Browse
Subjects
Records with Subject: Intelligent Systems
Showing records 162 to 186 of 266. [First] Page: 1 4 5 6 7 8 9 10 11 12 Last
Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting
Bijay Neupane, Wei Lee Woon, Zeyar Aung
July 26, 2019 (v1)
Keywords: electricity price forecasting, ensemble model, expert selection
Forecasting of electricity prices is important in deregulated electricity markets for all of the stakeholders: energy wholesalers, traders, retailers and consumers. Electricity price forecasting is an inherently difficult problem due to its special characteristic of dynamicity and non-stationarity. In this paper, we present a robust price forecasting mechanism that shows resilience towards the aggregate demand response effect and provides highly accurate forecasted electricity prices to the stakeholders in a dynamic environment. We employ an ensemble prediction model in which a group of different algorithms participates in forecasting 1-h ahead the price for each hour of a day. We propose two different strategies, namely, the Fixed Weight Method (FWM) and the Varying Weight Method (VWM), for selecting each hour’s expert algorithm from the set of participating algorithms. In addition, we utilize a carefully engineered set of features selected from a pool of features extracted from the p... [more]
Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs
Jaime Buitrago, Shihab Asfour
July 26, 2019 (v1)
Keywords: artificial neural networks, closed-loop forecasting, nonlinear autoregressive exogenous input, short-term load forecasting
Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable input (NARX). The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input. Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of... [more]
A Systematic Grey-Box Modeling Methodology via Data Reconciliation and SOS Constrained Regression
José Luis Pitarch, Antonio Sala, César de Prada
July 25, 2019 (v1)
Keywords: grey-box model, Machine Learning, process modeling, SOS programming
Developing the so-called grey box or hybrid models of limited complexity for process systems is the cornerstone in advanced control and real-time optimization routines. These models must be based on fundamental principles and customized with sub-models obtained from process experimental data. This allows the engineer to transfer the available process knowledge into a model. However, there is still a lack of a flexible but systematic methodology for grey-box modeling which ensures certain coherence of the experimental sub-models with the process physics. This paper proposes such a methodology based in data reconciliation (DR) and polynomial constrained regression. A nonlinear optimization of limited complexity is to be solved in the DR stage, whereas the proposed constrained regression is based in sum-of-squares (SOS) convex programming. It is shown how several desirable features on the polynomial regressors can be naturally enforced in this optimization framework. The goodnesses of the... [more]
Mold Level Predict of Continuous Casting Using Hybrid EMD-SVR-GA Algorithm
Zhufeng Lei, Wenbin Su
July 25, 2019 (v1)
Keywords: continuous cast, empirical mode decomposition, Genetic Algorithm, mold level, support vector regression
The prediction of mold level is a basic and key problem of continuous casting production control. Many current techniques fail to predict the mold level because of mold level is non-linear, non-stationary and does not have a normal distribution. A hybrid model, based on empirical mode decomposition (EMD) and support vector regression (SVR), is proposed to solve the mold level in this paper. Firstly, the EMD algorithm, with adaptive decomposition, is used to decompose the original mold level signal to many intrinsic mode functions (IMFs). Then, the SVR model optimized by genetic algorithm (GA) is used to predict the IMFs and residual sequences. Finally, the equalization of the predict results is reconstructed to obtain the predict result. Several hybrid predicting methods such as EMD and autoregressive moving average model (ARMA), EMD and SVR, wavelet transform (WT) and ARMA, WT and SVR are discussed and compared in this paper. These methods are applied to mold level prediction, the exp... [more]
Evaluation of the Difficulties in the Internet of Things (IoT) with Multi-Criteria Decision-Making
Buse Uslu, Tamer Eren, Şeyda Gür, Evrencan Özcan
July 25, 2019 (v1)
Keywords: analytic hierarchy process, analytic network process, Internet of Things, IoT, multi-criteria decision-making
The rapid development of technology has increased the desire of all to be on the Internet. The discovery that objects born of the Internet communicate with each other without external factors revealed, with the fourth industrial revolution, the concept of the Internet of Things (IoT). The communication of objects with each other means minimum labor and minimum cost for enterprises. Enterprises that want to transition to the Internet of Things face many difficulties. Identifying and correcting these difficulties can lead to both lost time and high cost. In this study, we investigated the difficulties encountered in the Internet of Things. As a result of the study, the degree of importance of the factors causing these difficulties was determined by multi-criteria decision-making methods and was presented to the enterprises. The main criteria, and the sub-criteria related to these main criteria, were determined. The main purpose of the enterprises transitioning to Industry 4.0 is the comm... [more]
