Browse
Keywords
Records with Keyword: Fuel Cells
51. LAPSE:2023.4022
Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer
February 22, 2023 (v1)
Subject: System Identification
Keywords: atom search optimizer, Fuel Cells, parameter identifications, simulation and modeling
In simulation studies, the precision of fuel cell models has a vital role in the quality of results. Unfortunately, due to the shortage of manufacturer data given in the datasheets, several unknown parameters should be defined to establish the fuel cell model for further precise analysis. This research addresses a novel application of the atom search optimization (ASO) algorithm to generate these unknown parameters of the fuel cell model and in particular of the polymer exchange membrane (PEM) type. The objective of this study is to establish an accurate model of the PEM fuel cells, which will provide accurate results of modeling and simulation in a steady-state condition. Simulations and further demonstrations were performed under MATLAB/SIMULINK. The viability of the proposed models was appraised by comparing its simulation results with the experimental results of number of commercial PEM fuel cells. In the same context, the obtained numerical results by the proposed ASO-based method... [more]
52. LAPSE:2023.3671
Renewable Energy and Energy Storage Systems
February 22, 2023 (v1)
Subject: Energy Systems
Keywords: biomass energy, energy management, energy storage systems, Fuel Cells, green hydrogen, hybrid renewable energy, large scale renewable energies, solar energy, wind energy
The use of fossil fuels has contributed to climate change and global warming, which has led to a growing need for renewable and ecologically friendly alternatives to these. It is accepted that renewable energy sources are the ideal option to substitute fossil fuels in the near future. Significant progress has been made to produce renewable energy sources with acceptable prices at a commercial scale, such as solar, wind, and biomass energies. This success has been due to technological advances that can use renewable energy sources effectively at lower prices. More work is needed to maximize the capacity of renewable energy sources with a focus on their dispatchability, where the function of storage is considered crucial. Furthermore, hybrid renewable energy systems are needed with good energy management to balance the various renewable energy sources’ production/consumption/storage. This work covers the progress done in the main renewable energy sources at a commercial scale, including... [more]
53. LAPSE:2023.3390
Oxygen Reduction at PtNi Alloys in Direct Methanol Fuel Cells—Electrode Development and Characterization
February 22, 2023 (v1)
Subject: Materials
Keywords: alloys, catalyst, charge-transfer resistance, DMFC, EIS, Fuel Cells, nickel, ORR, platinum, supported catalysts
Catalyst layers made from novel catalysts must be fabricated in a way that the catalyst can function to its full potential. To characterize a PtNi alloy catalyst for use in the cathode of Direct Methanol Fuel Cells (DMFCs), the effects of the manufacturing technique, ink composition, layer composition, and catalyst loading were here studied in order to reach the maximum performance potential of the catalyst. For a more detailed understanding, beyond the DMFCs performance measurements, we look at the electrochemically active surface area of the catalyst and charge-transfer resistance, as well as the layer quality and ink properties, and relate them to the aspects stated above. As a result, we make catalyst layers with optimized parameters by ultrasonic spray coating that shows the high performance of the catalyst even when containing less Pt than commercial products. Using this approach, we can adjust the catalyst layers to the requirements of DMFCs, hydrogen fuel cells, or polymer elec... [more]
54. LAPSE:2023.1985
Parametric Sensitivity Analysis and Performance Evaluation of High-Temperature Anion-Exchange Membrane Fuel Cell
February 21, 2023 (v1)
Subject: Modelling and Simulations
Keywords: 3D modeling, Fuel Cells, high temperature, HT-AEMFC, local current density distribution, relative humidity
In this paper, a three-dimensional model of a high-temperature anion-exchange membrane fuel cell (HT-AEMFC) operating at 110 °C is presented. All major transport phenomena along with the electrochemical reactions that occur in the cell are modeled. Since the water is exclusively in the form of steam and there is no phase transition to deal with in the cell, the water management is greatly simplified. The cell performance under various current loads is evaluated, and the results are validated against the experimental data. The cell performance is examined across a range of operating conditions, including cell temperature, inlet flow rate, and inlet relative humidity (RH). The critical link between the local distributions of species and local current densities along the channels is identified. The distribution of reactants continuously drops in the gas flow direction along the flow channels, causing a non-uniform local current distribution that becomes more pronounced at high current loa... [more]
55. LAPSE:2023.0157
Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives
February 17, 2023 (v1)
Subject: Energy Systems
Keywords: Alternative Marine Fuels, emissions reduction, Fuel Cells, Hydrogen Energy, maritime transport, Renewable and Sustainable Energy
