Browse
Records Added in April 2021
Records added in April 2021
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025
Change month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 26 to 50 of 175. [First] Page: 1 2 3 4 5 6 Last
Adaptive Monitoring of Biotechnological Processes Kinetics
Velislava Lyubenova, Maya Ignatova, Olympia Roeva, Stefan Junne, Peter Neubauer
April 30, 2021 (v1)
Keywords: adaptive monitoring, bioprocess kinetics, software sensor, stirred tank reactor, tuning procedure
In this paper, an approach for the monitoring of biotechnological process kinetics is proposed. The kinetics of each process state variable is presented as a function of two time-varying unknown parameters. For their estimation, a general software sensor is derived with on-line measurements as inputs that are accessible in practice. The stability analysis with a different number of inputs shows that stability can be guaranteed for fourth- and fifth-order software sensors only. As a case study, the monitoring of the kinetics of processes carried out in stirred tank reactors is investigated. A new tuning procedure is derived that results in a choice of only one design parameter. The effectiveness of the proposed procedure is demonstrated with experimental data from Bacillus subtilis fed-batch cultivations.
Denitrification Control in a Recirculating Aquaculture System—A Simulation Study
Pedro Almeida, Laurent Dewasme, Alain Vande Wouwer
April 30, 2021 (v1)
Keywords: denitrification, mathematical modeling, process control, wastewater treatment
The recirculating aquaculture system (RAS) is a land-based water treatment technology, which allows for farming aquatic organisms, such as fish, by reusing the water in the production (often less than 5%). This technology is based on the use of filters, either mechanical or biological, and can, in principle, be used for any species grown in aquaculture. Due to the low recirculation rate, ammonia accumulates in the system and must be converted into nitrate using nitrification reactors. Although less toxic for fish, nitrate can also be further reduced into nitrogen gas by the use of denitrification biofilters which may create several issues, such as incomplete denitrification, resulting in toxic substances, such as nitrite and nitric oxide, or a waste of carbon source in excess. Control of the added quantity of carbon source in the denitrification biofilter is then mandatory to keep nitrate/nitrite concentrations under toxic levels for fish and in accordance with local effluent regulatio... [more]
Thermal Performance of T-shaped Obstacles in a Solar Air Heater
Seung-Yong Ahn, Kwang-Yong Kim
April 30, 2021 (v1)
Keywords: friction factor, Nusselt number, Reynolds-averaged Navier–Stokes equations, ribs, solar air heater
This paper proposes T-shaped ribs as obstacles attached to the heat absorber plate in a rectangular solar air heater to promote heat transfer. The thermal and aerodynamic performance of the solar heater was numerically evaluated using three-dimensional Reynolds-averaged Navier−Stokes equations with the shear stress transport turbulence model. A parameter study was performed using the ratios of rib height to channel height, rib width to channel width, and rib width to rib height. The area-averaged Nusselt number and friction factor were selected as the performance parameters of the solar air heater to evaluate the heat transfer and friction loss, respectively. In addition, the performance factor was defined as the ratio of the area-averaged Nusselt number to the friction factor. The maximum area-averaged Nusselt number was found at h/e = 0.83 for a fixed rib area. Compared with triangular ribs, the T-shaped ribs showed up to a 65 % higher area-averaged Nusselt number and up to a 49.7% h... [more]
Improving the Inner Surface State of Thick-Walled Tubes by Heat Treatments with Internal Quenching Considering a Simulation Based Optimization
Fabian Mühl, Moritz Klug, Stefan Dietrich, Volker Schulze
April 29, 2021 (v1)
Keywords: finite element, heat treatment modeling, heat treatment simulation, Internal Quenching, phase transformation, residual stress, steel treatment
Internal Quenching is an innovative heat treatment method for difficult to access component sections. Especially, the microstructure, as well as the residual stress state at inner surfaces, of thick-walled tubes can be adjusted with the presented flexible heat treatment process. Based on multiphysical FE-models of two different steels, a simulative optimization study, considering different internal quenching strategies, was performed in order to find the optimal cooling conditions. The focus hereby was on the adjustment of a martensitic inner surface with high compressive residual stresses. The simulatively determined optimal cooling strategies were carried out experimentally and analyzed. A good agreement of the resulting hardness and residual stresses was achieved, validating the presented Fe-model of the Internal Quenching process. The shown results also indicate that the arising inner surface state is very sensitive to the transformation behavior of the used steel. Furthermore, the... [more]
