Browse
Keywords
Records with Keyword: Mixing
Showing records 26 to 36 of 36. [First] Page: 1 2 Last
An Experimental Study of Turbulent Mixing in Channel Flow Past a Grid
Daniel Duda, Vitalii Yanovych, Václav Uruba
May 11, 2021 (v1)
Subject: Other
Keywords: 3D scanning, Agrawal decomposition, grid turbulence, Mixing, particle image velocimetry, turbulent kinetic energy
Grid turbulence is considered to be a canonical case of turbulent flow. In the presented paper, the flow structure is analyzed from the point of view of mixing properties, where vortical structures and their properties play a significant role. That is why the effect of various length-scales in turbulence is studied separately. The experimental study uses the Particle Image Velocimetry (PIV) method. The original method for spatial spectrum evaluation is applied. Results on vortex spatial spectrum and isotropy are presented. The scaling of turbulent kinetic energy (TKE) is measured; furthermore, the TKE is decomposed according to the length-scales of the fluctuations. By this method, we found that the decay of TKE associated with the smallest length-scales is more sensitive to the Reynolds number than that at larger length-scales. The TKE at the largest investigated length-scales decays more slowly. The turbulence decay-law is studied for various Reynolds numbers. The second and fourth s... [more]
Hydrodynamics and Mass Transfer Analysis in BioFlow® Bioreactor Systems
Marian Kordas, Maciej Konopacki, Bartłomiej Grygorcewicz, Adrian Augustyniak, Daniel Musik, Krzysztof Wójcik, Magdalena Jędrzejczak-Silicka, Rafał Rakoczy
April 30, 2021 (v1)
Keywords: agitation, bioreactors, mass transfer, Mixing, Modelling, power consumption
Biotechnological processes involving the presence of microorganisms are realized by using various types of stirred tanks or laboratory-scale dual-impeller commercial bioreactor. Hydrodynamics and mass transfer rate are crucial parameters describing the functionality and efficiency of bioreactors. Both parameters strictly depend on mixing applied during bioprocesses conducted in bioreactors. Establishing optimum hydrodynamics conditions for the realized process with microorganisms maximizes the yield of desired products. Therefore, our main objective was to analyze and define the main operational hydrodynamic parameters (including flow field, power consumption, mixing time, and mixing energy) and mass transfer process (in this case, gas−liquid transfer) of two different commercial bioreactors (BioFlo® 115 and BioFlo® 415). The obtained results are allowed using mathematical relationships to describe the analyzed processes that can be used to predict the mixing process and mass transfer... [more]
Large Eddy Simulations of Reactive Mixing in Jet Reactors of Varied Geometry and Size
Krzysztof Wojtas, Wojciech Orciuch, Łukasz Makowski
March 1, 2021 (v1)
Keywords: Computational Fluid Dynamics, confined impinging jet reactors, large eddy simulation, Mixing, parallel chemical reactions
We applied large eddy simulation (LES) to predict the course of reactive mixing carried out in confined impinging jet reactors (CIJR). The reactive mixing process was studied in a wide range of flow rates both experimentally and numerically using computational fluid dynamics (CFD). We compared several different reactor geometries made in different sizes in terms of both reaction yields and mixing efficiency. Our LES model predictions were validated using experimental data for the tracer concentration distribution and fast parallel chemical test reactions, and compared with the k-ε model supplemented with the turbulent mixer model. We found that the mixing efficiency was not affected by the flow rate only at the highest tested Reynolds numbers. The experimental results and LES predictions were found to be in good agreement for all reactor geometries and operating conditions, while the k-ε model well predicted the trend of changes. The CFD method used, i.e., the modeling approach using c... [more]
Application of Theoretical and Experimental Findings for Optimization of Mixing Processes and Equipment
Tomáš Jirout, Dita Jiroutová
December 17, 2020 (v1)
Keywords: agitator, blending, hydrofoil impeller, impeller efficiency, Mixing, particle suspension, pumping capacity
