Browse
Records Added in January 2020
Records added in January 2020
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 26 to 50 of 119. [First] Page: 1 2 3 4 5 Last
The Copper(II) Ions Solvent Extraction with a New Compound: 2,6-Bis(4-Methoxybenzoyl)-Diaminopyridine
Daria Bożejewicz, Katarzyna Witt, Małgorzata A. Kaczorowska, Borys Ośmiałowski
January 19, 2020 (v1)
Subject: Materials
Keywords: 2,6-bis(4-methoxybenzoyl)-diaminopyridine, dissociation constant, mass spectrometry, solvent extraction, stability constant
A new compound 2,6-bis(4-methoxybenzoyl)-diaminopyridine (L) was used as an extractant for copper(II) ion recovery in a solvent extraction conducted at a temperature of 25 °C. The best results (99% recovery of copper(II) ions) were obtained when the aqueous phase contained 0.001 mol/dm3 Cu(II) and 0.2 mol/dm3 NH3 (pH~5.8), while the organic phase was a 0.001 mol/dm3 chloroform solution of 2,6-bis(4-methoxybenzoyl)-diaminopyridine. Spectrophotometry studies were used to determine the dissociation constant of the tested compound and determine the stability constant of the complex of subjected compound with copper(II) ions. The high-resolution mass spectrometry (HRMS) and higher energy collisional dissociation tandem mass spectrometry (HCD MS/MS) methods have been applied for the confirmation of the structure of 2,6-bis(4-methoxybenzoyl)-diaminopyridine and to determine its complexation with Cu(II) in solution.
Review of Anaerobic Digestion Modeling and Optimization Using Nature-Inspired Techniques
Anjali Ramachandran, Rabee Rustum, Adebayo J. Adeloye
January 19, 2020 (v1)
Subject: Biosystems
Keywords: anaerobic digestion, ant colony optimization, artificial neural network, firefly algorithm, Genetic Algorithm, nature-inspired techniques, Particle Swarm Optimization
Although it is a well-researched topic, the complexity, time for process stabilization, and economic factors related to anaerobic digestion call for simulation of the process offline with the help of computer models. Nature-inspired techniques are a recently developed branch of artificial intelligence wherein knowledge is transferred from natural systems to engineered systems. For soft computing applications, nature-inspired techniques have several advantages, including scope for parallel computing, dynamic behavior, and self-organization. This paper presents a comprehensive review of such techniques and their application in anaerobic digestion modeling. We compiled and synthetized the literature on the applications of nature-inspired techniques applied to anaerobic digestion. These techniques provide a balance between diversity and speed of arrival at the optimal solution, which has stimulated their use in anaerobic digestion modeling.
Research on the Dynamic Behaviors of the Jet System of Adaptive Fire-Fighting Monitors
Xiaoming Yuan, Xuan Zhu, Chu Wang, Lijie Zhang, Yong Zhu
January 19, 2020 (v1)
Keywords: adaptive control, duffing equation, dynamics, fire-fighting monitor, flow control, jet system
Based on the principles of nonlinear dynamics, a dynamic model of the jet system for adaptive fire-fighting monitors was established. The influence of nonlinear fluid spring force on the dynamic model was described by the Duffing equation. Results of numerical calculation indicate that the nonlinear action of the fluid spring force leads to the nonlinear dynamic behavior of the jet system and fluid gas content, fluid pressure, excitation frequency, and excitation amplitude are the key factors affecting the dynamics of the jet system. When the excitation frequency is close to the natural frequency of the corresponding linear dynamic system, a sudden change in vibration amplitude occurs. The designed adaptive fire-fighting monitor had no multi-cycle, bifurcation, or chaos in the range of design parameters, which was consistent with the stroboscopic sampling results in the dynamic experiment of jet system. This research can provide a basis for the dynamic design and optimization of the ad... [more]
Vapor Liquid Equilibrium Measurements of Two Promising Tertiary Amines for CO2 Capture
Diego D. D. Pinto, Znar Zahraee, Vanja Buvik, Ardi Hartono, Hanna K. Knuutila
January 19, 2020 (v1)
Subject: Materials
Keywords: 12-HEPP, amine, Carbon Dioxide Capture, DEA-12-PD, VLE
