Browse
Record Types
Records with Type: Published Article
Showing records 41109 to 41133 of 43292. [First] Page: 1 1642 1643 1644 1645 1646 1647 1648 1649 1650 Last
The Control of Apparent Wettability on the Efficiency of Surfactant Flooding in Tight Carbonate Rocks
Harris Sajjad Rabbani, Yossra Osman, Ibrahim Almaghrabi, Mohammad Azizur Rahman, Thomas Seers
December 9, 2019 (v1)
Keywords: apparent wettability, carbonate rock, core-scale, surfactant flooding, water flooding
In this research, a state-of-the-art experimental core flooding setup is used to assess the efficiency of surfactant flooding as an enhanced oil recovery (EOR) technique in tight carbonate rocks. Specifically, we investigate the role of apparent wettability in governing the effectiveness of surfactant flooding. A series of flooding experiments with well-defined boundary conditions were performed on the low permeability core plug samples of Indiana Limestone (calcite-cemented carbonate grainstones). Experiments were conducted on three samples exhibiting differing apparent wetting characteristics: strongly oil-wet, moderately oil-wet and weakly oil-wet. Initially, the oil-saturated core samples were flooded with brine until the residual oil saturation was achieved, with surfactant flooding performed as a tertiary recovery technique. Interestingly, our experimental results reveal that the efficiency of surfactant flooding increases with the degree of oil-wetness of the tight carbonate roc... [more]
Combining Mechanistic Modeling and Raman Spectroscopy for Monitoring Antibody Chromatographic Purification
Fabian Feidl, Simone Garbellini, Martin F. Luna, Sebastian Vogg, Jonathan Souquet, Hervé Broly, Massimo Morbidelli, Alessandro Butté
December 9, 2019 (v1)
Keywords: chromatography, downstream processing, extended Kalman filter, flow cell, Raman spectroscopy
Chromatography is widely used in biotherapeutics manufacturing, and the corresponding underlying mechanisms are well understood. To enable process control and automation, spectroscopic techniques are very convenient as on-line sensors, but their application is often limited by their sensitivity. In this work, we investigate the implementation of Raman spectroscopy to monitor monoclonal antibody (mAb) breakthrough (BT) curves in chromatographic operations with a low titer harvest. A state estimation procedure is developed by combining information coming from a lumped kinetic model (LKM) and a Raman analyzer in the frame of an extended Kalman filter approach (EKF). A comparison with suitable experimental data shows that this approach allows for the obtainment of reliable estimates of antibody concentrations with reduced noise and increased robustness.
Economic MPC of Wastewater Treatment Plants Based on Model Reduction
An Zhang, Jinfeng Liu
December 9, 2019 (v1)
Keywords: economic model predictive control, Model Reduction, trajectory piecewise linearization, wastewater treatment plant
In this paper, we consider the problem of economic model predictive control of wastewater treatment plants based on model reduction. We apply two model approximation methods to a wastewater treatment plant (WWTP) described by a modified Benchmark Simulation Model No.1 to overcome the intensive computation associated with economic model predictive control (MPC). Two computationally efficient models are obtained based on trajectory piecewise linearization (TPWL) and reduced order TPWL. To obtain the reduced order TPWL model, a proper orthogonal decomposition (POD)-based method is utilized. Further, the reduced order model is linearized to obtain a TPWL-POD model. The objective is to design controllers which minimize the overall economic cost. Accordingly, we design economic MPC (EMPC) controllers based on each of the models. The economic control cost can be described as a weighted summation of effluent quality and overall operating cost. We compare the accuracy of the two proposed approx... [more]
Antifungal Activity of Euclea divinorum Root and Study of its Ethnobotany and Phytopharmacology
Mohamed Al-Fatimi
December 9, 2019 (v1)
Subject: Biosystems
Keywords: antifungal, antioxidant, ethnobotany, Euclea divinorum, naphthoquinones, Soqotra
The ethnobotanical survey of Euclea divinorum Hiern (Ebenaceae) was conducted on Soqotra Island, Yemen. The root bark is used to treat mouth, dental, dermal and blood diseases in the traditional medicine of the island. The study is the first report about the effect of the plant root barks against six human pathogenic fungi. The non-polar dichloromethane extract of Euclea divinorum root bark showed stronger antifungal activities compared to polar direct and sequential methanolic extracts. These extracts showed significant broad antifungal activity against Absidia corymbifera, Aspergillus fumigatus, Candida krusei, Microsporum gypseum, Mucor sp. and Trichophyton mentagrophytes compared to the standard antibiotic drug nystatin. Thin-layer chromatography (TLC) revealed the presence of the naphthoquinones in the extracts. The results showed an extraction process to separate most antifungal naphthoquinones from the root bark by using non-polar solvent dichloromethane, while flavonoids remain... [more]
