Browse
Subjects
Records with Subject: Other
1145. LAPSE:2019.0215
A Novel Flux Focusing Magnetically Geared Machine with Reduced Eddy Current Loss
January 31, 2019 (v1)
Subject: Other
Keywords: back-electromotive force, eddy current loss, finite-element method, magnetic gear, serial-spoke structure, torque
This paper proposes a novel flux focusing magnetically geared (MG) machine for wind power generation, considering the permanent magnets (PMs) eddy current loss and the balance between the pull-out torque of MG machine and the back-electromotive force (EMF)of the PM brushless machine. The PM eddy current loss in the two rotors of the conventional surface-mounted MG machine is calculated and analyzed by using finite-element method. By adopting serial-spoke structure in the inner rotor, a novel rotor structure for a MG machine is proposed to reduce the PM eddy current loss. Moreover, in order to balance the pull-out torque and the back-EMF, several serial-spoke structures and the main design parameters are investigated. Then, a quantitative comparison between the proposed topology and the conventional surface-mounted MG machine is performed. The analysis results indicate that the PM eddy current loss of the proposed MG machine can be significantly reduced and its pull-out torque and back-... [more]
1146. LAPSE:2019.0212
A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC Estimation for LNMCO Battery
January 31, 2019 (v1)
Subject: Other
Keywords: electrochemical process analysis, lithium-ion batteries, SOC estimation, SOC-OCV modeling
A state-of-charge (SOC) versus open-circuit-voltage (OCV) model developed for batteries should preferably be simple, especially for real-time SOC estimation. It should also be capable of representing different types of lithium-ion batteries (LIBs), regardless of temperature change and battery degradation. It must therefore be generic, robust and adaptive, in addition to being accurate. These challenges have now been addressed by proposing a generalized SOC-OCV model for representing a few most widely used LIBs. The model is developed from analyzing electrochemical processes of the LIBs, before arriving at the sum of a logarithmic, a linear and an exponential function with six parameters. Values for these parameters are determined by a nonlinear estimation algorithm, which progressively shows that only four parameters need to be updated in real time. The remaining two parameters can be kept constant, regardless of temperature change and aging. Fitting errors demonstrated with different... [more]
1147. LAPSE:2019.0203
Analytical Modeling of Static Eccentricities in Axial Flux Permanent-Magnet Machines with Concentrated Windings
January 31, 2019 (v1)
Subject: Other
Keywords: analytical model, axial flux permanent magnet (AFPM) machines, back electromotive force (EMF), conformal mapping (CM), double rotor, Finite element (FE) model, static eccentricity (SE), torque
The aim of this paper is to calculate the static eccentricity (SE) of a double rotor axial flux permanent magnet (AFPM) machine by using a general analytical model. The flux density in the air gap under healthy conditions is calculated firstly, where the axial and circumferential magnetic flux densities are obtained using a coupled solution of Maxwell’s equations and Schwarz-Christoffel (SC) mapping. The magnetic flux densities under SE conditions are calculated afterwards using a novel bilinear mapping. Some important electromagnetic parameters, e.g., back electromotive force (EMF), cogging torque and electromagnetic (EM) torque, are calculated for both SE and healthy conditions, and compared with the finite element (FE) model. As for the double rotor AFPM, SE does not contribute much effect on the back EMF and EM torque, while the cogging torque is increased. At each calculated section, FE models were built to validate the analytical model. The results show that the analytical predic... [more]
1148. LAPSE:2019.0194
Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection
January 31, 2019 (v1)
Subject: Other
Keywords: bifurcation, contact, coupled dynamic characteristic, D’Alembert principle, initial permanent deflection, rod fastening rotor
A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous p... [more]
1149. LAPSE:2019.0192
Condensation Risk Due to Variations in Airtightness and Thermal Insulation of an Office Building in Warm and Wet Climate
January 31, 2019 (v1)
Subject: Other
Keywords: airtightness, condensation risk (CR), microbial growth, office building, thermal insulation, warm and wet climate