Group Key Management Scheme for Multicast Communication Fog Computing Networks
Mai Trung Dong, Haitao Xu
April 29, 2021 (v1)
Keywords: fog computing, group key management, multicast communication
In group key management, the implementation of encryption often fails because multicast communication does not provide reliable linkage. In this paper, a new group key management scheme is proposed for multicast communication in fog computing networks. In the proposed scheme, any legal fog user belonging to a fog node will be able to decrypt a ciphertext encrypted by a secret shared key. The shared secret key is divided into key segments. In the rekeying operation process, each key segment is split into two factors with its shared production mechanism. The key updates are required to belong to the fog provider or the group management device. Fog users will have independent key segments unchanged. Then, the cost, the message of rekeying, and the dependence on credible channels will be decreased. This method can resist collusion attacks and ensure backward security and forward security, even if the number of users leaving is larger than the threshold value. Our scheme is also suitable fo... [more]
Mathematical Modeling of Hydrodynamics in Bioreactor by Means of CFD-Based Compartment Model
Agnieszka Krychowska, Marian Kordas, Maciej Konopacki, Bartłomiej Grygorcewicz, Daniel Musik, Krzysztof Wójcik, Magdalena Jędrzejczak-Silicka, Rafał Rakoczy
April 29, 2021 (v1)
Keywords: biochemical engineering, bioreactors, mathematical modeling, Modelling
This study presents the procedure of deriving a compartmental model (CM) based on an analysis obtained from the computational fluid dynamics (CFD) model of a bioreactor. The CM is composed of two parts, a structural (that takes into account the architecture of the mathematical model), and a parametric part (which contains the extrinsic parameters of the model). The CM is composed of the branches containing the set of perfectly mixed continuous stirred-tank reactors (CSTRs) in a configuration that matches the bioreactor’s flow patterns. Therefore, this work’s main objective was to develop a mathematical model that incorporated the flow field obtained by CFD technique. The proposed mathematical model was validated by means of the experimental data in the form of the residence time distribution (RTD) measurements.
Real-Time Nanoplasmonic Sensor for IgG Monitoring in Bioproduction
Thuy Tran, Olof Eskilson, Florian Mayer, Robert Gustavsson, Robert Selegård, Ingemar Lundström, Carl-Fredrik Mandenius, Erik Martinsson, Daniel Aili
April 29, 2021 (v1)
Keywords: bioprocess, IgG titer, nanoplasmonic, on-line, PAT, real-time
Real-time monitoring of product titers during process development and production of biotherapeutics facilitate implementation of quality-by-design principles and enable rapid bioprocess decision and optimization of the production process. Conventional analytical methods are generally performed offline/at-line and, therefore, are not capable of generating real-time data. In this study, a novel fiber optical nanoplasmonic sensor technology was explored for rapid IgG titer measurements. The sensor combines localized surface plasmon resonance transduction and robust single use Protein A-modified sensor chips, housed in a flexible flow cell, for specific IgG detection. The sensor requires small sample volumes (1−150 µL) and shows a reproducibility and sensitivity comparable to Protein G high performance liquid chromatography-ultraviolet (HPLC-UV). The dynamic range of the sensor system can be tuned by varying the sample volume, which enables quantification of IgG samples ranging from 0.0015... [more]
A Method of Bending Shrinkage Groove on Vortex Suppression and Energy Improvement for a Hydrofoil with Tip Gap
Zanao Hu, Chuibing Huang, Zhenwei Huang, Jinsong Zhang
April 29, 2021 (v1)
Keywords: bending shrinkage groove, parametric design, tip gap, vortex suppression