Post combustion CO2 capture is still a rather energy intense, and therefore expensive, process. Much of the current research for reducing the process energy requirements is focused on the regeneration section. A good description of the vapor liquid equilibrium of the solvent is necessary for the accurate representation of the process. 3-(Diethylamino)-1,2-propanediol (DEA-12-PD) and 1-(2-hydroxyethyl)piperidine (12-HEPP) have been proposed as potential components in solvent blends for the membrane contactor. However, there are few available experimental data for these two tertiary amines making difficult to accurate simulate such process. In this work, we provide experimental data on the pure component saturation pressure (383 to 443 K) and on VLE of aqueous solutions of these amines (313 to 373 K) in order to fill part of the data gap. The data were used to estimate model parameters used to represent the data. The saturation pressure was modeled using the Antoine equation and the devi... [more]
A Comprehensive Review and Technical Guideline for Optimal Design and Operations of Fuel Cell-Based Cogeneration Systems
Farah Ramadhani, Mohd Azlan Hussain, Hazlie Mokhlis
January 19, 2020 (v1)
Keywords: cogeneration, fuel cell, guidelines, optimal design, review
The need for energy is increasing from year to year and has to be fulfilled by developing innovations in energy generation systems. Cogeneration is one of the matured technologies in energy generation, which has been implemented since the last decade. Cogeneration is defined as energy generation unit that simultaneously produced electricity and heat from a single primary fuel source. Currently, the implementation of this system has been spread over the world for stationary and mobile power generation in residential, industrial and transportation uses. On the other hand, fuel cells as an emerging energy conversion device are potential prime movers for this cogeneration system due to its high heat production and flexibility in its fuel usage. Even though the fuel cell-based cogeneration system has been popularly implemented in research and commercialization sectors, the review regarding this technology is still limited. Focusing on the optimal design of the fuel cell-based cogeneration s... [more]
Numerical and Experimental Investigation of External Characteristics and Pressure Fluctuation of a Submersible Tubular Pumping System
Yan Jin, Xiaoke He, Ye Zhang, Shanshan Zhou, Hongcheng Chen, Chao Liu
January 19, 2020 (v1)
Keywords: external characteristics, measurement, numerical simulation, pressure fluctuation, submersible tubular pumping system
This paper presents an investigation of external flow characteristics and pressure fluctuation of a submersible tubular pumping system by using a combination of numerical simulation and experimental methods. The steady numerical simulation is used to predicted the hydraulic performance of the pumping system, and the unsteady calculation is adopted to simulate the pressure fluctuation in different components of a submersible tubular pumping system. A test bench for a model test and pressure pulsation measurement is built to validate the numerical simulation. The results show that the performance curves of the calculation and experiment are in agreement with each other, especially in the high efficiency area, and the deviation is minor under small discharge and large discharge conditions. The pressure pulsation distributions of different flow components, such as the impeller outlet, middle of the guide vane, and guide vane outlet and bulb unit, are basically the same as the measurement d... [more]
Characterization of Poly(Ethylene Oxide) Nanofibers—Mutual Relations between Mean Diameter of Electrospun Nanofibers and Solution Characteristics
Petr Filip, Petra Peer
January 19, 2020 (v1)
Subject: Materials
Keywords: concentration, electrospinning, molecular weight, nanofiber diameter, poly(ethylene oxide)
The quality of electrospun poly(ethylene oxide) (PEO) nanofibrous mats are subject to a variety of input parameters. In this study, three parameters were chosen: molecular weight of PEO (100, 300, 600, and 1000 kg/mol), PEO concentration (in distilled water), and shear viscosity of PEO solution. Two relations free of any adjustable parameters were derived. The first, describing the initial stage of an electrospinning process expressing shear viscosity using PEO molecular weight and concentration. The second, expressing mean nanofiber diameter using concentration and PEO molecular weight. Based on these simple mathematical relations, it is possible to control the mean nanofiber diameter during an electrospinning process.
