first of the signals is inertial, the second one is oscillatory. The phenomenon of te... [more]
Global Internal Recirculation Alternative Operation to Reduce Nitrogen and Ammonia Limit Violations and Pumping Energy Costs in Wastewater Treatment Plants
Ignacio Santín, Ramon Vilanova, Carles Pedret, Marian Barbu
July 19, 2021 (v1)
Keywords: benchmark simulation model no. 2, control strategies, fuzzy control, wastewater treatment plant
The internal recirculation plays an important role in different areas of the biological treatment of wastewater treatment plants because it has a great influence on the concentration of pollutants, especially nutrients. A usual manipulation of the internal recirculation flow rate is based on the target of controlling the nitrate concentration in the last anoxic tank. This work proposes an alternative for the manipulation of the internal recirculation flow rate instead of nitrate control, with the objective of avoiding limit violations of nitrogen and ammonia concentrations and reducing operational costs. A fuzzy controller is proposed to achieve it based on the effects of the internal recirculation flow rate in different areas of the biological treatment. The proposed manipulation of the internal recirculation flow rate is compared to the application of the usual nitrate control in an already established and published operation strategy by using the internationally known benchmark simu... [more]
The Concept of Sustainable Development of Modern Dentistry
Leszek A. Dobrzański, Lech B. Dobrzański, Anna D. Dobrzańska-Danikiewicz, Joanna Dobrzańska
July 19, 2021 (v1)
Subject: Other
Keywords: caries, dental implantology, dental interventionistic treatment, dental prophylaxis, dental prosthetics, dentist ethics, dentist safety, Dentistry 4.0, dentistry sustainable development, endodontics, periodontology, toothlessness
This paper concerns the assessment of the current state of dentistry in the world and the prospects of its sustainable development. A traditional Chinese censer was adopted as the pattern, with a strong and stable support on three legs. The dominant diseases of the oral cavity are caries and periodontal diseases, with the inevitable consequence of toothlessness. From the caries 3.5−5 billion people suffer. Moreover, each of these diseases has a wide influence on the development of systemic complications. The territorial range of these diseases and their significant differentiation in severity in different countries and their impact on disability-adjusted life years index are presented (DALY). Edentulousness has a significant impact on the oral health-related quality of life (OHRQoL). The etiology of these diseases is presented, as well as the preventive and therapeutic strategies undertaken as a result of modifying the Deming circle through the fives’ rules idea. The state of developme... [more]
Economic Analysis of a New Business for Liposome Manufacturing Using a High-Pressure System
Paolo Trucillo, Roberta Campardelli, Silvia Iuorio, Paolo De Stefanis, Ernesto Reverchon
July 19, 2021 (v1)
Keywords: economic indexes, liposomes, market analysis, processes, supercritical fluids
Supercritical assisted Liposome formation (SuperLip) is a lab-scale process for the production of liposomes. SuperLip was recognized as being a versatile supercritical assisted technique for the encapsulation of molecules for different industrial applications, such as pharmaceutic, cosmetic, textile, and nutraceutic purposes. The aim of this work was to perform an economic analysis to assess the profitability of the SuperLip process. The liposomes market was analyzed and the SuperLip process was compared to other techniques in terms of manufacturing advantages using the Canvas and Strengths, Weaknesses, Opportunities, and Treats (S.W.O.T.) models. SuperLip Plant Capital Expenditures (CAPEX) were estimated, and plant Operating Expenditures (OPEX) were also evaluated and integrated with personnel cost and other plant goods and services. A profit and loss statement was generated, together with a cash flow analysis. According to the market average selling price, liposome price is 1.8 €/mL;... [more]
Synthesis of 2-(4-hydroxyphenyl)ethyl 3,4,5-Trihydroxybenzoate and Its Inhibitory Effect on Sucrase and Maltase
Wen-Tai Li, Yu-Hsuan Chuang, Jiahn-Haur Liao, Jung-Feng Hsieh
July 19, 2021 (v1)
Keywords: hyperglycemia, inhibitor, kinetics assay, maltase, sucrase
We report on the synthesis of an active component, 2-(4-hydroxyphenyl)ethyl 3,4,5-trihydroxybenzoate (HETB), from Rhodiola crenulata. Subsequent analysis revealed that HETB exhibits α-glucosidase inhibitory activities on maltase and sucrase, with potency exceeding that of the known α-glucosidase inhibitors (voglibose and acarbose). An inhibition kinetics study revealed that HETB, acarbose, and voglibose bind to maltase and sucrase, and HETB was shown to be a strong competitive inhibitor of maltase and sucrase. In a molecular docking study based on the crystal structure of α-glucosidase from Saccharomyces cerevisiae, we revealed the HETB binding in the active site of maltase via hydrogen-bond interactions with five amino acid residues: Ser 240, Asp 242, Glu 277, Arg 315, and Asn 350. For HETB docked to the sucrase active site, seven hydrogen bonds (with Asn 114, Glu 148, Gln 201, Asn 228, Gln 381, Ile 383, and Ser 412) were shown.