Hydro energy is a kind of typical renewable energy, which can be converted by hydraulic machinery. However, tip leakage vortex (TLV) has a significant negative influence on the flow pattern and energy performance of hydraulic machinery. In this paper, a bending shrinkage groove (BSG) is proposed to suppress the TLV and improve the energy performance of a hydrofoil first, and then a parametric optimization design method is briefly introduced and applied to determine the optimal configuration of the groove. The main geometric parameters of the groove are selected as optimized variables and three different groove configurations are selected from the optimization result. Finally, the performance improvement of the hydrofoil with groove, the sensitivity analysis of the optimization variables, and the groove impacts on the TLV and flow patterns are investigated. The results demonstrate that the preferred groove reduces the non-dimensional Q criterion vortex isosurfaces area (Qarea = 2 × 107)... [more]
Water Salinity as Potential Aid for Improving the Carbon Dioxide Replacement Process’ Effectiveness in Natural Gas Hydrate Reservoirs
Alberto Maria Gambelli, Beatrice Castellani, Andrea Nicolini, Federico Rossi
April 29, 2021 (v1)
Subject: Other
Keywords: CO2 replacement, gas hydrate, methane, production and reservoirs
Natural gas hydrates represent a valid opportunity to counteract two of the most serious issues that are affecting humanity this century: climate change and the need for new energy sources, due to the fast and constant increase in the population worldwide. The energy that might be produced with methane contained in hydrates is greater than any amount of energy producible with known conventional energy sources; being widespread in all oceans, they would greatly reduce problems and conflicts associated with the monopoly of energy sources. The possibility of extracting methane and simultaneously performing the permanent storage of carbon dioxide makes hydrate an almost carbon-neutral energy source. The main topic of scientific research is to improve the recovery of technologies and guest species replacement strategies in order to make the use of gas hydrates economically advantageous. In the present paper, an experimental study on how salt can alter the formation process of both methane a... [more]
Bioactive Compounds and Antioxidant Capacity of Moringa Leaves Grown in Spain Versus 28 Leaves Commonly Consumed in Pre-Packaged Salads
Jaime González-Romero, Sandra Arranz-Arranz, Vito Verardo, Belén García-Villanova, Eduardo J. Guerra-Hernández
April 29, 2021 (v1)
Keywords: antioxidant capacity, carotenoids, chlorophylls, moringa oleifera, phenolic compounds, salad
Total antioxidant capacity (TAC) evaluated by ferric ion reducing antioxidant power (FRAP) assay, ABTS, DPPH, and Oxygen radical absorbance capacity (ORAC) assay, and total polyphenol content (TPC) by Folin−Ciocalteu were determined in Moringa oleifera leaves (MO) grown in Spain, and compared with 28 different vegetable leaves pre-packaged for consumption as a salad. Total carotenoids, flavonoids, and chlorophylls were also determined in the samples with highest TAC. Two different extraction procedures were applied to obtain the methanolic fraction and the lipophilic and hydrophilic fractions. The highest TAC and TPC contents were found in MO. High values were also found in red chicory, “lollo rosso”, and oak lettuce. The lowest TAC and TPC values were obtained in iceberg lettuce. The correlations between the extraction procedures and methods assayed were high and statistically significant. In the light of these results, we suggest the addition of MO to the existing range of fresh-cut... [more]
Mezcal as a Novel Source of Mixed Yeasts Inocula for Wine Fermentation
Francisco Javier De la Torre-González, José Alberto Narváez-Zapata, Patricia Taillandier, Claudia Patricia Larralde-Corona
April 29, 2021 (v1)
Keywords: mezcal, non-Saccharomyces, Saccharomyces, yeasts mixed inoculum
Mezcal yeasts were evaluated for their potential as grape-juice fermenters, characterizing their fermentation performance, both in terms of primary and volatile metabolites. Experiments were first carried-out in a semi-synthetic medium and then on grape juice, and population dynamics of the chosen mixed inoculum was assessed in grape juice. Accordingly, we initially tested 24 mezcal yeasts belonging to ten different species, and chose those that were more productive and stress tolerant for the mixed (dual) inoculum, having a final selection of three Saccharomyces cerevisiae strains (plus Fermichamp, a commercial wine strain) and three non-Saccharomyces strains, belonging to Kluyveromyces marxianus, Torulaspora delbrueckii, and Zygosaccharomyces bailii species. For the combination S. cerevisiae/T. delbrueckii (Sc/Td) mixed inoculum, we observed increasing isoamyl alcohol and phenyl ethyl acetate concentrations, as compared with the use of individual Saccharomyces strains, which resulted... [more]