Flexible Flow Shop Scheduling Method with Public Buffer
Zhonghua Han, Chao Han, Shuo Lin, Xiaoting Dong, Haibo Shi
December 9, 2019 (v1)
Keywords: flexible flow shop, Hopfield neural network, limited buffer, local scheduling, public buffer, simulated annealing algorithm
Actual manufacturing enterprises usually solve the production blockage problem by increasing the public buffer. However, the increase of the public buffer makes the flexible flow shop scheduling rather challenging. In order to solve the flexible flow shop scheduling problem with public buffer (FFSP−PB), this study proposes a novel method combining the simulated annealing algorithm-based Hopfield neural network algorithm (SAA−HNN) and local scheduling rules. The SAA−HNN algorithm is used as the global optimization method, and constructs the energy function of FFSP−PB to apply its asymptotically stable characteristic. Due to the limitations, such as small search range and high probability of falling into local extremum, this algorithm introduces the simulated annealing algorithm idea such that the algorithm is able to accept poor fitness solution and further expand its search scope during asymptotic convergence. In the process of local scheduling, considering the transferring time of wor... [more]
Multi-Agent Consensus Algorithm-Based Optimal Power Dispatch for Islanded Multi-Microgrids
Xingli Zhai, Ning Wang
December 9, 2019 (v1)
Keywords: consensus algorithm, islanded multi-microgrids, multi-agent, real-time power dispatch
Islanded multi-microgrids formed by interconnections of microgrids will be conducive to the improvement of system economic efficiency and supply reliability. Due to the lack of support from a main grid, the requirement of real-time power balance of the islanded multi-microgrid is relatively high. In order to solve real-time dispatch problems in an island multi-microgrid system, a real-time cooperative power dispatch framework is proposed by using the multi-agent consensus algorithm. On this basis, a regulation cost model for the microgrid is developed. Then a consensus algorithm of power dispatch is designed by selecting the regulation cost of each microgrid as the consensus variable to make all microgrids share the power unbalance, thus reducing the total regulation cost. Simulation results show that the proposed consensus algorithm can effectively solve the real-time power dispatch problem for islanded multi-microgrids.
A Theoretical and Experimental Study for Screening Inhibitors for Styrene Polymerization
Ali Darvishi, Mohammad Reza Rahimpour, Sona Raeissi
December 9, 2019 (v1)
Keywords: density functional theory, inhibitors, phenolic, polymerization, stable nitroxide radicals, styrene
Styrene is one of the most important monomers utilized in the synthesis of various polymers. Nevertheless, during distillation, storage, and transportation of ST, undesired polymer (i.e., UP) formation can take place. Thus, the control of undesired polymerization of styrene is a challenging issue facing industry. To tackle the mentioned issue, the antipolymer and antioxidant activity of stable nitroxide radicals (i.e., SNRs) and phenolics in styrene polymerization were studied by density functional theory (DFT) calculation and experimental approach. The electrophilicity index and growth percentage have been determined by DFT calculation and experimental approach, respectively. It is depicted that 2,6-di-tert-butyl-4-methoxyphenol (DTBMP) and 2,6-di-tert-butyl-4-methylphenol (BHT) from phenolics, and 4-hydroxy-2,2,6,6-tetramethyl piperidine 1-Oxyl (4-hydroxy-TEMPO) and 4-oxo-2,2,6,6-tetramethylpiperidine 1-Oxyl (4-oxo-TEMPO) from stable nitroxide radicals were the most effective inhibit... [more]
Computational Analysis of Imbalance-Based Irregularity Indices of Boron Nanotubes
Bin Yang, Mobeen Munir, Shazia Rafique, Haseeb Ahmad, Jia-Bao Liu
December 9, 2019 (v1)
Subject: Materials
Keywords: alpha boron tube, boron nanotube, complexity of structure, irregularity measure, tri-hexagonal boron nanotube, triangular boron tube
Molecular topology provides a basis for the correlation of physical as well as chemical properties of a certain molecule. Irregularity indices are used as functions in the statistical analysis of the topological properties of certain molecular graphs and complex networks, and hence help us to correlate properties like enthalpy, heats of vaporization, and boiling points etc. with the molecular structure. In this article we are interested in formulating closed forms of imbalance-based irregularity measures of boron nanotubes. These tubes are known as α-boron nanotube, triangular boron nanotubes, and tri-hexagonal boron nanotubes. We also compare our results graphically and come up with the conclusion that alpha boron tubes are the most irregular with respect to most of the irregularity indices.