Grey-Taguchi-Based Optimization of Wire-Sawing for a Slicing Ceramic
Yao-Yang Tsai, Jihng-Kuo Ho, Wen-Hao Wang, Chia-Chin Hsieh, Chung-Chen Tsao, Chun-Yao Hsu
July 19, 2021 (v1)
Subject: Other
Keywords: Grey-Taguchi method, material removal rate, slurry concentration, surface roughness, wire-sawing
Slicing ceramic (SC) is well-known as difficult-to-cut material. It is a hard and brittle material. The Grey-Taguchi method, which converts multiple response problems into a single response, is used to determine the effect of the process parameters for wire-sawing on multiple quality characteristics. The wire-sawing parameters include the wire tension (T), the slurry concentration (C), mixed grains mesh size (G), the wire speed (S), and the working load (P). The machining quality characteristics include a material removal rate (MRR), machined surface roughness (SR) of SC, kerf width (KW), wire wear (WW), and flatness (FT). An analysis of variance (ANOVA) is used to identify the mixed grains and slurry concentration that have a significant effect on multiple quality characteristics. The results of the ANOVA using the Grey-Taguchi method show that the optimum conditions are T2C1G1S2P1 (wire tension of 24 N, slurry concentration of 10% wt., mixed grains of #600 + #1000 mesh size, wire spe... [more]
Numerical Investigation of an Open-Design Vortex Pump with Different Blade Wrap Angles of Impeller
Xiongfa Gao, Ting Zhao, Weidong Shi, Desheng Zhang, Ya Shi, Ling Zhou, Hao Chang
July 19, 2021 (v1)
Keywords: lateral cavity, numerical simulation, open-design, spiral flow, vortex pump
The blade wrap angle of impeller is an important structural parameter in the hydraulic design of open-design vortex pump. In this paper, taking a vortex pump with a cylindrical blade structure as the research object, two kinds of different blade wrap angle of vortex pump impellers are designed. The experiment and numerical simulation research is carried out, and the results of external characteristics and internal flow field are obtained under different flow rate. The results show that when ensuring that other main structural parameters remain unchanged, the efficiency and head of open-design vortex pump increase with the blade wrap angle decreases. In the case of blade wrap angle increasing, the length of rotating reflux back from lateral cavity to inlet is longer. For the same type of vortex pump, the length of rotating reflux to inlet decreases with the increase of flow rate. At the inlet area of impeller front face, there is an area where liquid flows back to the lateral cavity. Th... [more]
Comparative Technical Process and Product Assessment of Catalytic and Thermal Pyrolysis of Lignocellulosic Biomass
Akshay D. Patel, Masoud Zabeti, K. Seshan, Martin K. Patel
July 19, 2021 (v1)
Keywords: Biofuels, catalysts, lignocellulosic biomass, process and product simulation, pyrolysis
Availability of sustainable transportation fuels in future hinges on the use of lignocellulosic resources for production of biofuels. The process of biomass pyrolysis can be used to convert solid biomass resources into liquid fuels. In this study, laboratory experiments and process simulations were combined to gain insight into the technical performance of catalytic and thermal pyrolysis processes. Waste pinewood was used as a feedstock for the processes. The pyrolysis took place at 500 °C and employs three different catalysts, in the case of the catalytic processes. A process model was developed with Aspen Plus and a wide range of representative components of bio-oil were used to model the properties of the bio-oil blend. The results of the process model calculations show that catalytic pyrolysis process produces bio-oil of superior quality. Different technical process scenarios were explored based on the properties of the bio-oil after separation of water-soluble components, with the... [more]
Revisiting the Role of Mass and Heat Transfer in Gas−Solid Catalytic Reactions
Riccardo Tesser, Elio Santacesaria
July 13, 2021 (v1)
Keywords: chemical kinetics, gas–solid catalytic reactions, heat and mass transfer
The tremendous progress in the computing power of modern computers has in the last 20 years favored the use of numerical methods for solving complex problems in the field of chemical kinetics and of reactor simulations considering also the effect of mass and heat transfer. Many classical textbooks dealing with the topic have, therefore, become quite obsolete. The present work is a review of the role that heat and mass transfer have in the kinetic studies of gas−solid catalytic reactions. The scope was to collect in a relatively short document the necessary knowledge for a correct simulation of gas−solid catalytic reactors. The first part of the review deals with the most reliable approach to the description of the heat and mass transfer outside and inside a single catalytic particle. Some different examples of calculations allow for an easier understanding of the described methods. The second part of the review is related to the heat and mass transfer in packed bed reactors, considerin... [more]
Methods for Identification of Substrates/Inhibitors of FCP/SCP Type Protein Ser/Thr Phosphatases
Masataka Mizunuma, Atsushi Kaneko, Shunta Imai, Kazuhiro Furukawa, Yoshiro Chuman
July 13, 2021 (v1)
Subject: Biosystems
Keywords: peptide phage display, protein Ser/Thr phosphatase, Scp1, substrate identification