Condensation in a building encourages microbial growth, which can have an adverse effect on the health of occupants. Furthermore, it induces the deterioration of the building. To prevent problems caused by condensation, from the design step of a building, predictions of the spatial, temporal and causation for condensation occurrences are necessary. By using TRNSYS simulation coupled with TRNFLOW, condensation assessment of an entire office building in Tokyo, Japan, was conducted throughout the year, including when the air-conditioning system was not operated, by considering the absorption-desorption properties of the building materials and papers in the office and the airflow within the entire building. It was found that most of the condensation occurred during winter and was observed mainly in the non-air-conditioned core parts, especially the topmost floor. Additional analyses, which identified the effect of variations in the thermal insulation of the external walls, roof and windows... [more]
1150. LAPSE:2019.0179
Influence of Icing on the Modal Behavior of Wind Turbine Blades
January 31, 2019 (v1)
Subject: Other
Keywords: damping, icing, natural frequency, wind turbine blade
Wind turbines installed in cold climate sites accumulate ice on their structures. Icing of the rotor blades reduces turbine power output and increases loads, vibrations, noise, and safety risks due to the potential ice throw. Ice accumulation increases the mass distribution of the blade, while changes in the aerofoil shapes affect its aerodynamic behavior. Thus, the structural and aerodynamic changes due to icing affect the modal behavior of wind turbine blades. In this study, aeroelastic equations of the wind turbine blade vibrations are derived to analyze modal behavior of the Tjaereborg 2 MW wind turbine blade with ice. Structural vibrations of the blade are coupled with a Beddoes-Leishman unsteady attached flow aerodynamics model and the resulting aeroelastic equations are analyzed using the finite element method (FEM). A linearly increasing ice mass distribution is considered from the blade root to half-length and thereafter constant ice mass distribution to the blade tip, as defi... [more]
1151. LAPSE:2019.0163
Research on Operation Principle and Control of Novel Hybrid Excitation Bearingless Permanent Magnet Generator
January 31, 2019 (v1)
Subject: Other
Keywords: bearingless motor, compensation control, hybrid excitation, mathematical model, permanent magnet generator
Under the condition of load changing, the magnetic field of traditional permanent magnet generators (PMG) is hard to be adjusted, and the mechanical bearings are significantly worn. To overcome the drawbacks above, a novel hybrid excitation bearingless permanent magnet generator (HEBPMG) is proposed in this paper, which has integrated the merits of hybrid excitation permanent magnet generators and magnetic bearings. Firstly, the structure and winding configuration of the HEBPMG are introduced, and then the principles of radial suspension and power generation are presented. The suspension principle as well as power generation principle is analyzed in this paper. Then, the flux linkage and induced voltage equations are derived, and the accurate mathematical model of radial suspension force is built based on the Maxwell tensor method. Subsequently, by means of the finite element analysis software-ANSYS Maxwell, the corresponding electromagnetic characteristics are analyzed to verify the c... [more]
1152. LAPSE:2019.0160
Modularized Three-Phase Semiconductor Transformer with Bidirectional Power Flow for Medium Voltage Application
January 31, 2019 (v1)
Subject: Other
Keywords: controller area network (CAN) communication, digital signal processor (DSP) board, high-frequency resonant AC–DC converter, hybrid-switching DC–AC converter, hybrid-switching DC–DC converter, LabView, modularized semiconductor transformer
This paper describes a prototype of modularized three-phase semiconductor transformer that was developed in the lab for feasibility study. The developed prototype is composed of three units of single-phase semiconductor transformer coupled in Y-connection. Each single-phase unit has multiple units of high-voltage high-frequency resonant AC⁻DC converter, a low-voltage hybrid-switching DC⁻DC converter, and a low-voltage hybrid-switching DC⁻AC inverter. Also, each single-phase unit has two digital signal processor (DSP) boards to control converter operation and to acquire monitoring data. The monitoring system was developed based on LabView by using controller area network (CAN) communication between the DSP board and the personal computer (PC). Through diverse experimental analyses it was verified that the prototype operates with proper performance under normal and sag conditions. The developed prototype confirms the possibility of fabricating a commercial high-voltage high-power semicon... [more]
1153. LAPSE:2019.0102
Investigation of Fracturing Network Propagation in Random Naturally Fractured and Laminated Block Experiments
January 7, 2019 (v1)
Subject: Other
Keywords: fracture network propagation, hydraulic fracturing, laboratory test, random natural fractures, silty laminae