Sustainable Waste-to-Energy Development in Malaysia: Appraisal of Environmental, Financial, and Public Issues Related with Energy Recovery from Municipal Solid Waste
Zi Jun Yong, Mohammed J.K. Bashir, Choon Aun Ng, Sumathi Sethupathi, Jun Wei Lim, Pau Loke Show
December 9, 2019 (v1)
Subject: Energy Policy
Keywords: economic, environmental, Malaysia, Municipal Solid Waste (MSW), Renewable and Sustainable Energy, social, technical, Waste-to-Energy (WTE)
As Malaysia is a fast-developing country, its prospects of sustainable energy generation are at the center of debate. Malaysian municipal solid waste (MSW) is projected to have a 3-5% increase in annual generation rate at the same time an increase of 4-8% for electricity demand. In Malaysia, most of the landfills are open dumpsite and 89% of the collected MSW end up in landfills. Furthermore, huge attention is being focused on converting MSW into energy due to the enormous amount of daily MSW being generated. Sanitary landfill to capture methane from waste landfill gas (LFG) and incineration in a combined heat and power plant (CHP) are common MSW-to-energy technologies in Malaysia. MSW in Malaysia contains 45% organic fraction thus landfill contributes as a potential LFG source. Waste-to-energy (WTE) technologies in treating MSW potentially provide an attractive economic investment since its feedstock (MSW) is collected almost for free. At present, there are considerable issues in WTE... [more]
Simulation of Ion Exchange Resin with Finite Difference Methods
Yawen Zhu, Bobo Liu, Ruichao Peng, Yunbai Luo, Ping Yu
December 9, 2019 (v1)
Keywords: finite difference method, ion exchange, Matlab, Simulation
Ion exchange resin is used to remove potentially corrosive impurities from coolant in the first circuit of a nuclear power plant. After one operational cycle, the used and unused resin in the mixed bed is discarded as solid waste. The aim of this work is to create a mathematical model to predict the operational cycle time of the mixed bed resin for reducing unused resin discharge. A partial differential equation (PDE) was set up with the conservation of matter. A finite difference method was used to solve the PDE. Matlab was the programming and calculating tool used in this work. The data from solution were obtained at different time and space nodes. The model was then verified experimentally using different ions on exchange columns. Concentrations of K+, Mn2+, and Cl- were calculated to verify the validation of the model by comparing it with experimental data. The calculated values showed good consistency with the experimental value.
