Warning: sizeof(): Parameter must be an array or an object that implements Countable in /homepages/26/d94734260/htdocs/clickandbuilds/PSECommunity/wp-content/plugins/wpor/includes/class-wpor.php on line 4338
Records with Keyword: Extraction
Systematic and Model-Assisted Evaluation of Solvent Based- or Pressurized Hot Water Extraction for the Extraction of Artemisinin from Artemisia annua L.
Maximilian Sixt, Jochen Strube
July 31, 2018 (v1)
Keywords: artemisinin, Extraction, Green Solvents, Modelling, Pressurized Hot Water Extraction, Simulation
In this study, the solvent based extraction of artemisinin from Artemisia annua L. using acetone in percolation mode is compared to the method of pressurized hot water extraction. Both techniques are simulated by a physico-chemical process model. The model as well as the model parameter determination, including the thermal degradation of artemisinin are shown and discussed. For the conventional extraction, a solvent screening is performed considering various organic solvents. A temperature screening is presented for the systematic design of the pressurized hot water extraction. The best temperature with regards to thermal decomposition and high productivity was found to be 80 °C. Both, conventional percolation and Pressurized Hot Water Extraction (PHWE) are suitable for the extraction of artemisinin. The extraction curves show a high conformity with the simulation results.
Techno-economic comparison of Acetone-Butanol-Ethanol fermentation using various extractants
Giancarlo Dalle Ave, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Acetone, Butanol, Cost of CO2 Emissions Avoided, Ethanol, Extraction, Fermentation, Technoeconomic Analysis
This work compares various chemicals for use as extractants in second-generation Acetone-Butanol-Ethanol fermentation on economic and environmental bases. Both non-toxic and toxic extractants are considered in this study. The combinative extractive-distillation separation process was modelled using a combination of Microsoft Excel 2013, MATLAB 2015 and Aspen Plus v8.8. Separation trains were designed and optimized for each extractant to best take advantage of extractant properties. Upstream units considered in this analysis include: biomass (switchgrass) solids processing, biomass pre-treatment and saccharification, and fermentation. Downstream processes considered include utility generation and wastewater treatment. The cost of CO2 equivalent emissions avoided (CCA) was used as the metric to compare the environmental impact of each process as compared to conventional petroleum-based gasoline. The economic and environmental best extractant is shown to be 2-ethyl-hexanol with a minimum... [more]
[Show All Keywords]