Artificial Immune System in Doing 2-Satisfiability Based Reverse Analysis Method via a Radial Basis Function Neural Network
Shehab Abdulhabib Alzaeemi, Saratha Sathasivam
April 29, 2021 (v1)
Keywords: 2-satisfiability based reverse analysis, artificial bee colony, artificial immune system, differential evolution, Genetic Algorithm, Particle Swarm Optimization, radial basis functions neural network
A radial basis function neural network-based 2-satisfiability reverse analysis (RBFNN-2SATRA) primarily depends on adequately obtaining the linear optimal output weights, alongside the lowest iteration error. This study aims to investigate the effectiveness, as well as the capability of the artificial immune system (AIS) algorithm in RBFNN-2SATRA. Moreover, it aims to improve the output linearity to obtain the optimal output weights. In this paper, the artificial immune system (AIS) algorithm will be introduced and implemented to enhance the effectiveness of the connection weights throughout the RBFNN-2SATRA training. To prove that the introduced method functions efficiently, five well-established datasets were solved. Moreover, the use of AIS for the RBFNN-2SATRA training is compared with the genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO), and artificial bee colony (ABC) algorithms. In terms of measurements and accuracy, the simulation results s... [more]
Evaluation of Color, Texture, Sensory and Antioxidant Properties of Gels Composed of Freeze-Dried Maqui Berries and Agave Sugar
Patryk Sobaszek, Renata Różyło, Laura Dziki, Urszula Gawlik-Dziki, Beata Biernacka, Marian Panasiewicz
April 29, 2021 (v1)
Keywords: agave, Aristotelia chilensis, color, gels, maqui, texture
The study aimed to determine the textural, sensory, and antioxidant properties of gels composed of maqui (Aristotelia chilensis) berries. These freeze-dried berries were tested in a powdered form as an additive (0−5%) to agave sugar (20%) gels. Freeze-dried maqui powdered berries were dark purple to almost black in color and were characterized by an L* value of 16.3, an a* value of 8.3, and a b* value of −9.6. The b* values decreased from 11.8 to 2.3 with the increase in the amount of berry powder. There were no significant changes in the color of gels composed of berries at 4% and 5% concentration. Gels lost (almost twice) their hardness as the amount of maqui increased. The lowest values of hardness and the highest values of elasticity, springiness, gumminess, and chewiness were observed at 4% concentration of dried berries. The type of sugar did not affect the lightness of the gels (L* parameter) and the a* value. The assessors evaluated the gels composed of agave sugar (20%) and 4%... [more]
Influence of Air Infiltration on Combustion Process Changes in a Rotary Tilting Furnace
Róbert Dzurňák, Augustin Varga, Gustáv Jablonský, Miroslav Variny, Réne Atyafi, Ladislav Lukáč, Marcel Pástor, Ján Kizek
April 29, 2021 (v1)
Keywords: air infiltration, combustion, energy savings, rotary furnace, thermal efficiency
Air infiltration into the combustion chambers of industrial furnaces is an unwanted phenomenon causing loss of thermal efficiency, fuel consumption increase, and the subsequent increase in operating costs. In this study, a novel design for a rotary tilting furnace door with improved construction features is proposed and tested experimentally in a laboratory-scale furnace, aimed at air infiltration rate reduction by decreasing the gap width between the static furnace door and the rotating body. Temperatures in the combustion chamber and oxygen content in the dry flue gas were measured to document changes in the combustion process with the varying gap width. Volumetric flow values of infiltrating air calculated based on measured data agree well with results of numerical simulations performed in ANSYS and with the reference calculation procedure used in relevant literature. An achievable air infiltration reduction of up to 50% translates into fuel savings of around 1.79 to 12% of total na... [more]
Electric Field-Driven Direct Interspecies Electron Transfer for Bioelectrochemical Methane Production from Fermentable and Non-Fermentable Substrates
Gyung-Geun Oh, Young-Chae Song, Byung-Uk Bae, Chae-Young Lee
April 29, 2021 (v1)
Keywords: bioelectrochemical methane production, direct interspecies electron transfer, fermentable substrate, non-fermentable substrate