Diffusion in Binary Aqueous Solutions of Alcohols by Molecular Simulation
Alexander Klinov, Ivan Anashkin
January 19, 2020 (v1)
Keywords: alcohols, diffusion coefficient, intermolecular interaction, molecular dynamics, Water
Based on the molecular dynamics method, the calculations for diffusion coefficients were carried out in binary aqueous solutions of three alcohols: ethanol, isopropanol, and tert-butanol. The intermolecular potential TIP4P/2005 was used for water; and five force fields were analyzed for the alcohols. The force fields providing the best accuracy of calculation were identified based on a comparison of the calculated self-diffusion coefficients of pure alcohols with the experimental data for internal (Einstein) diffusion coefficients of alcohols in solutions. The temperature and concentration dependences of the interdiffusion coefficients were determined using Darken’s Equation. Transport (Fickian) diffusion coefficients were calculated using a thermodynamic factor determined by the non-random two-liquid (NRTL) and Willson models. It was demonstrated that for adequate reproduction of the experimental data when calculating the transport diffusion coefficients, the thermodynamic factor has... [more]
Comparative Analysis of Combustion Stability of Diesel/Ethanol Utilization by Blend and Dual Fuel
Wojciech Tutak, Arkadiusz Jamrozik
January 19, 2020 (v1)
Keywords: combustion duration, combustion stability, diesel fuel, dual fuel engine, Ethanol, ignition delay, rate of heat release
The aim of the work is a comparison of two combustion systems of fuels with different reactivity. The first is combustion of the fuel mixture and the second is combustion in a dual-fuel engine. Diesel fuel was burned with pure ethanol. Both methods of co-firing fuels have both advantages and disadvantages. Attention was paid to the combustion stability aspect determined by COVIMEP as well as the probability density function of IMEP. It was analyzed also the spread of the maximum pressure value, the angle of the position of maximum pressure. The influence of ethanol on ignition delay time spread and end of combustion process was evaluated. The experimental investigation was conducted on 1-cylinder air cooled compression ignition engine. The test engine operated with constant rpm equal to 1500 rpm and constant angle of start of diesel fuel injection. The engine was operated with ethanol up to 50% of its energy fraction.
Numerical Simulation of a Wall-Flow Particulate Filter Made of Biomorphic Silicon Carbide Able to Fit Different Fuel/Biofuel Inputs
M. Pilar Orihuela, Onoufrios Haralampous, Ricardo Chacartegui, Miguel Torres García, Julián Martínez-Fernández
January 19, 2020 (v1)
Keywords: biodiesel, biomorphic silicon carbide, diesel particulate filter, internal combustion engine, particulate matter emissions, vegetal waste
To meet the increasingly strict emission limits imposed by regulations, internal combustion engines for transport applications require the urgent development of novel emission abatement systems. The introduction of biodiesel or other biofuels in the engine operation is considered to reduce greenhouse gas emissions. However, these alternative fuels can affect the performance of the post-combustion systems due to the variability they introduce in the exhaust particle distribution and their particular physical properties. Bioceramic materials made from vegetal waste are characterized by having an orthotropic hierarchical microstructure, which can be tailored in some way to optimize the filtration mechanisms as a function of the particle distribution of the combustion gases. Consequently, they can be good candidates to cope with the variability that new biofuel blends introduce in the engine operation. The objective of this work is to predict the filtration performance of a wall-flow parti... [more]
Empirical Bayes Prediction in a Sequential Sampling Plan Based on Loss Functions
Khanittha Tinochai, Katechan Jampachaisri, Yupaporn Areepong, Saowanit Sukparungsee
January 19, 2020 (v1)
Keywords: empirical Bayes prediction, precautionary loss function, sequential sampling plan, squared error loss function
The application of empirical Bayes for lot inspection in sequential sampling plans is usually conducted to estimate the proportion of defective items in the lot rather than for hypothesis testing of the variables’ process mean. In this paper, we propose the use of empirical Bayes in a sequential sampling plan variables’ process mean testing under a squared error loss function and precautionary loss function, for which the prediction is performed to estimate a sequence of the mean when the data are normally distributed in the case of a known mean and unknown variance. The proposed plans are compared with the sequential sampling plan. The proposed techniques yielded smaller average sample number (ASN) and provided higher probability of acceptance (Pa) than the sequential sampling plan.