Energy Model for Long-Term Scenarios in Power Sector under Energy Transition Laws
Gabriela Hernández-Luna, Rosenberg J. Romero, Antonio Rodríguez-Martínez, José María Ponce-Ortega, Jesús Cerezo Román, Guadalupe Diocelina Toledo Vázquez
December 9, 2019 (v1)
Subject: Energy Policy
Keywords: electricity model, Mexican prospectives, power plants prospectives
High electricity demand, as well as emissions generated from this activity impact directly to global warming. Mexico is paying attention to this world difficulty and it is convinced that sustainable economic growth is possible. For this reason, it has made actions to face this problem like as launching constitutional reforms in the power sector. This paper presents an energy model to optimize the grid of power plants in the Mexican electricity sector (MES). The energy model considers indicators and parameters from Mexican Energy Reforms. Electricity demand is defined as a function of two population models and three electricity consumption per capita. Prospectives are presented as a function of total annual cost of electricity generation, an optimal number of power plants—fossil and clean—as well as CO2eq emissions. By mean of the energy model, optimized grid scenarios are identified to meet the governmental goals (energy and environment) to 2050. In addition, this model could be used a... [more]
CFD-DEM Modeling and Simulation Coupled to a Global Thermodynamic Analysis Methodology for Evaluating Energy Performance: Biofertilizer Industry
Francisco Burgos-Florez, Antonio Bula, John Marquez, Alberto Ferrer, Marco Sanjuan
December 9, 2019 (v1)
Keywords: CFD-DEM, fertilizer industry, multiphase flow, rotary cooler, rotating drum
This work develops a methodology based on real chemical plant data collected from a Nitrogen-Phosphorus-Potassium fertilizer (NPK) cooling rotary drum. By blending thermodynamic variables given by global energy and mass balances with computational fluid dynamics-discrete element method (CFD-DEM) modeling and simulation, the methodology provides an initial approximation to the understanding of heat transfer inside industry rotary coolers. The NPK cooling process was modeled in CFD software Simcenter STAR − CCM + 13.06.011 using a Eulerian−Lagrangian scheme through a coupled CFD-DEM method using one-way coupling. The average temperature of the NPK particles was obtained as well as the average mass flow of the particles dropping as the drum was rotating. The analysis was performed for two-particle diameters (8 and 20 mm) during 17.5 s. The average heat transfer coefficient between the fluid and the NPK particles during the simulated time was obtained. A thermodynamic analysis was carried... [more]
Intelligent Energy Management for Plug-in Hybrid Electric Bus with Limited State Space
Hongqiang Guo, Shangye Du, Fengrui Zhao, Qinghu Cui, Weilong Ren
December 9, 2019 (v1)
Keywords: energy management, Hardware-in-Loop (HIL) simulation, limited state space, plug-in hybrid electric bus, Q-learning
Tabular Q-learning (QL) can be easily implemented into a controller to realize self-learning energy management control of a plug-in hybrid electric bus (PHEB). However, the “curse of dimensionality” problem is difficult to avoid, as the design space is huge. This paper proposes a QL-PMP algorithm (QL and Pontryagin minimum principle (PMP)) to address the problem. The main novelty is that the difference between the feedback SOC (state of charge) and the reference SOC is exclusively designed as state, and then a limited state space with 50 rows and 25 columns is proposed. The off-line training process shows that the limited state space is reasonable and adequate for the self-learning; the Hardware-in-Loop (HIL) simulation results show that the QL-PMP strategy can be implemented into a controller to realize real-time control, and can on average improve the fuel economy by 20.42%, compared to the charge depleting−charge sustaining (CDCS) strategy.
Numerical Analysis of the Diaphragm Valve Throttling Characteristics
Yingnan Liu, Liang Lu, Kangwu Zhu
December 3, 2019 (v1)
Keywords: Computational Fluid Dynamics, diaphragm valve, profile design optimize, throttling characteristics
The throttling characteristics of the diaphragm valve are numerically studied in this paper. Firstly, the diaphragm deformation performance is analyzed by a finite element method, while the upper boundary morphology of the internal flow field under different valve openings was obtained. Then the two-dimensional simulation of the weir diaphragm valve flow field is carried out in order to explore the optimal design of flow path profile. The study shows that the throttling characteristics can be improved by flatting the ridge side wall, widening the top of the ridge and gently flatting the internal protruding of the flow path. In addition, using the local grid encryption techniques based on velocity gradient adaptive and y+ adaptive can improve the accuracy of simulation results. Finally, a cavitation two-phase flow simulation is carried out. The results show that cavitation may occur below 50% opening of diaphragm valve in ultra-pure water system, which becomes more intense with the incr... [more]