The homogenization of the agitated batch and ensuring the suspension of particles are the most frequently encountered requirements in terms of mixing applications. These operations are affected by the flow of the agitated batch. The geometrical parameters of the mixing system, especially the shape of the agitator blade, affect flow and circulation in the agitated batch. The present work provides a general description of the most common processes in the agitated batch (blending and particle suspension), hydrodynamic parameters (flow in agitated batches, pumping and circulation capacity of impellers) and the geometrical configurations of the mixing equipment (shape of vessel, baffle and impeller, and their mutual arrangement) that influence the process. The dimensionless process characteristics of the agitator were derived by theoretical analysis. These characteristics were applied to evaluate an extensive set of experimental data with various geometric configurations of the mixing equip... [more]
Scale-Up of Mixing Equipment for Suspensions
Tomáš Jirout, František Rieger, Dorin Ceres
December 17, 2020 (v1)
Keywords: axial agitator, Mixing, scale-up, suspension
This paper deals with the scale-up of equipment for the mixing of suspensions. The measurement of just-suspended agitator speeds was carried out with standard, pitched, four-blade turbines and folded, four-blade turbines in three vessels (290 mm, 600 mm, and 800 mm in diameter) for several particle sizes and concentrations. The results of measurements confirmed that scale-up based on dimensionless Froude number dependence, on the relative particle size and concentration, can be used. On the basis of the results, a scale-up rule for agitator speeds in a given suspension and equipment geometry was recommended, and various conclusions reported by different investigators were discussed.
DEM Investigation of the Influence of Particulate Properties and Operating Conditions on the Mixing Process in Rotary Drums: Part 2—Process Validation and Experimental Study
Jakub Hlosta, Lucie Jezerská, Jiří Rozbroj, David Žurovec, Jan Nečas, Jiří Zegzulka
April 1, 2020 (v1)
Keywords: DEM, homogenization, Mixing, particulates, rotating drum, validation
The process of homogenization of particulates is an indispensable part of many industrial processes, and, therefore, it is necessary to pay a special attention to this area and develop it. This paper deals with a complex study of homogenization of particulate matters in a rotary drum in terms of shape, size, and density of particles. In addition, the influence of operating parameters, such as drum filling capacity, rotational speed, and drum filling pattern are also investigated. Studies of reproducibility of discrete element method simulations, effects of rotary drum sizes or effects of drum volumetric filling to the mixture homogeneity index were also carried out. In general, the least satisfactory values of the homogeneity index resulted from the mixing of particles with different densities. The dominating factor of homogenization was the drum filling-up degree. The course of the homogeneity index in 140, 280, and 420 mm drums was very similar and after five revolutions of the drum,... [more]
Systematic Experimental Investigation of Segregation Direction and Layer Inversion in Binary Liquid-Fluidized Bed
Alberto Di Renzo, Giacomo Rito, Francesco P. Di Maio
April 1, 2020 (v1)
Keywords: expansion, layer inversion, liquid-fluidization, Mixing, multi-component beds, segregation
Multi-component liquid-fluidized beds are encountered in a variety of industrial processes. Often, segregation severely affects the performance of the process unit. Unfortunately, size-driven and density-driven separation processes may occur with a complex interplay, showing prevailing mechanisms that change with the operating conditions. For example, when the solids exhibit contrasting differences in size and density, even the direction of segregation can turn out hard to predict, giving rise for some systems to the so-called “layer inversion phenomenon”. A systematic experimental investigation is presented on 14 different binary beds composed of glass beads and ABS spheres with different size and density ratios and different bed composition. The analysis allows assessing the reliability of a model for predicting the segregation direction of fluidized binary beds (the Particle Segregation Model, PSM). By measurements of the solids’ concentration at the surface, expansion/segregation p... [more]
Optimization of Reaction Selectivity Using CFD-Based Compartmental Modeling and Surrogate-Based Optimization
Shu Yang, San Kiang, Parham Farzan, Marianthi Ierapetritou
April 9, 2019 (v1)
Keywords: CFD-simulation, compartmental modeling, competing reaction system, Mixing, model order reduction, Optimization, surrogate-based optimization