Fault Diagnosis of the Blocking Diesel Particulate Filter Based on Spectral Analysis
Shuang-xi Liu, Ming Lü
January 19, 2020 (v1)
Keywords: blockage, DPF, exhaust pressure, fault diagnosis, spectral analysis
Diesel particulate filter is one of the most effective after-treatment techniques to reduce Particulate Matters (PM) emissions from a diesel engine, but the blocking Diesel Particulate Filter (DPF) will seriously affect the engine performance, so it is necessary to study the fault diagnosis of blocking DPF. In this paper, a simulation model of an R425DOHC diesel engine with wall-flow ceramic DPF was established, and then the model was verified with experimental data. On this basis, the fault diagnosis of the blocking DPF was studied by using spectral analysis on instantaneous exhaust pressure. The results showed that both the pre-DPF mean exhaust pressure and the characteristic frequency amplitude of instantaneous exhaust pressure can be used as characteristic parameters of monitoring the blockage fault of DPF, but it is difficult to monitor DPF blockage directly by instantaneous exhaust pressure. In terms of sensitivity, the characteristic frequency amplitude of instantaneous exhaust... [more]
Colloids at Fluid Interfaces
Armando Maestro, Eduardo Guzmán
January 19, 2020 (v1)
Subject: Materials
Keywords: colloids, contact angle, dynamics, interfaces, particles, rheology, surface tension
Over the last two decades, understanding of the attachment of colloids to fluid interfaces has attracted the interest of researchers from different fields. This is explained by considering the ubiquity of colloidal and interfacial systems in nature and technology. However, to date, the control and tuning of the assembly of colloids at fluid interfaces remain a challenge. This review discusses some of the most fundamental aspects governing the organization of colloidal objects at fluid interfaces, paying special attention to spherical particles. This requires a description of different physicochemical aspects, from the driving force involved in the assembly to its thermodynamic description, and from the interactions involved in the assembly to the dynamics and rheological behavior of particle-laden interfaces.
Multiple-Input Single-Output Control for Extending the Steady-State Operating Range—Use of Controllers with Different Setpoints
Adriana Reyes-Lúa, Sigurd Skogestad
January 19, 2020 (v1)
Keywords: control structure, optimal operation, parallel control, PID, split range control, valve position control
This paper deals with a case when multiple inputs are needed to cover the steady-state operating range. The most common implementation is to use split range control with a single controller. However, this approach has some limitations. In this paper, we use multiple controllers with different setpoints and demonstrate that this structure can be optimal in some cases when the cost of the input can be traded off against the penalty of deviating from the desired setpoint. We describe a procedure to find the optimal setpoint deviations. We illustrate our procedure in a case in which three inputs (cooling and two sources of heating) are used to control the temperature of a room with a PID-based control structure and without the need of online optimization.