Mass and Heat Integration in Ethanol Production Mills for Enhanced Process Efficiency and Exergy-Based Renewability Performance
Pablo A. Silva Ortiz, Rubens Maciel Filho, John Posada
December 3, 2019 (v1)
Keywords: exergy analysis, heat integration, integrated first- and second-generation ethanol, lignocellulosic ethanol, renewability exergy index
This paper presents the process design and assessment of a sugarcane-based ethanol production system that combines the usage of both mass and heat integration (pinch analysis) strategies to enhance the process efficiency and renewability performance. Three configurations were analyzed: (i) Base case: traditional ethanol production (1G); (ii) mass-integrated (1G2G); and (iii) mass and heat-integrated system (1G2G-HI). The overall assessment of these systems was based on complementary approaches such as mass and mass−heat integration, energy and exergy analysis, exergy-based greenhouse gas (GHG) emissions, and renewability exergy criteria. The performances of the three cases were assessed through five key performance indicators (KIPs) divided into two groups: one is related to process performance, namely, energy efficiency, exergy efficiency, and average unitary exergy cost (AUEC), and the other one is associated to environmental performance i.e., exergy-based CO2-equation emissions and... [more]
Bi-Level Model Predictive Control for Optimal Coordination of Multi-Area Automatic Generation Control Units under Wind Power Integration
Chuan Xia, Huijia Liu
December 3, 2019 (v1)
Keywords: automatic generation control units, bi-level model predictive control, DC power modulation, economic frequency regulation, wind farm
With the high degree of wind power penetration integrated into multi-area AC/DC interconnected power grids, the frequency regulation capacity of automatic generation control (AGC) units is not sufficient in the wind power-penetrated area, making it difficult to effectively suppress the frequency stability caused by the fluctuation of wind power. Therefore, a coordinated control strategy for AGC units across areas based on bi-level model predictive control is proposed in this paper to achieve resource sharing. The control scheme uses economic model predictive control to realize steady power optimal allocation of the AGC units across areas in the upper layer and distributed model predictive control to realize dynamic frequency optimization control of the multi-area AGC units in the lower layer. Taking a three-area AC/DC interconnected power grid with a wind farm as an example, the simulation results show that, compared with model predictive control using tie-line frequency bias control (... [more]
Effective Use of Carbon Pricing on Climate Change Mitigation Projects: Analysis of the Biogas Supply Chain to Substitute Liquefied-Petroleum Gas in Mexico
Luis Alberto Díaz-Trujillo, Javier Tovar-Facio, Fabricio Nápoles-Rivera, José María Ponce-Ortega
December 3, 2019 (v1)
Subject: Energy Policy
Keywords: biogas, carbon emission trading, carbon tax, fossil fuel substitution, Optimization
There is presently an urgent demand for efficient and/or renewable energy technologies to correct global warming. However, these energy technologies are limited mainly by political and economic constraints of high costs and the lack of subsidy. Carbon-pricing strategies, such as carbon-emission taxes and carbon-emission trading schemes, may reduce this gap between sustainable and unsustainable energy technologies. Therefore, this paper seeks to analyze both of these carbon-pricing instruments in the Mexican energy sector to promote upgrading biogas investment and to substitute liquified petroleum gas consumption using an optimization approach. Furthermore, we propose a multi-objective optimization approach to encourage investment in the biogas supply chain supported by an effective use of carbon-pricing schemes. A case study of the central western region of Mexico was made to analyze the performance of the proposed methodologies. The results show that carbon-emission taxes and carbon-e... [more]
A Feasibility Study of Cellulosic Isobutanol Production—Process Simulation and Economic Analysis
Avraam Roussos, Nikiforos Misailidis, Alexandros Koulouris, Francesco Zimbardi, Demetri Petrides
December 3, 2019 (v1)
Keywords: isobutanol, Monte Carlo simulation, process simulation, Technoeconomic Analysis