Evaluating the Factors that are Affecting the Implementation of Industry 4.0 Technologies in Manufacturing MSMEs, the Case of Peru
Chung-Jen Huang, Elisa Denisse Talla Chicoma, Yi-Hsien Huang
July 25, 2019 (v1)
Keywords: analytic hierarchy process, developing countries, Industry 4.0, micro, small, and medium enterprises
The micro, small, and medium enterprises (MSMEs) sector plays a very crucial role in the economic and social development of Peru. Unfortunately, the tough access to the use of technologies is one of the weaknesses of this type of enterprises, which implies a low technological intensity production, according to the new technological trends. This study analyzes the factors that are affecting the implementation of Industry 4.0 technologies in Peruvian micro, small, and medium enterprises. According to the findings from the semi-structured interviews, it has identified four factors that respond to the main question of this research—lack of advanced technology, lack of financial investment, poor management vision, and lack of skilled workers. Data from 49 enterprises from the manufacturing sector were used for the assessment. The surveys conducted on business managers were evaluated using a multi-criterion decision-making method by the analytic hierarchy process. The findings of the study g... [more]
Drivers and Barriers in Using Industry 4.0: A Perspective of SMEs in Romania
Mirela Cătălina Türkeș, Ionica Oncioiu, Hassan Danial Aslam, Andreea Marin-Pantelescu, Dan Ioan Topor, Sorinel Căpușneanu
July 25, 2019 (v1)
Keywords: barriers, business, cloud computing, cyber-physical systems, digitalization, drivers, flexible manufacturing, implementation, Industry 4.0, managers, SMEs, systems
Considering the worldwide evolutionary stage of Industry 4.0, this study wants to fill in a lack of information and decision-making, trying to answer a question about the level of preparation of Romanian Small and Medium-sized Enterprises (SMEs) regarding the implementation of the new technology. The main purpose of this article is to identify the opinions and perceptions of SME managers in Romania on the drivers and barriers of implementing Industry 4.0 technology for business development. The research method used in the study was analyzed by sampling using the questionnaire as a data collection tool. It includes closed questions, measured with a nominal and orderly scale. 176 managers provided complete and useful answers to this research. The collected data were analyzed with the Statistical Package for the Social Sciences (SPSS) package using frequency tables, contingency tables, and main component analysis. Major contributions from research have highlighted the fact that Romania is... [more]
An Intelligent Fault Diagnosis Method Using GRU Neural Network towards Sequential Data in Dynamic Processes
Jing Yuan, Ying Tian
July 25, 2019 (v1)
Keywords: dynamic process, fault diagnosis, gate recurrent unit (GRU), moving horizon
Intelligent fault diagnosis is a promising tool to deal with industrial big data due to its ability in rapidly and efficiently processing collected signals and providing accurate diagnosis results. In traditional static intelligent diagnosis methods, however, the correlation between sequential data is neglected, and the features of raw data cannot be effectively extracted. Therefore, this paper proposes a three-stage fault diagnosis method based on a gate recurrent unit (GRU) network. The raw data is divided into several sequence units by first using a moving horizon as the input of GRU. In this way, we can intercept the sequence to get information as needed. Then, the GRU deep network is established through batch normalization (BN) algorithm to extract the dynamic feature from the sequence units effectively. Finally, the softmax regression is employed to classify faults based on dynamic features. Thus, the diagnosis result is obtained with a probabilistic explanation. Two chemical pro... [more]
Data-Mining for Processes in Chemistry, Materials, and Engineering
Hao Li, Zhien Zhang, Zhe-Ze Zhao
July 25, 2019 (v1)
Keywords: chemistry, data-mining, Energy, engineering, Machine Learning, materials, neural networks
With the rapid development of machine learning techniques, data-mining for processes in chemistry, materials, and engineering has been widely reported in recent years. In this discussion, we summarize some typical applications for process optimization, design, and evaluation of chemistry, materials, and engineering. Although the research and application targets are various, many important common points still exist in their data-mining. We then propose a generalized strategy based on the philosophy of data-mining, which should be applicable for the design and optimization targets for processes in various fields with both scientific and industrial purposes.
