Keywords
Records with Keyword: Process Intensification
Production of Hydrogen by Methane Steam Reforming Coupled with Catalytic Combustion in Integrated Microchannel Reactors
Junjie Chen, Baofang Liu, Xuhui Gao, Deguang Xu
September 21, 2018 (v1)
Keywords: catalytic combustion, Computational Fluid Dynamics, hydrogen production, Process Intensification, process optimization, Steam Reforming, thermal management, thermally integrated microchannel reactors
This paper addresses the issues related to the rapid production of hydrogen from methane steam reforming by means of process intensification. Methane steam reforming coupled with catalytic combustion in thermally integrated microchannel reactors for the production of hydrogen was investigated numerically. The effect of the catalyst, flow arrangement, and reactor dimension was assessed to optimize the design of the system. The thermal interaction between reforming and combustion was investigated for the purpose of the rapid production of hydrogen. The importance of thermal management was discussed in detail, and a theoretical analysis was made on the transport phenomena during each of the reforming and combustion processes. The results indicated that the design of a thermally integrated system operated at millisecond contact times is feasible. The design benefits from the miniaturization of the reactors, but the improvement in catalyst performance is also required to ensure the rapid pr... [more]
Extending Applications of High-Pressure Homogenization by Using Simultaneous Emulsification and Mixing (SEM)—An Overview
Vanessa Gall, Marc Runde, Heike P. Schuchmann
July 30, 2018 (v1)
Keywords: Energy Efficiency, high-pressure homogenization, Mixing, Process Intensification, process modifications
Conventional high-pressure homogenization (HPH) is widely used in the pharmaceutical, chemical, and food industries among others. In general, its aim is to produce micron or sub-micron scale emulsions with excellent product characteristics. However, its energy consumption is still very high. Additionally, several limitations and boundaries impede the usage of high-pressure homogenization for special products such as particle loaded or highly concentrated systems. This article gives an overview of approaches that have been used in order to improve the conventional high-pressure homogenization process. Emphasis is put on the ‘Simultaneous Emulsification and Mixing’ process that has been developed to broaden the application areas of high-pressure homogenization.
Integrated Process Design and Control of Cyclic Distillation Columns
Seyed Soheil Mansouri
July 30, 2018 (v1)
Keywords: Cyclic Distillation, Driving Froce, Process Control, Process Design, Process Intensification
Integrated process and control design approach for cyclic distillation columns is proposed. The design methodology is based on application of simple graphical design approaches, known from simpler conventional distillation columns. Here, a driving force approach and McCabe-Thiele type analysis is combined. It is demonstrated, through closed-loop and open-loop analysis, that operating the column at the largest available driving force results in an optimal design in terms of controllability and operability. The performance of a cyclic distillation column designed to operate at the maximum driving force is compared to alternative sub-optimal designs. The results suggest that operation at the largest driving force is less sensitive to disturbances in the feed and inherently has the ability to efficiently reject disturbances.
Space-constrained purification of dimethyl ether through process intensification using semicontinuous dividing wall columns
Sarah E. Ballinger, Thomas A. Adams II
June 12, 2018 (v1)
Keywords: Aspen Plus, Dimethyl Ether, Dividing wall column, Mobile Plant, Plant-on-a-truck, Process Intensification, Semicontinuous Distillation, Simulation
In this work, a distillation system is designed to purify dimethyl ether (DME) from its reaction by-products in the conversion of flare gas into a useful energy product. The distillation equipment has a size constraint for easy transportation, making process intensification the best strategy to efficiently separate the mixture. The process intensification distillation techniques explored include the dividing wall column (DWC) and a novel semicontinuous dividing wall column (S-DWC). The DWC and the S-DWC both purify DME to fuel grade purity along with producing high purity waste streams. An economic comparison is made between the two systems. The DWC is a cheaper method of producing DME however the purity of methanol, a reaction intermediate, is not as high as the S-DWC. Overall, this research shows that it is possible to purify DME and its reaction by-products in a 40-foot distillation column at a cost that is competitive with Diesel.
[Show All Keywords]