Renewable liquid biofuels for transportation have recently attracted enormous global attention due to their potential to provide a sustainable alternative to fossil fuels. In recent years, the attention has shifted from first-generation bioethanol to the production of higher molecular weight alcohols, such as biobutanol, from cellulosic feedstocks. The economic feasibility of such processes depends on several parameters such as the cost of raw materials, the fermentation performance and the energy demand for the pretreatment of biomass and downstream processing. In this work, two conceptual process scenarios for isobutanol production, one with and one without integrated product removal from the fermentor by vacuum stripping, were developed and evaluated using SuperPro Designer®. In agreement with previous publications, it was concluded that the fermentation titer is a crucial parameter for the economic competitiveness of the process as it is closely related to the energy requirements f... [more]
Darcy−Forchheimer Radiative Flow of Micropoler CNT Nanofluid in Rotating Frame with Convective Heat Generation/Consumption
Ebraheem O. Alzahrani, Zahir Shah, Wajdi Alghamdi, Malik Zaka Ullah
December 3, 2019 (v1)
Keywords: Darcy–Forchheimer relation, electrochemical super-capacitors, HAM, heat source/sink, micro-polar nanofluid, numerical techniques, porous media, rotating system, SWCNTs and MWCNTs
Since 1991, from the beginning of the carbon nanotube era, this has been a focus point for investigation due to its synthetic and simple nature. Unique properties like good stiffness, high surface area, and resilience of carbon nanotubes (CNTs) have been investigated in many engineering applications such as hydrogen storage, composite material, energy storage, electrochemical super-capacitors, transistors, sensors, and field-emitting devices. Keeping in view these applications, we investigate single and multi-walled CNTs nanofluid flow having water as the base fluid between parallel and horizontal rotating plates with microstructure and inertial properties. The thermal radiation effect is considered for variable phenomenon of heat generation/consumption. The principal equations are first symmetrically transformed to a system of nonlinear coupled ordinary differential equations (ODEs), and then, Homotopy Analysis Technique (HAM) and numerical method are employed for solving these couple... [more]
Buongiorno’s Nanofluid Model over a Curved Exponentially Stretching Surface
Adel Alblawi, Muhammad Yousaf Malik, Sohail Nadeem, Nadeem Abbas
December 3, 2019 (v1)
Keywords: Buongiorno’s model, curved channel, exponential stretching, numerical technique, thermal slip effects
We considered the steady flow of Buongiorno’s model over a permeable exponentially stretching channel. The mathematical model was constructed with the assumptions on curved channels. After applying the boundary layer approximation on the Navier−Stocks equation, we produced nonlinear partial differential equations. These equations were converted into a system of non-dimensional ordinary differential equations through an appropriate similarity transformation. The dimensionless forms of the coupled ordinary differential equations were elucidated numerically through boundary value problem fourth order method. This method gains fast convergence as compared to other method such as the shooting method and the Numerical Solution of Differential Equations Mathematica method. The influence of the governing parameters which are involved in ordinary differential equations are highlighted through graphs while R e s 1 / 2 C f , R e s 1 / 2 N u s , and R e s − 1 /... [more]
Water-Gas Two-Phase Flow Behavior of Multi-Fractured Horizontal Wells in Shale Gas Reservoirs
Lei Li, Guanglong Sheng, Yuliang Su
December 3, 2019 (v1)
Keywords: flow behavior, fracturing horizontal wells, multi-porosity, shale gas reservoirs, water-gas two-phase flow
Hydraulic fracturing is a necessary method to develop shale gas reservoirs effectively and economically. However, the flow behavior in multi-porosity fractured reservoirs is difficult to characterize by conventional methods. In this paper, combined with apparent porosity/permeability model of organic matter, inorganic matter and induced fractures, considering the water film in unstimulated reservoir volume (USRV) region water and bulk water in effectively stimulated reservoir volume (ESRV) region, a multi-media water-gas two-phase flow model was established. The finite difference is used to solve the model and the water-gas two-phase flow behavior of multi-fractured horizontal wells is obtained. Mass transfer between different-scale media, the effects of pore pressure on reservoirs and fluid properties at different production stages were considered in this model. The influence of the dynamic reservoir physical parameters on flow behavior and gas production in multi-fractured horizontal... [more]
The Impact of Authorized Remanufacturing on Sustainable Remanufacturing
Xiqiang Xia, Cuixia Zhang
December 3, 2019 (v1)
Subject: Energy Policy
Keywords: authorized remanufacturing, game, remanufacturing, sustainability supply chain