Determination of KOSGEB Support Models for Small- and Medium-Scale Enterprises by Means of Data Envelopment Analysis and Multi-Criteria Decision Making Methods
Ali Sevinç, Tamer Eren
July 11, 2019 (v1)
Keywords: AHP, data envelopment analysis, KOSGEB, productivity, SME, TOPSIS
Small- and Medium-Scale Enterprises (SMEs) act as catalysts in the general economy with regard to their added value. Support programs have been designed by the government through the Small and Medium Enterprises Development and Support Administration KOSGEB) and other institutions in order to further the general economic contributions of such enterprises. However, there is no method for using support models according to a productivity and effectiveness principle. This causes serious wastes of both resources and time. In this study, the problem of applying support models to improve the most critical problems of SMEs was discussed. As a place of application, 82 firms registered to the Konya Chamber of Industry were selected for the automotive supplier industry. Firstly, a productivity evaluation of companies was performed by a data envelopment analysis (DEA). Firms were grouped into A, B1, B2, C1, and C2 according to their activity scores. Using an Analytical Hierarchy Process (AHP), the... [more]
A Hybrid Energy Feature Extraction Approach for Ship-Radiated Noise Based on CEEMDAN Combined with Energy Difference and Energy Entropy
Yuxing Li, Xiao Chen, Jing Yu
May 16, 2019 (v1)
Keywords: complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), energy difference (ED), energy entropy (EE), hybrid energy feature extraction, ship-radiated noise (S-RN)
Influenced by the complexity of ocean environmental noise and the time-varying of underwater acoustic channels, feature extraction of underwater acoustic signals has always been a difficult challenge. To solve this dilemma, this paper introduces a hybrid energy feature extraction approach for ship-radiated noise (S-RN) based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) combined with energy difference (ED) and energy entropy (EE). This approach, named CEEMDAN-ED-EE, has two main advantages: (i) compared with empirical mode decomposition (EMD) and ensemble EMD (EEMD), CEEMDAN has better decomposition performance by overcoming mode mixing, and the intrinsic mode function (IMF) obtained by CEEMDAN is beneficial to feature extraction; (ii) the classification performance of the single energy feature has some limitations, nevertheless, the proposed hybrid energy feature extraction approach has a better classification performance. In this paper, we first deco... [more]
Application of Data Mining in an Intelligent Early Warning System for Rock Bursts
Xuejun Zhu, Xiaona Jin, Dongdong Jia, Naiwei Sun, Pu Wang
May 16, 2019 (v1)
Keywords: clustering analysis, data mining, data warehouse, intelligent early warning, rock burst
In view of rock burst accidents frequently occurring, a basic framework for an intelligent early warning system for rock bursts (IEWSRB) is constructed based on several big data technologies in the computer industry, including data mining, databases and data warehouses. Then, a data warehouse is modeled with regard to monitoring the data of rock bursts, and the effective application of data mining technology in this system is discussed in detail. Furthermore, we focus on the K-means clustering algorithm, and a data visualization interface based on the Browser/Server (B/S) mode is developed, which is mainly based on the Java language, supplemented by Cascading Style Sheets (CSS), JavaScript and HyperText Markup Language (HTML), with Tomcat, as the server and Mysql as the JavaWeb project of the rock burst monitoring data warehouse. The application of data mining technology in IEWSRB can improve the existing rock burst monitoring system and enhance the prediction. It can also realize real... [more]
Ultrasonic-Assisted Extraction and Swarm Intelligence for Calculating Optimum Values of Obtaining Boric Acid from Tincal Mineral
Bahdisen Gezer, Utku Kose
April 15, 2019 (v1)
Keywords: Artificial Intelligence, boric acid, central composite design, Optimization, swarm intelligence, tincal, ultrasound assisted extraction
The objective of this study is to focus on boric acid extraction from the mineral tincal, in order to determine the optimum conditions thanks to the ultrasonic-assisted extraction (UAE) technique (with the response surface methodology (RSM) for the first time), and artificial intelligence based swarm intelligence. Characterization of the tincal were done by using thermo-gravimetric assay (TG-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. In detail, a central composite design (CCD) was used for determining the effects of different solvent/solid ratios, pH, extraction time, and extraction temperature on the yield, which was determined by the conductometric method. The optimum values regarding the best extraction process was calculated by using five different swarm intelligence techniques: Particle swarm optimization (PSO), cuckoo search (CS), genetic algorithms (GA), Differential evolution (DE), and the vortex optimization algorithm (VOA). In... [more]