The bioelectrochemical methane production from acetate as a non-fermentable substrate, glucose as a fermentable substrate, and their mixture were investigated in an anaerobic sequential batch reactor exposed to an electric field. The electric field enriched the bulk solution with exoelectrogenic bacteria (EEB) and electrotrophic methanogenic archaea, and promoted direct interspecies electron transfer (DIET) for methane production. However, bioelectrochemical methane production was dependent on the substrate characteristics. For acetate as the substrate, the main electron transfer pathway for methane production was DIET, which significantly improved methane yield up to 305.1 mL/g chemical oxygen demand removed (CODr), 77.3% higher than that in control without the electric field. For glucose, substrate competition between EEB and fermenting bacteria reduced the contribution of DIET to methane production, resulting in the methane yield of 288.0 mL/g CODr, slightly lower than that of aceta... [more]
Initiator Feeding Policies in Semi-Batch Free Radical Polymerization: A Monte Carlo Study
Ali Seyedi, Mohammad Najafi, Gregory T. Russell, Yousef Mohammadi, Eduardo Vivaldo-Lima, Alexander Penlidis
April 29, 2021 (v1)
Keywords: initiator feeding policies, methyl methacrylate, Monte Carlo simulation, polymer microstructure, styrene
A Monte Carlo simulation algorithm is developed to visualize the impact of various initiator feeding policies on the kinetics of free radical polymerization. Three cases are studied: (1) general free radical polymerization using typical rate constants; (2) diffusion-controlled styrene free radical polymerization in a relatively small amount of solvent; and (3) methyl methacrylate free radical polymerization in solution. The number- and weight-average chain lengths, molecular weight distribution (MWD), and polymerization time were computed for each initiator feeding policy. The results show that a higher number of initiator shots throughout polymerization at a fixed amount of initiator significantly increases average molecular weight and broadens MWD. Similar results are also observed when most of the initiator is added at higher conversions. It is demonstrated that one can double the molecular weight of polystyrene and increase its dispersity by 50% through a four-shot instead of a sin... [more]
Cyanobacterial Biomass Produced in the Wastewater of the Dairy Industry and Its Evaluation in Anaerobic Co-Digestion with Cattle Manure for Enhanced Methane Production
Xavier Álvarez, Olga Arévalo, Miriam Salvador, Ingrid Mercado, Borja Velázquez-Martí
April 29, 2021 (v1)
Keywords: anaerobic co-digestion, dairy industry, nutrient removal efficiency, photobioreactor
The unique perspective that microalgae biomass presents for bioenergy production is currently being strongly considered. This type of biomass production involves large amounts of nutrients, due to nitrogen and phosphorous fertilizers, which impose production limitations. A viable alternative to fertilizers is wastewater, rich in essential nutrients (carbon, nitrogen, phosphorus, potassium). Therefore, Arthrospira platensis was cultivated in 150 mL photobioreactors with 70% (v/v) with the wastewater from a dairy industry, under a regime of light:dark cycles (12 h:12 h), with an irradiance of 140 μmol m−2 s−1 photon. The discontinuous cultures were inoculated with an average concentration of chlorophyll-a of 13.19 ± 0.19 mg L−1. High biomass productivity was achieved in the cultures with wastewater from the dairy industry (1.1 ± 0.02 g L−1 d−1). This biomass was subjected to thermal and physical treatments, to be used in co-digestion with cattle manure. Co-digestion was carried out in a... [more]
A Novel Approach Integrating Intuitionistic Fuzzy Analytical Hierarchy Process and Goal Programming for Chickpea Cultivar Selection under Stress Conditions
Ilknur Karacan, Ozlem Senvar, Ozlem Arslan, Yasemin Ekmekçi, Serol Bulkan
April 29, 2021 (v1)
Keywords: chickpea, Cicer arietinum L., cold stress, drought stress, goal programming, IF-AHP, intuitionistic fuzzy, MCDM
Chickpea (Cicer arietinum L.) is a quite high nutrient and widespread legume that is consumed globally. Similar to many plants, chickpea is sensitive to environmental stresses. The major goal of the breeders is to achieve the most tolerant cultivars. This study aims to determine the tolerance level of chickpea cultivars against cold and drought stresses. The cultivars in the scope of this study are the ones that are officially identified and grown in Turkey. Ranking alternatives according to multiple criteria is difficult and requires a systematic approach. Thus, a coherent multi criteria decision making (MCDM) methodology is proposed in order to ease the ranking process. The methodology includes integration of intuitionistic fuzzy analytical hierarchy process (IF-AHP) with group decision making (GDM) and goal programming (GP). This integration presents a robust ranking according to criteria that are appraised by talented experts. Applying the methodology to the data, results in the or... [more]