Protein phosphorylation is the most widespread type of post-translational modification and is properly controlled by protein kinases and phosphatases. Regarding the phosphorylation of serine (Ser) and threonine (Thr) residues, relatively few protein Ser/Thr phosphatases control the specific dephosphorylation of numerous substrates, in contrast with Ser/Thr kinases. Recently, protein Ser/Thr phosphatases were reported to have rigid substrate recognition and exert various biological functions. Therefore, identification of targeted proteins by individual protein Ser/Thr phosphatases is crucial to clarify their own biological functions. However, to date, information on the development of methods for identification of the substrates of protein Ser/Thr phosphatases remains scarce. In turn, substrate-trapping mutants are powerful tools to search the individual substrates of protein tyrosine (Tyr) phosphatases. This review focuses on the development of novel methods for the identification of S... [more]
Special Issue on “Chemical Process Design, Simulation and Optimization”
Jean-Pierre Corriou, Jean-Claude Assaf
July 12, 2021 (v1)
Since humanity has been able to transform materials, such as raw minerals, and produce food or beverages, a central question was the type of operation and how and where it should be performed [...]
Distributed Model Predictive Control Applied to a Sewer System
Antonio Cembellín, Mario Francisco, Pastora Vega
July 12, 2021 (v1)
Keywords: Distributed Model Predictive Control (DMPC), fuzzy logic, sewer system
In this work, a Distributed Model Predictive Control (MPC) methodology with fuzzy negotiation among subsystems has been developed and applied to a simulated sewer network. The wastewater treatment plant (WWTP) receiving this wastewater has also been considered in the methodology by means of an additional objective for the problem. In order to decompose the system into interconnected local subsystems, sectorization techniques have been applied based on structural analysis. In addition, a dynamic setpoint generation method has been added to improve system performance. The results obtained with the proposed methodology are compared to those obtained with standard centralized and decentralized model predictive controllers.
Design and Fabrication of Partially Foamed Grid Structure Using Additive Manufacturing and Solid State Foaming
Byung Kyu Park, Charn-Jung Kim, Dong Eui Kwon, Youn-Woo Lee
July 12, 2021 (v1)
Subject: Materials
Keywords: 3D structure, additive manufacturing, copolymer, gradient foam, solid state foaming
A partially foamed lattice structure based on synthetic polymers was considered as a functionally graded materials due to their unique properties. In this study, a copolymer is manufactured to be porous functional materials by physical foaming technology, using carbon dioxide. Through morphological characterization, using scanning electron microscope, we identified a potential to fabricate partially foamed structures with micropores. We showed that variation of post-foaming temperature can tune the pore size distribution in the range of 0.9 to 30 μm. Thermal data of the foam grid from differential scanning calorimeter showed some shifts in glass transition, cold crystallization, and melting points. Mechanical strength and thermal conductivity were also measured to find rationale of thermal insulation with tunable mechanical strength and to elucidate the actual 3D lattice foam of a copolymer.
Automated Optimization for the Production Scheduling of Prefabricated Elements Based on the Genetic Algorithm and IFC Object Segmentation
Zhao Xu, Xiang Wang, Zezhi Rao
July 12, 2021 (v1)
Keywords: Genetic Algorithm, IFC standard, prefabrication, production schedule, segmentation
Background: With the ever-increasing availability of data and a higher level of automation and simulation, production scheduling in the factory for prefabrication can no longer be seen as an autonomous solution. Concepts such as building information modelling (BIM), graphic techniques, databases, and interface development as well as heightened emphasis on overall-process optimization topics increase the pressure to connect to and interact with interrelated tasks and procedures. Methods: The automated optimization framework detailed in this study intended to generate optimal schedule of prefabricated component production based on the manufacturing process model and genetic algorithm method. An extraction and segmentation approach based on industry foundation classes (IFC) for prefabricated component production is discussed. During this process, the position and geometric information of the prefabricated components are adjusted and output in the extracted IFC file. Then, the production p... [more]
Arundo donax Refining to Second Generation Bioethanol and Furfural
Isabella De Bari, Federico Liuzzi, Alfredo Ambrico, Mario Trupo
July 12, 2021 (v1)
Keywords: bioethanol, high gravity, hybrid SSF, lignocellulosic, xylose dehydration
Biomass-derived sugars are platform molecules that can be converted into a variety of final products. Non-food, lignocellulosic feedstocks, such as agroforest residues and low inputs, high yield crops, are attractive bioresources for the production of second-generation sugars. Biorefining schemes based on the use of versatile technologies that operate at mild conditions contribute to the sustainability of the bio-based products. The present work describes the conversion of giant reed (Arundo donax), a non-food crop, to ethanol and furfural (FA). A sulphuric-acid-catalyzed steam explosion was used for the biomass pretreatment and fractionation. A hybrid process was optimized for the hydrolysis and fermentation (HSSF) of C6 sugars at high gravity conditions consisting of a biomass pre-liquefaction followed by simultaneous saccharification and fermentation with a step-wise temperature program and multiple inoculations. Hemicellulose derived xylose was dehydrated to furfural on the solid a... [more]
Special Issue on “Modelling and Process Control of Fuel Cell Systems”
Mohd Azlan Hussain, Wan Ramli Wan Daud
July 12, 2021 (v1)
The ever increasing energy consumption, rising public awareness for environmental protection, and higher prices of fossil fuels have motivated many to look for alternative and renewable energy sources [...]