FFANN Optimization by ABC for Controlling a 2nd Order SISO System’s Output with a Desired Settling Time
Aydın Mühürcü
April 9, 2019 (v1)
Keywords: ABC, buck converter, control, FFANN, Modelling, Optimization, settling time
In this study, a control strategy is aimed to ensure the settling time of a 2nd order system’s output value while its input reference value is changed. Here, Feed Forward Artificial Neural Network (FFANN) nonlinear structure has been chosen as a control algorithm. In order to implement the intended control strategy, FFANN’s normalization coefficient (K), learning coefficients (ŋ), momentum coefficients (μ) and the sampling time (Ts) were optimized by Artificial Bee Colony (ABC) but FFANN’s values of weights were chosen arbitrary on start time of control system. After optimization phase, the FFANN behaves as an adaptive optimal discrete time non-linear controller that forces the system output to take the same value with the input reference for a desired settling time (ts). The success of the optimization algorithm was proved with close loop feedback control simulations on Matlab’s Simulink platform based on 2nd order transfer functions. Also, the success was proved with a 2nd order phys... [more]
Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox
Wei Teng, Xiaolong Zhang, Yibing Liu, Andrew Kusiak, Zhiyong Ma
March 26, 2019 (v1)
Keywords: bearing in gearbox, prognostic, remaining useful life (RUL), wind turbine
Predicting the remaining useful life (RUL) of critical subassemblies can provide an advanced maintenance strategy for wind turbines installed in remote regions. This paper proposes a novel prognostic approach to predict the RUL of bearings in a wind turbine gearbox. An artificial neural network (NN) is used to train data-driven models and to predict short-term tendencies of feature series. By combining the predicted and training features, a polynomial curve reflecting the long-term degradation process of bearings is fitted. Through solving the intersection between the fitted curve and the pre-defined threshold, the RUL can be deduced. The presented approach is validated by an operating wind turbine with a faulty bearing in the gearbox.
Development of a Numerical Weather Analysis Tool for Assessing the Precooling Potential at Any Location
Dimitris Lazos, Merlinde Kay, Alistair Sproul
March 26, 2019 (v1)
Keywords: climate effects, Energy Efficiency, precooling, weather analysis
Precooling a building overnight during the summer is a low cost practice that may provide significant help in decreasing energy demand and shaving peak loads in buildings. The effectiveness of precooling depends on the weather patterns at the location, however research in this field is predominantly focused in the building thermal response alone. This paper proposes an analytical tool for assessing the precooling potential through simulations from real data in a numerical weather prediction platform. Three dimensionless ratios are developed based on the meteorological analysis and the concept of degree hours that provide an understanding of the precooling potential, utilization and theoretical value. Simulations were carried out for five sites within the Sydney (Australia) metro area and it was found that they have different responses to precooling, depending on their proximity to the ocean, vegetation coverage, and urban density. These effects cannot be detected when typical meteorolo... [more]
Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems
Yujing Sun, Fei Wang, Bo Wang, Qifang Chen, N.A. Engerer, Zengqiang Mi
March 15, 2019 (v1)
Keywords: correlation-based feature selection (CFS), meteorological impact factor (MIF), mutual information (MI) theory, photovoltaic (PV) module temperature, quantitative influence analysis
The module temperature is the most important parameter influencing the output power of solar photovoltaic (PV) systems, aside from solar irradiance. In this paper, we focus on the interdisciplinary research that combines the correlation analysis, mutual information (MI) and heat transfer theory, which aims to figure out the correlative relations between different meteorological impact factors (MIFs) and PV module temperature from both quality and quantitative aspects. The identification and confirmation of primary MIFs of PV module temperature are investigated as the first step of this research from the perspective of physical meaning and mathematical analysis about electrical performance and thermal characteristic of PV modules based on PV effect and heat transfer theory. Furthermore, the quantitative description of the MIFs influence on PV module temperature is mathematically formulated as several indexes using correlation-based feature selection (CFS) and MI theory to explore the sp... [more]
Deep Neural Network Based Demand Side Short Term Load Forecasting
Seunghyoung Ryu, Jaekoo Noh, Hongseok Kim
March 15, 2019 (v1)
Keywords: deep learning, deep neural network, exponential smoothing, pre-training, rectified linear unit (ReLU), restricted Boltzmann machine (RBM), short-term load forecasting, smart grid