Remanufacturing could effectively solve resource shortage and environment crisis and achieve sustainable development of the economy. The original equipment manufacturer (OEM) could not only focus on its core business (i.e., producing new products), but also get profit from remanufacturing through the intellectual property rights. Based on the authorized remanufacturing, the game model between a manufacturer and a remanufacturer was constructed. Based on the game model, the impact of authorized remanufacturing on sustainable remanufacturing is analysed, and the coordination mechanism between manufacturer and remanufacturer is given. The main results are as follows: the OEM could increase its profit and change its unfavourable market competition status by authorizing remanufacturing; a franchise contract could make the sustainability supply chain optimized; when the ratio of the environment effect is greater than a certain threshold, centralized decision-making could not only increase th... [more]
Comparison of Irregularity Indices of Several Dendrimers Structures
Dongming Zhao, Zahid Iqbal, Rida Irfan, Muhammad Anwar Chaudhry, Muhammad Ishaq, Muhammad Kamran Jamil, Asfand Fahad
December 3, 2019 (v1)
Subject: Materials
Keywords: dendrimers, irregularity indices, molecular graph
Irregularity indices are usually used for quantitative characterization of the topological structures of non-regular graphs. In numerous problems and applications, especially in the fields of chemistry and material engineering, it is useful to be aware of the irregularity of a molecular structure. Furthermore, the evaluation of the irregularity of graphs is valuable not only for quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies but also for various physical and chemical properties, including entropy, enthalpy of vaporization, melting and boiling points, resistance, and toxicity. In this paper, we will restrict our attention to the computation and comparison of the irregularity measures of different classes of dendrimers. The four irregularity indices which we are going to investigate are σ irregularity index, the irregularity index by Albertson, the variance of vertex degrees, and the total irregularity index.
Gaussian Process Methodology for Multi-Frequency Marine Controlled-Source Electromagnetic Profile Estimation in Isotropic Medium
Muhammad Naeim Mohd Aris, Hanita Daud, Sarat Chandra Dass, Khairul Arifin Mohd Noh
December 3, 2019 (v1)
Keywords: computer experiment, electromagnetic profile estimation, Gaussian process, multiple frequency marine controlled-source electromagnetic technique, uncertainty quantification
The marine controlled-source electromagnetic (CSEM) technique is an application of electromagnetic (EM) waves to image the electrical resistivity of the subsurface underneath the seabed. The modeling of marine CSEM is a crucial and time-consuming task due to the complexity of its mathematical equations. Hence, high computational cost is incurred to solve the linear systems, especially for high-dimensional models. Addressing these problems, we propose Gaussian process (GP) calibrated with computer experiment outputs to estimate multi-frequency marine CSEM profiles at various hydrocarbon depths. This methodology utilizes prior information to provide beneficial EM profiles with uncertainty quantification in terms of variance (95% confidence interval). In this paper, prior marine CSEM information was generated through Computer Simulation Technology (CST) software at various observed hydrocarbon depths (250−2750 m with an increment of 250 m each) and different transmission frequencies (0.12... [more]
Rice Husk Biochars Modified with Magnetized Iron Oxides and Nano Zero Valent Iron for Decolorization of Dyeing Wastewater
Bao-Son Trinh, Phung T. K. Le, David Werner, Nguyen H. Phuong, Tran Le Luu
December 3, 2019 (v1)
Subject: Materials
Keywords: biochar, full-scale gasification, nano zero-valent iron, pyrolysis, rice husk
This study investigated if biochar, a low-cost carbon-rich material, can be modified with reactive materials for decolorization of dyeing wastewater. Two types of rice husk biochars were produced by using different processes of gasification and pyrolysis in limited air condition. The biochars were first magnetized and then modified with nano-scale zero-valent iron (nZVI) to achieve the final products of magnetic-nZVI biochars. Batch experiments were conducted to investigate the efficiency of the modified biochars for reducing color of the reactive dyes yellow (RY145), red (RR195), and blue (RB19) from dyeing solutions. Results showed that color removal efficiency of the modified biochars was significantly enhanced, achieving the values of 100% for RY145 and RR195 and ≥65% for RB19, while the effectiveness of the original biochar was significantly lower. In addition, with increasing dose of the modified biochars, the color removal efficiency increased accordingly. In contrast, when the... [more]
Showing records 41109 to 41133 of 43292. [First] Page: 1 1642 1643 1644 1645 1646 1647 1648 1649 1650 Last
[Show List of Record Types]