Novel Study for Energy Recovery from the Cooling−Solidification Stage of Synthetic Slag Manufacturing: Estimation of the Potential Energy Recovery
Francisco M. Baena-Moreno, Mónica Rodríguez-Galán, Benito Navarrete, Luis F. Vilches
July 12, 2021 (v1)
Subject: Other
Keywords: energy recovery, fixed bed regenerator, metal spheres, sustainable synthetic slag production, waste and energy nexus
Herein, a novel method for energy recovery from molten synthetic slags is analyzed. In this work, the potential energy that could be recovered from the production of synthetic slag is estimated by means of an integrated experimental−theoretical study. The energy to be recovered comes from the cooling−solidification stage of the synthetic slag manufacturing. Traditionally, the solidification stage has been carried out through quick cooling with water, which does not allow the energy recovery. In this paper, a novel cooling method based on metal spheres is presented, which allows the energy recovery from the molten slags. Two points present novelty in this work: (1) the method for measuring the metal spheres temperature (2) and the estimation of the energy that could be recovered from these systems in slag manufacturing. The results forecasted that the temperature achieved by the metal spheres was in the range of 295−410 °C in the center and 302−482 °C on the surface. Furthermore, we est... [more]
Investigation of Virulence Genes Detected in Antimicrobial-Resistance Pathogens Isolates for Five Countries across the World
Kevin Cui, Iris Gong, Alvin Dong, Jacob Yan, Max Wang, Zuyi Huang
July 12, 2021 (v1)
Subject: Biosystems
Keywords: antimicrobial resistance, data analysis, hierarchical clustering, NCBI Pathogen Detection Isolates Browser, principal component analysis, virulence genes
A large portion of annual deaths worldwide are due to infections caused by disease-causing pathogens. These pathogens contain virulence genes, which encode mechanisms that facilitate infection and microbial survival in hosts. More recently, antimicrobial resistance (AMR) genes, also found in these pathogens, have become an increasingly large issue. While the National Center for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser (NPDIB) database has been compiling genes involved in microbial virulence and antimicrobial resistance through isolate samples, few studies have identified the genes primarily responsible for virulence and compared them to those responsible for AMR. This study performed the first multivariate statistical analysis of the multidimensional NPDIB data to identify the major virulence genes from historical pathogen isolates for Australia, China, South Africa, UK, and US—the largely populated countries from five of the six major continents. The import... [more]
Synthesis of European Union Biorefinery Supply Networks Considering Sustainability Objectives
Sanja Potrč, Lidija Čuček, Mariano Martin, Zdravko Kravanja
July 12, 2021 (v1)
Keywords: 2030 target, biorefinery supply network, European Union, mathematical programming, production of biofuels, Renewable and Sustainable Energy, sustainability profit
Increasing the use of renewable energy sources is one of the most important goals of energy policies in several countries to build a sustainable energy future. This contribution proposes the synthesis of a biorefinery supply network for a case study of the European Union (EU-27) under several scenarios based on a mathematical programming approach. Several biomass and waste sources, such as grains, waste oils, and lignocellulosics, are proposed to be utilized, and various biofuels including first, second, and third generations are produced such as bioethanol, green gasoline, biodiesel, Fischer Tropsch (FT) diesel, and hydrogen. The aim of this study is to evaluate the capabilities of EU-27 countries to be able to meet the Renewable Energy Directive (RED II) target regarding the share of renewable energy in the transport sector by 2030 in each Member State while not compromising the current production of food. A generic mathematical model has been developed for the multi-period optimizat... [more]
Showing records 76 to 100 of 104. [First] Page: 1 2 3 4 5 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December