Theoretical and Experimental Approaches Aimed at Drug Design Targeting Neurodegenerative Diseases
Samuel Morales-Navarro, Luis Prent-Peñaloza, Yeray A. Rodríguez Núñez, Laura Sánchez-Aros, Oscar Forero-Doria, Wendy González, Nuria E. Campilllo, Miguel Reyes-Parada, Ana Martínez, David Ramírez
January 19, 2020 (v1)
Subject: Biosystems
Keywords: chemoinformatics, drug design, Green chemistry, medical chemistry, molecular modeling, neurodegenerative diseases
In recent years, green chemistry has been strengthening, showing how basic and applied sciences advance globally, protecting the environment and human health. A clear example of this evolution is the synergy that now exists between theoretical and computational methods to design new drugs in the most efficient possible way, using the minimum of reagents and obtaining the maximum yield. The development of compounds with potential therapeutic activity against multiple targets associated with neurodegenerative diseases/disorders (NDD) such as Alzheimer’s disease is a hot topic in medical chemistry, where different scientists from various disciplines collaborate to find safe, active, and effective drugs. NDD are a public health problem, affecting mainly the population over 60 years old. To generate significant progress in the pharmacological treatment of NDD, it is necessary to employ different experimental strategies of green chemistry, medical chemistry, and molecular biology, coupled wi... [more]
A Novel Hybrid Optimization Scheme on Connectivity Restoration Processes for Large Scale Industrial Wireless Sensor and Actuator Networks
Ying Zhang, Zheming Zhang, Bin Zhang
January 19, 2020 (v1)
Keywords: connectivity restoration, industrial network, network coverage rate, nodes relocation, wireless sensor and actuator networks
In the wireless sensor and actuator networks (WSANs) of industrial field monitoring, maintaining network connectivity with coverage perception plays a decisive role in many industrial process scenarios. The mobile actuator node is responsible for collecting data from the sensing nodes and performing diverse specific collaborative operation tasks. However, the failure of the nodes usually causes coverage vulnerability and partition of the network. Urgent and time-sensitive applications expect a minimum coverage loss to complete an instant connectivity restoration. This paper presents a hybrid coverage perception-based connectivity restoration algorithm, which is designed to restore network connectivity with minimal coverage area loss. The algorithm uses a backup node, which is selected nearby the critical node, to ensure a timely restoration when the critical node encounters failure. In the process of backup node migration, the optimal destination will be reselected to maintain the best... [more]
Optimal Tuning of Model Predictive Controller Weights Using Genetic Algorithm with Interactive Decision Tree for Industrial Cement Kiln Process
Valarmathi Ramasamy, Rakesh Kumar Sidharthan, Ramkumar Kannan, Guruprasath Muralidharan
January 19, 2020 (v1)
Keywords: cement kiln, Genetic Algorithm, interactive decision tree, model predictive controller, weight tuning
Energy intense nature of cement kiln demands optimal operation to minimize the energy requirement. Optimal control of cement kiln is achieved by proper tuning of the model predictive controller (MPC), which is addressed in this work. Genetic algorithm (GA) is used to determine the MPC weights that minimize the overall energy utilization with reduced tracking error. Single objective function has been formulated using importance weighted performance metrics like energy utilization and integral absolute error in tracking the desired response. Importance weights are determined in specific to the control scenarios using an interactive decision tree (IDT). It interacts with the operator to detect the weaker metrics and raises the importance level for further improvement. The algorithm terminates after attending all the metrics with the consent from the operator. Five control scenarios that predominantly occur in industrial cement kiln have been considered in this study. It includes tracking,... [more]
Heat Transfer Enhancement by Coupling of Carbon Nanotubes and SiO2 Nanofluids: A Numerical Approach
Fitnat Saba, Saima Noor, Naveed Ahmed, Umar Khan, Syed Tauseef Mohyud-Din, Zarqa Bano, El-Sayed M. Sherif, Ilyas Khan
January 19, 2020 (v1)
Keywords: (CNT-SiO2/H2O) hybrid nanofluid, heat transfer, Hermite polynomials, numerical results, permeable wall, viscous dissipation, wavelets