In the smart grid, one of the most important research areas is load forecasting; it spans from traditional time series analyses to recent machine learning approaches and mostly focuses on forecasting aggregated electricity consumption. However, the importance of demand side energy management, including individual load forecasting, is becoming critical. In this paper, we propose deep neural network (DNN)-based load forecasting models and apply them to a demand side empirical load database. DNNs are trained in two different ways: a pre-training restricted Boltzmann machine and using the rectified linear unit without pre-training. DNN forecasting models are trained by individual customer’s electricity consumption data and regional meteorological elements. To verify the performance of DNNs, forecasting results are compared with a shallow neural network (SNN), a double seasonal Holt⁻Winters (DSHW) model and the autoregressive integrated moving average (ARIMA). The mean absolute percentage e... [more]
A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China
Haixiang Zang, Miaomiao Wang, Jing Huang, Zhinong Wei, Guoqiang Sun
February 27, 2019 (v1)
Keywords: climatic zones, solar energy, solar radiation, typical meteorological year (TMY)
Since a representative dataset of the climatological features of a location is important for calculations relating to many fields, such as solar energy system, agriculture, meteorology and architecture, there is a need to investigate the methodology for generating a typical meteorological year (TMY). In this paper, a hybrid method with mixed treatment of selected results from the Danish method, the Festa-Ratto method, and the modified typical meteorological year method is proposed to determine typical meteorological years for 35 locations in six different climatic zones of China (Tropical Zone, Subtropical Zone, Warm Temperate Zone, Mid Temperate Zone, Cold Temperate Zone and Tibetan Plateau Zone). Measured weather data (air dry-bulb temperature, air relative humidity, wind speed, pressure, sunshine duration and global solar radiation), which cover the period of 1994⁻2015, are obtained and applied in the process of forming TMY. The TMY data and typical solar radiation data are investig... [more]
Analyzing Crude Oil Spot Price Dynamics versus Long Term Future Prices: A Wavelet Analysis Approach
Josué M. Polanco-Martínez, Luis M. Abadie
February 27, 2019 (v1)
Keywords: futures oil markets, Maximal Overlap Discrete Wavelet Transform (MODWT), nonlinear causality test, oil spot prices, stochastic model, tight oil, time series analysis, wavelet correlation
The West Texas Intermediate (WTI) spot price shows high volatility and in 2014 and 2015 when quoted prices declined sharply, long-term prices in future markets were less volatile. These prices are different and diverge depending on how they process fundamental and transitory factors. US tight oil production has been a major innovation with significant macroeconomic effects. In this paper we use WTI spot prices and long-term futures prices, the latter calculated as the expected value with a stochastic model calibrated with the futures quotes of each sample day. These long-term prices are the long-term equilibrium value under risk neutral measurement. In order to analyze potential time-scale relationships between spots and future, we perform a wavelet cross-correlation analysis using a novel wavelet graphical tool recently proposed. To check the direction of the causality, we apply non-linear causality tests to raw data and log returns as well as to the wavelet transform of the spot and... [more]
Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application
Si Le Van, Bo Hyun Chon
February 27, 2019 (v1)
Keywords: artificial neural network, chemical flooding, enhanced oil recovery, net present value, Optimization
Chemical flooding has been widely utilized to recover a large portion of the oil remaining in light and viscous oil reservoirs after the primary and secondary production processes. As core-flood tests and reservoir simulations take time to accurately estimate the recovery performances as well as analyzing the feasibility of an injection project, it is necessary to find a powerful tool to quickly predict the results with a level of acceptable accuracy. An approach involving the use of an artificial neural network to generate a representative model for estimating the alkali-surfactant-polymer flooding performance and evaluating the economic feasibility of viscous oil reservoirs from simulation is proposed in this study. A typical chemical flooding project was referenced for this numerical study. A number of simulations have been made for training on the basis of a base case from the design of 13 parameters. After training, the network scheme generated from a ratio data set of 50%-20%-30%... [more]
Portfolio Decision of Short-Term Electricity Forecasted Prices through Stochastic Programming
Agustín A. Sánchez de la Nieta, Virginia González, Javier Contreras
February 27, 2019 (v1)