Optimization Using Response Surface Methodology (RSM) for Biodiesel Synthesis Catalyzed by Radiation-Induced Kenaf Catalyst in Packed-Bed Reactor
Nur Haryani Zabaruddin, Luqman Chuah Abdullah, Nor Hasimah Mohamed, Thomas Shean Yaw Choong
April 29, 2021 (v1)
Keywords: biodiesel, central composite design, fatty acid ethyl esters, heterogeneous catalyst, natural fiber, packed bed reactor, response surface methodology, transesterification
In this study, continuous transesterification of refined palm oil by using radiation-induced kenaf denoted as anion exchange kenaf catalyst in a packed-bed reactor was developed. The application of full factorial design and response surface methodology (RSM) based on the central composite design (CCD) was used to design the process and analyzed the effect of reactor operating variables such as packed bed height, the molar ratio of oil to ethanol and volumetric flow rate on the production of fatty acid ethyl ester (FAEE). The statistical analysis results showed that all three operating parameters affect the reaction efficiency significantly. The optimum conditions were determined to be 9.81 cm packed bed height, a molar ratio at 1:50, and a volumetric flow rate of 0.38 mL min−1. Three tests were carried out to verify the optimum combination of process parameters. The predicted and actual values of molar conversion fatty acid ethyl ester (FAEE) molar conversion were 97.29% and 96.87%, re... [more]
Study of Performance, Emissions, and Combustion of a Common-Rail Injection Engine Fuelled with Blends of Cocos nucifera Biodiesel with Diesel Oil
Yew Heng Teoh, Heoy Geok How, Thanh Danh Le, Huu Tho Nguyen
April 29, 2021 (v1)
Keywords: biodiesel, coconut, combustion, common-rail
Renewable alternatives to fossil fuels, such as biodiesel, are necessary to lessen emission of greenhouse gases that are causing climate change. Using a high-pressure, medium-duty, common-rail, turbocharged four-cylinder diesel engine, this work studies the effect of adding Cocos nucifera biodiesel to conventional diesel on exhaust emissions, engine performance, and combustion characteristics. An analysis and characterization of the key physicochemical properties of diesel, biodiesel, and biodiesel−diesel blends were carried out. The engine was fuelled with pure petroleum diesel and blended diesel containing a 10%, 20%, 30%, and 50% volume of coconut oil at full throttle and six different speed settings, respectively. The results showed relatively close physicochemical properties between the biodiesel blend and conventional petroleum fuel. Observations made over the entire speed range indicated that a higher coconut oil biodiesel (COB) content lowers the torque and brake power compared... [more]
Long-Term Performance of Anti-Freeze Protection System of a Solar Thermal System
Sebastian Pater
April 29, 2021 (v1)
Keywords: anti-freeze protection, evacuated tube collector, heat pipe, solar collector, solar fluid
In a moderate, transitory climate, to prevent freezing of outdoor pipes and collectors in solar thermal systems, anti-freezing fluids are commonly used. There is little experience of using water without any additives as a solar thermal fluid in such a climate. Based on these findings, to fill the knowledge gap this article presents the long-term results of thermal performance and anti-freeze protection of a solar heating system with heat pipe evacuated tube collectors with water as a solar thermal fluid. The operation of this system under real conditions was analysed for five years in southern Poland. The annual value of solar insolation ranged from 839 to almost 1000 kWh/m2. The monthly efficiency of the solar collectors from March to October was usually higher than 25%, and the lowest was between November and January. The anti-freeze protection system consumed annually from 7 to 13% of the heat generated by the collectors in the installation. Supporting the operation of the central h... [more]
Life Cycle Assessment Analysis of Alfalfa and Corn for Biogas Production in a Farm Case Study
Fabiola Filippa, Francesco Panara, Daniela Leonardi, Livia Arcioni, Ornella Calderini
April 29, 2021 (v1)
Keywords: alfalfa, bioenergy, biogas, corn, LCA