This article comprises the study of three-dimensional squeezing flow of (CNT-SiO2/H2O) hybrid nanofluid. The flow is confined inside a rotating channel whose lower wall is stretchable as well as permeable. Heat transfer with viscous dissipation is a main subject of interest. We have analyzed mathematically the benefits of hybridizing SiO 2 -based nanofluid with carbon nanotubes ( CNTs ) nanoparticles. To describe the effective thermal conductivity of the CNTs -based nanofluid, a renovated Hamilton−Crosser model (RHCM) has been employed. This model is an extension of Hamilton and Crosser’s model because it also incorporates the effect of the interfacial layer. For the present flow scenario, the governing equations (after the implementation of similarity transformations) results in a set of ordinary differential equations (ODEs). We have solved that system of ODEs, coupled with suitable boundary conditions (BCs), by implementing a newly proposed modified Hermite... [more]
CFD Study of Gas Holdup and Frictional Pressure Drop of Vertical Riser Inside IC Reactor
Sheng Wang, He Dong, Zhongfeng Geng, Xiuqin Dong
January 19, 2020 (v1)
Keywords: flow pattern, frictional pressure drop, gas holdup, multiple flow regimes model, vertical riser
The internal circulation system in Internal Circulation (IC) reactor plays an important role in increasing volumetric loading rate and promoting the mixing between sludge and wastewater. In order to design the internal circulation system, the flow behaviors of gas-liquid inside vertical riser should be studied in detail. In the present study, the Multiple Flow Regimes model is adopted to capture the phase interface for different flow conditions. The flow patterns, internal circulation flow rate, gas holdup, and frictional pressure drop of vertical riser are investigated. The results show that the bubble flow inside a vertical riser is in a stable flow condition. There exists a maximum value for internal circulation flow rate with the increasing superficial gas velocity. The parameters of Martinelli models for gas holdup and frictional pressure drop are improved based on Computational Fluid Dynamics (CFD) results. The deviations between the calculated gas holdup and frictional pressure... [more]
Experimental and Numerical Investigation on the Tip Leakage Vortex Cavitation in an Axial Flow Pump with Different Tip Clearances
Bin Xu, Xi Shen, Desheng Zhang, Weibin Zhang
January 19, 2020 (v1)
Keywords: axial flow pump, cavitation, tip clearance, tip leakage vortex
The tip gap existing between the blade tip and casing can give rise to tip leakage flow and interfere with the main flow, which causes unstable flow characteristics and intricate vortex in the passage. Investigation on the tip clearance effect is of great important due to its extensive applications in the rotating component of pumps. In this study, a scaling axial flow pump used in a south-north water diversion project with different sizes of tip clearances was employed to study the tip clearance effect on tip leakage vortex (TLV) characteristics. This analysis is based on a modified turbulence model. Validations were carried out using a high-speed photography technique. The tip clearance effect on the generation and evolution of TLV was investigated through the mean velocity, pressure, and vorticity fields. Results show that there are two kinds of TLV structures in the tip region. Accompanied by tip clearance increasing, the viscous loss in the tip area of the axial flow pump increase... [more]
A Graphical Model to Diagnose Product Defects with Partially Shuffled Equipment Data
Gilseung Ahn, Sun Hur, Dongmin Shin, You-Jin Park
January 19, 2020 (v1)
Keywords: defect diagnosis, equipment data analysis, graphical model, multi-source data fusion, partially shuffled time series
The diagnosis of product defects is an important task in manufacturing, and machine learning-based approaches have attracted interest from both the industry and academia. A high-quality dataset is necessary to develop a machine learning model, but the manufacturing industry faces several data-collection issues including partially shuffled data, which arises when a product ID is not perfectly inferred and yields an unstable machine learning model. This paper introduces latent variables to formulate a supervised learning model that addresses the problem of partially shuffled data. The experimental results show that our graphical model deals with the shuffling of product order and can detect a defective product far more effectively than a model that ignores shuffling.