Keywords: ARIMA models, day-ahead electricity market price, forecasting portfolio, stochastic programming
Deregulated electricity markets encourage firms to compete, making the development of renewable energy easier. An ordinary parameter of electricity markets is the electricity market price, mainly the day-ahead electricity market price. This paper describes a new approach to forecast day-ahead electricity market prices, whose methodology is divided into two parts as: (i) forecasting of the electricity price through autoregressive integrated moving average (ARIMA) models; and (ii) construction of a portfolio of ARIMA models per hour using stochastic programming. A stochastic programming model is used to forecast, allowing many input data, where filtering is needed. A case study to evaluate forecasts for the next 24 h and the portfolio generated by way of stochastic programming are presented for a specific day-ahead electricity market. The case study spans four weeks of each one of the years 2014, 2015 and 2016 using a specific pre-treatment of input data of the stochastic programming (SP... [more]
Classification of Gene Expression Data Using Multiobjective Differential Evolution
Shijing Ma, Xiangtao Li, Yunhe Wang
February 27, 2019 (v1)
Keywords: binary differential evolution, binary optimization, differential evolution algorithm, multiobjective method
Gene expression data are usually redundant, and only a subset of them presents distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in bioinformatics. In this paper, a multiobjective binary differential evolution method (MOBDE) is proposed to select a small subset of informative genes relevant to the classification. In the proposed method, firstly, the Fisher-Markov selector is used to choose top features of gene expression data. Secondly, to make differential evolution suitable for the binary problem, a novel binary mutation method is proposed to balance the exploration and exploitation ability. Thirdly, the multiobjective binary differential evolution is proposed by integrating the summation of normalized objectives and diversity selection into the binary differential evolution algorithm. Finally, the MOBDE algorithm is used for feature selection, and support vector machine (SVM) is... [more]
Multi-Attribute Technological Modeling of Coal Deposits Based on the Fuzzy TOPSIS and C-Mean Clustering Algorithms
Miloš Gligorić, Zoran Gligorić, Čedomir Beljić, Slavko Torbica, Svetlana Štrbac Savić, Jasmina Nedeljković Ostojić
February 27, 2019 (v1)
Keywords: adjusted Rand index, block model, coal deposit, entropy, Fukuyama-Sugeno validity functional, fuzzy C-mean clustering, fuzzy TOPSIS, technological model
The main aim of a coal deposit model is to provide an effective basis for mine production planning. The most applied approach is related to block modeling as a reasonable global representation of the coal deposit. By selection of adequate block size, deposits can be well represented. A block has a location in XYZ space and is characterized by adequate attributes obtained from drill holes data. From a technological point of view, i.e., a thermal power plant’s requirements, heating value, sulfur and ash content are the most important attributes of coal. Distribution of attributes’ values within a coal deposit can vary significantly over space and within each block as well. To decrease the uncertainty of attributes’ values within blocks the concept of fuzzy triangular numbers is applied. Production planning in such an environment is a very hard task, especially in the presence of requirements. Such requirements are considered as target values while the values of block attributes are the a... [more]
Research and Application of a Hybrid Forecasting Model Based on Data Decomposition for Electrical Load Forecasting
Yuqi Dong, Xuejiao Ma, Chenchen Ma, Jianzhou Wang
February 27, 2019 (v1)
Keywords: data decomposition, electrical load forecasting, generalized regression neural network, Genetic Algorithm
Accurate short-term electrical load forecasting plays a pivotal role in the national economy and people’s livelihood through providing effective future plans and ensuring a reliable supply of sustainable electricity. Although considerable work has been done to select suitable models and optimize the model parameters to forecast the short-term electrical load, few models are built based on the characteristics of time series, which will have a great impact on the forecasting accuracy. For that reason, this paper proposes a hybrid model based on data decomposition considering periodicity, trend and randomness of the original electrical load time series data. Through preprocessing and analyzing the original time series, the generalized regression neural network optimized by genetic algorithm is used to forecast the short-term electrical load. The experimental results demonstrate that the proposed hybrid model can not only achieve a good fitting ability, but it can also approximate the actu... [more]
Showing records 162 to 186 of 266. [First] Page: 1 4 5 6 7 8 9 10 11 12 Last
[Show All Subjects]