In the last years the greenhouse effect has been significantly intensified due to human activities, generating large additional amounts of Greenhouse gases (GHG). The fossil fuels are the main causes of that. Consequently, the attention on the composition of the national fuel mix has significantly grown, and the renewables are becoming a more significant component. In this context, biomass is one of the most important sources of renewable energy with a great potential for the production of energy. The study has evaluated, through an LCA (Life Cycle Assessment) study, the attitude of alfalfa (Medicago sativa) as “no food” biomass alternative to maize silage (corn), in the production of biogas from anaerobic digestion. Considering the same functional unit (1 m3 of biogas from anaerobic digestion) and the same time horizon, alfalfa environmental impact was found to be much comparable to that of corn because it has an impact of about 15% higher than corn considering the total score from di... [more]
Microbial Communities and Sulfate-Reducing Microorganisms Abundance and Diversity in Municipal Anaerobic Sewage Sludge Digesters from a Wastewater Treatment Plant (Marrakech, Morocco)
Abdelaziz El Houari, Magali Ranchou-Peyruse, Anthony Ranchou-Peyruse, Rhizlane Bennisse, Radia Bouterfas, Maria Soledad Goni Urriza, Abdel-Ilah Qatibi, Rémy Guyoneaud
April 29, 2021 (v1)
Subject: Biosystems
Keywords: anaerobic digestion, Archaea, biogas, microbial diversity, sulfate-reducing bacteria, sulfides
Both molecular analyses and culture-dependent isolation were combined to investigate the diversity of sulfate-reducing prokaryotes and explore their role in sulfides production in full-scale anaerobic digesters (Marrakech, Morocco). At global scale, using 16S rRNA gene sequencing, Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Synergistetes, and Euryarchaeota were the most dominant phyla. The abundance of Archaea (3.1−5.7%) was linked with temperature. The mcrA gene ranged from 2.18 × 105 to 1.47 × 107 gene copies.g−1 of sludge. The sulfate-reducing prokaryotes, representing 5% of total sequences, involved in sulfides production were Peptococcaceae, Syntrophaceae, Desulfobulbaceae, Desulfovibrionaceae, Syntrophobacteraceae, Desulfurellaceae, and Desulfobacteraceae. Furthermore, dsrB gene ranged from 2.18 × 105 to 1.92 × 107 gene copies.g−1 of sludge. The results revealed that exploration of diversity and function of sulfate-reducing bacteria may play a key role in decreasin... [more]
Effects of Chopping Length and Additive on the Fermentation Quality and Aerobic Stability in Silage of Leymus chinensis
Zhiqiang Sun, Tingting Jia, Run Gao, Shengyang Xu, Zhe Wu, Bing Wang, Zhu Yu
April 29, 2021 (v1)
Keywords: aerobic stability, fermentation quality, Lactobacillus plantarum, Leymus chinensis, silage processing
The objective of this experiment was to evaluate the effects of the chopping length and additive on the fermentation characteristics and aerobic stability in silage of Leymus chinensis. L. chinensis was chopped to 1−2 cm and 4−5 cm, and immediately ensiled with the three treatments, i.e., 2% sucrose (fresh weight basis; SU), 1 × 105 cfu/g Lactobacillus plantarum (LP) or 1 × 105 cfu/g LP plus 2% sucrose (SU+LP). Silage treated with distilled water served as the control. After silage processing for 30 and 90 d, the fermentation quality of L. chinensis silage was evaluated. The composition of the fermentation products and the pH value in the silage were determined at 1, 3, 5 and 7 d after opening the silo. The results showed that in L. chinensis silage there was a lower pH value, higher lactic acid content and better aerobic stability at the 1−2 cm length than those at the 4−5 cm (p < 0.001). When the chopping length was 4−5 cm, the addition of either LP or SU+LP increased the content... [more]
Dynamic Threshold Neural P Systems with Multiple Channels and Inhibitory Rules
Xiu Yin, Xiyu Liu
April 29, 2021 (v1)
Keywords: dynamic threshold neural P systems, inhibitory rules, membrane computing, multiple channels, spiking neural P systems
In biological neural networks, neurons transmit chemical signals through synapses, and there are multiple ion channels during transmission. Moreover, synapses are divided into inhibitory synapses and excitatory synapses. The firing mechanism of previous spiking neural P (SNP) systems and their variants is basically the same as excitatory synapses, but the function of inhibitory synapses is rarely reflected in these systems. In order to more fully simulate the characteristics of neurons communicating through synapses, this paper proposes a dynamic threshold neural P system with inhibitory rules and multiple channels (DTNP-MCIR systems). DTNP-MCIR systems represent a distributed parallel computing model. We prove that DTNP-MCIR systems are Turing universal as number generating/accepting devices. In addition, we design a small universal DTNP-MCIR system with 73 neurons as function computing devices.
Showing records 26 to 50 of 175. [First] Page: 1 2 3 4 5 6 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025
Change month: January | February | March | April | May | June | July | August | September | October | November | December