Mixing is considered as a critical process parameter (CPP) during process development due to its significant influence on reaction selectivity and process safety. Nevertheless, mixing issues are difficult to identify and solve owing to their complexity and dependence on knowledge of kinetics and hydrodynamics. In this paper, we proposed an optimization methodology using Computational Fluid Dynamics (CFD) based compartmental modelling to improve mixing and reaction selectivity. More importantly, we have demonstrated that through the implementation of surrogate-based optimization, the proposed methodology can be used as a computationally non-intensive way for rapid process development of reaction unit operations. For illustration purpose, reaction selectivity of a process with Bourne competitive reaction network is discussed. Results demonstrate that we can improve reaction selectivity by dynamically controlling rates and locations of feeding in the reactor. The proposed methodology inco... [more]
Temporal Mixing Behavior of Conservative Solute Transport through 2D Self-Affine Fractures
Zhi Dou, Brent Sleep, Pulin Mondal, Qiaona Guo, Jingou Wang, Zhifang Zhou
April 8, 2019 (v1)
Subject: Other
Keywords: conservative solute, fractal, fracture, Mixing, roughness
In this work, the influence of the Hurst exponent and Peclet number (Pe) on the temporal mixing behavior of a conservative solute in the self-affine fractures with variable-aperture fracture and constant-aperture distributions were investigated. The mixing was quantified by the scalar dissipation rate (SDR) in fractures. The investigation shows that the variable-aperture distribution leads to local fluctuation of the temporal evolution of the SDR, whereas the temporal evolution of the SDR in the constant-aperture fractures is smoothly decreasing as a power-law function of time. The Peclet number plays a dominant role in the temporal evolution of mixing in both variable-aperture and constant-aperture fractures. In the constant-aperture fracture, the influence of Hurst exponent on the temporal evolution of the SDR becomes negligible when the Peclet number is relatively small. The longitudinal SDR can be related to the global SDR in the constant-aperture fracture when the Peclet number is... [more]
Rotor-Stator Mixers: From Batch to Continuous Mode of Operation—A Review
Andreas Håkansson
July 31, 2018 (v1)
Keywords: batch, continuous, emulsification, high shear mixer, inline, Mixing, rotor-stator mixer
Although continuous production processes are often desired, many processing industries still work in batch mode due to technical limitations. Transitioning to continuous production requires an in-depth understanding of how each unit operation is affected by the shift. This contribution reviews the scientific understanding of similarities and differences between emulsification in turbulent rotor-stator mixers (also known as high-speed mixers) operated in batch and continuous mode. Rotor-stator mixers are found in many chemical processing industries, and are considered the standard tool for mixing and emulsification of high viscosity products. Since the same rotor-stator heads are often used in both modes of operation, it is sometimes assumed that transitioning from batch to continuous rotor-stator mixers is straight-forward. However, this is not always the case, as has been shown in comparative experimental studies. This review summarizes and critically compares the current understandin... [more]
Extending Applications of High-Pressure Homogenization by Using Simultaneous Emulsification and Mixing (SEM)—An Overview
Vanessa Gall, Marc Runde, Heike P. Schuchmann
July 30, 2018 (v1)
Keywords: Energy Efficiency, high-pressure homogenization, Mixing, Process Intensification, process modifications
Conventional high-pressure homogenization (HPH) is widely used in the pharmaceutical, chemical, and food industries among others. In general, its aim is to produce micron or sub-micron scale emulsions with excellent product characteristics. However, its energy consumption is still very high. Additionally, several limitations and boundaries impede the usage of high-pressure homogenization for special products such as particle loaded or highly concentrated systems. This article gives an overview of approaches that have been used in order to improve the conventional high-pressure homogenization process. Emphasis is put on the ‘Simultaneous Emulsification and Mixing’ process that has been developed to broaden the application areas of high-pressure homogenization.
Showing records 26 to 36 of 36. [First] Page: 1 2 Last
[Show All Keywords]