The ambitious targets set by the International Maritime Organization for reducing greenhouse gas emissions from shipping require radical actions by all relevant stakeholders. In this context, the interest in high efficiency and low emissions (even zero in the case of hydrogen) fuel cell technology for maritime applications has been rising during the last decade, pushing the research developed by academia and industries. This paper aims to present a comparative review of the fuel cell systems suitable for the maritime field, focusing on PEMFC and SOFC technologies. This choice is due to the spread of these fuel cell types concerning the other ones in the maritime field. The following issues are analyzed in detail: (i) the main characteristics of fuel cell systems; (ii) the available technology suppliers; (iii) international policies for fuel cells onboard ships; (iv) past and ongoing projects at the international level that aim to assess fuel cell applications in the maritime industry;... [more]
56. LAPSE:2020.0961
Air-Forced Flow in Proton Exchange Membrane Fuel Cells: Calculation of Fan-Induced Friction in Open-Cathode Conduits with Virtual Roughness
September 15, 2020 (v1)
Subject: Modelling and Simulations
Keywords: Colebrook equation, flow friction factor, Fuel Cells, numerically stabile solution, open-cathode, pressure drop, roughness, symbolic regression
Measurements of pressure drop during experiments with fan-induced air flow in the open-cathode proton exchange membrane fuel cells (PEMFCs) show that flow friction in its open-cathode side follows logarithmic law similar to Colebrook’s model for flow through pipes. The stable symbolic regression model for both laminar and turbulent flow presented in this article correlates air flow and pressure drop as a function of the variable flow friction factor which further depends on the Reynolds number and the virtual roughness. To follow the measured data, virtual inner roughness related to the mesh of conduits of fuel cell used in the mentioned experiment is 0.03086, whereas for pipes, real physical roughness of their inner pipe surface goes practically from 0 to 0.05. Numerical experiments indicate that the novel approximation of the Wright-ω function reduced the computational time from half of a minute to fragments of a second. The relative error of the estimated friction flow factor is les... [more]
57. LAPSE:2019.1379
Effect of the Dendrimer Generation Used in the Synthesis of Pt-Ru Nanoparticles Supported on Carbon Nanofibers on the Catalytic Activity towards Methanol Oxidation
December 10, 2019 (v1)
Subject: Materials
Keywords: carbon nanofibers, dendrimers, Fuel Cells, methanol electrochemical oxidation, Pt-Ru catalysts
Pt-Ru nanoparticles supported on carbon nanofibers (CNF) were synthesized by the sodium borohydride reduction method, using different generation dendrimers (zero, one, two and three generations). After the synthesis process, these materials were submitted to a heat treatment at 350 °C, in order to clean the nanoparticle surface of organic residues. TEM characterization showed that the Pt-Ru nanoparticles size ranged between 1.9 and 5.5 nm. The use of dendrimers did not totally avoid the formation of aggregates, although monodisperse sizes were observed. The heat treatment produces the desired surface cleaning, although promoted the formation of agglomerates and crystalline Ru oxides. The study of the electrochemical activity towards the methanol oxidation displayed some clues about the influence of both the dendrimer generation and the presence of Ru oxides. Moreover, the apparent activation energy Eap for this reaction was determined. The results showed a beneficial effect of the heat... [more]
58. LAPSE:2019.1175
Improvement of Catalytic Activity of Platinum Nanoparticles Decorated Carbon Graphene Composite on Oxygen Electroreduction for Fuel Cells
November 24, 2019 (v1)
Subject: Reaction Engineering
Keywords: composite, Fuel Cells, graphene, oxygen reduction reaction, platinum carbon
High-performance platinum (Pt)-based catalyst development is crucially important for reducing high overpotential of sluggish oxygen reduction reaction (ORR) at Pt-based electrocatalysts, although the high cost and scarcity in nature of Pt are profoundly hampering the practical use of it in fuel cells. Thus, the enhancing activity of Pt-based electrocatalysts with minimal Pt-loading through alloy, core−shell or composite making has been implemented. This article deals with enhancing electrocatalytic activity on ORR of commercially available platinum/carbon (Pt/C) with graphene sheets through a simple composite making. The Pt/C with graphene sheets composite materials (denoted as Pt/Cx:G10−x) have been characterized by several instrumental measurements. It shows that the Pt nanoparticles (NPs) from the Pt/C have been transferred towards the π-conjugated systems of the graphene sheets with better monolayer dispersion. The optimized Pt/C8:G2 composite has higher specific surface area and b... [more]
59. LAPSE:2019.0176
Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation
January 31, 2019 (v1)
Subject: Energy Management
Keywords: Fuel Cells, high step-up converter, interleaved converter, low voltage stress, photovoltaic (PV) panel
This paper presents a novel interleaved converter (NIC) with extra-high voltage gain to process the power of low-voltage renewable-energy generators such as photovoltaic (PV) panel, wind turbine, and fuel cells. The NIC can boost a low input voltage to a much higher voltage level to inject renewable energy to DC bus for grid applications. Since the NIC has two circuit branches in parallel at frond end to share input current, it is suitable for high power applications. In addition, the NIC is controlled in an interleaving pattern, which has the advantages that the NIC has lower input current ripple, and the frequency of the ripple is twice the switching frequency. Two coupled inductors and two switched capacitors are incorporated to achieve a much higher voltage gain than conventional high step-up converters. The proposed NIC has intrinsic features such as leakage energy totally recycling and low voltage stress on power semiconductor. Thorough theoretical analysis and key parameter desi... [more]