Toxicological Activity of Some Plant Essential Oils Against Tribolium castaneum and Culex pipiens Larvae
Ahmed M. El-Sabrout, Mohamed Z. M. Salem, May Bin-Jumah, Ahmed A. Allam
January 19, 2020 (v1)
Subject: Biosystems
Keywords: Culex mosquitoes, essential oils, physiological effects, red flour beetle
In the present work, essential oils (EOs) from Schinus terebinthifolius (ripe and unripe fruits and leaves), Origanum majorana (air-dried aerial parts), and Psidium guajava (leaves) were assayed for their insecticidal activity against red flour beetle (Tribolium castaneum) and Culex mosquito larvae (Culex pipiens). Several components were identified in the EOs using Gas chromatography−mass spectrometry (GC/MS), of which Δ-3-carene (25.9%), γ-terpinene (19.4), and γ-elemene (7.1%) were the major ones in S. terebinthifolius ripe fruits, α-pinene (48.9%), germacrene D (12.9%), and α-thujene (7.7%) in S. terebinthifolius unripe fruits, γ-elemene (11.7%), spathulenol (10.1%), β-elemene (9.2%), and p-cymene (9.1%) in S. terebinthifolius leaves, α-pinene (25.5%), (E)-caryophyllene (15.7%), (E)-nerolidol (16.7%), and cedran-8-ol (8.8%) in P. guajava leaves, and terpinen-4-ol (21.7%), γ-terpinene (16.5%), and sabinene (10.1%) in O. majorana air-dried aerial parts. The lethal concentration (LC50... [more]
Study of the Affinity Law of Energy and Cavitation Characteristics in Emergency Drainage Pumps at Different Rotating Speeds
Weidong Cao, Jiayu Mao
January 19, 2020 (v1)
Subject: Other
Keywords: affinity, cavitation, emergency drainage pump, rotating speed
The affinity law is widely used in pump design and experiments. The applicability of the affinity law in an emergency drainage pump at different rotating speeds was studied. Experiments and numerical simulation through ANSYS CFX (Computational Fluid Dynamics X) 15.0 software were used to research the affinity law characteristics. Results show that the simulation of characteristics is basically consistent with the experimental curves. In small flow rate conditions, due to the existence of obvious differential pressure between the pressure side and the suction side in the impeller blade tip area, the leakage flow occurs at the tip clearance, which collides with the main stream at the inlet and generates vortices at the leading edge of the impeller. The tip leakage flows of the pump at four different rotating speeds were compared, and it was found that the tip leakage increased with increasing rotation speed, and at the same rotation speed, the tip leakage flow was large in the small flow... [more]
Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization
LINGYAN DENG DENG, Thomas Adams II
January 9, 2020 (v1)
Keywords: blast furnace gas, CO2 utilization and storage, COG desulphurization, Coke oven gas, Economic and sensitivity analysis, methanol production
This paper documents a process for converting coke oven gas (COG) and blast furnace gas (BFG) from steel refineries into methanol. Specifically, we propose the use of blast furnace gas (BFG) as an additional carbon source. The high CO2 and CO content of BFG make it a good carbon resource. In the proposed process, CO2 is recovered from the BFG and blended with H2O, H2, and CH4-rich COG to reform methane. Optimized amounts of H2O and CO2 are used to adjust the (H2 – CO2)/(CO + CO2) molar ratio in order to maximize the amount of methanol that is produced. In addition, the desulphurization process was modified to enable the removal of sulfur compounds, especially thiophene, from the COG. The process design and simulation results reported herein were then used to determine any potential environmental and economic benefits. This research is based on off-gas conditions provided by ArcelorMittal Dofasco, Hamilton, Ontario. In order to determine which conditions are most desirable for this retr... [more]
The Mechanism of the Effect of Al2O3 Content on the Liquid Phase Fluidity of Iron Ore Fines
Heping Li, Shengli Wu, Zhibin Hong, Weili Zhang, Heng Zhou, Mingyin Kou
January 7, 2020 (v1)
Subject: Materials
Keywords: Al2O3, consolidation strength, iron ore fines, liquid phase fluidity
The sintering process is significantly important for the ironmaking in China because of the large amount of sinter consumed. Al2O3 is an important element determining the quality and quantity of sinter. However, different conclusions have been made regarding the effects of Al2O3 on the amount and fluidity of the liquid phase formed in the sinter phase. Therefore, it is necessary to examine the effects of Al2O3 content on the amount and fluidity of the liquid phase. The present work investigated the effects of different Al2O3 contents of iron ore fines on the liquid phase formation, mineral composition, and consolidation strength. The results showed that a small amount of Al2O3 increased the amount of calcium ferrite, making the liquid phase formation easier. As the Al2O3 content in iron ore fines increased, the liquidity index decreased continuously, while the fluidity and the consolidation strength of the sintered body were directly related to the content squared. The quality of the s... [more]
Showing records 26 to 50 of 119. [First] Page: 1 2 3 4 5 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December