Researchers have recently realized thatsilty laminas are very developed in naturally fractured continentalsedimentary formations in the Ordos Basin(China). Studies have shown that silty laminas are significant to improve the physical properties and gas storage capacity, and the natural fractures interact with the hydraulic fractures to maximize the fracture network during hydraulic fracturing. However, the influence of silty laminas withrandom fractures on the created hydraulic fracture networkis not well understood. Laboratory experiments are proposed to investigate the evolution of fracture networks in naturally fractured formations with model blocks that contain laminas and random fractures. The influence of dominating factors was studied and analyzed, with an emphasis on stress ratio, injection rate, and laminae strength. Macroscopic failure morphology descriptions combined with meso 3-D laser scanning techniques are both used to reveal the evolution of fracture networks. It is sug... [more]
1154. LAPSE:2019.0092
Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine
January 7, 2019 (v1)
Subject: Other
Keywords: analytical solution, axial flux, electromagnetic performance, magnetic field, magnetic-field-modulated brushless double-rotor machine (MFM-BDRM)
The axial magnetic-field-modulated brushless double-rotor machine (MFM-BDRM) is a novel possible alternative power-split device for hybrid electric vehicles (HEVs). This paper proposes a two-dimensional (2-D) analytical method to predict the performance of the axial MFM-BDRM to reduce computing time. The computation is based on the solution of Laplace’s or Poisson’s equation with boundary conditions for each elementary rectangular region. By taking account of the existence of modulating ring and the stator slotting effect, the proposed model is able to calculate magnetic-field distribution with high accuracy. In order to assess the proposed method, the 2-D analytical and three-dimensional (3-D) finite element analysis (FEA) results have been compared, and good agreements have been achieved. As the analytical computation is much faster and more flexible, the proposed method can be used in the preliminary design process of the axial MFM-BDRM.
1155. LAPSE:2019.0087
Analytical Calculation of D- and Q-axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory
January 7, 2019 (v1)
Subject: Other
Keywords: armature reaction magnetic field, d- and q-axis inductances, interior permanent magnet motor, lumped parameter magnetic circuit model, nonlinearity, saturation, winding function theory
Interior permanent magnet (IPM) motors are widely used in electric vehicles (EVs), benefiting from the excellent advantages of a more rational use of energy. For further improvement of energy utilization, this paper presents an analytical method of d- and q-axis inductance calculation for IPM motors with V-shaped rotor in no-load condition. A lumped parameter magnetic circuit model (LPMCM) is adopted to investigate the saturation and nonlinearity of the bridge. Taking into account the influence of magnetic field distribution on inductance, the winding function theory (WFT) is employed to accurately calculate the armature reaction airgap magnetic field and d- and q-axis inductances. The validity of the analytical technique is verified by the finite element method (FEM).
1156. LAPSE:2019.0080
Analysis and Performance Improvement of WPT Systems in the Environment of Single Non-Ferromagnetic Metal Plates
January 7, 2019 (v1)
Subject: Other
Keywords: ferrite cores, impedance model, metal, resonator, wireless power transfer
Wireless power transfer (WPT) is greatly affected when the transmission channel is surrounded by non-ferromagnetic metallic objects and the alternating magnetic field interacts with the metal conductor, which is more of an issue in wirelessly charged electric vehicle (EV) applications. This paper analyses the performances of a WPT system in an environment with a non-ferromagnetic metal plate. The impedance model of the WPT system in the metal environment is established. Moreover the variation law of a coil’s equivalent inductance and resistance is deduced when the coil is surrounded by the non-ferromagnetic metal plate. Meanwhile, simulations, theory and experiments all confirm that the model is correct. Finally, since the system performance of a wireless charging system is influenced by non-ferromagnetic metals, this paper puts forward a method to improve the performance, that is, to place ferrite cores between the receiving coil and a metal plate. Experiments are carried out to verif... [more]
1157. LAPSE:2019.0065
A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation
January 7, 2019 (v1)
Subject: Other
Keywords: failure mechanism, fracture propagation, hydraulic fracturing, interbeds
To investigate how the characteristics of interbeds affect hydraulic fracture propagation in the continental shale formation, a series of 300 mm × 300 mm × 300 mm concrete blocks with varying interbeds, based on outcrop observation and core measurement of Chang 7-2 shale formation, were prepared to conduct the hydraulic fracturing experiments. The results reveal that the breakdown pressure increases with the rise of thickness and strength of interbeds under the same in-situ field stress and injection rate. In addition, for the model blocks with thick and high strength interbeds, the hydraulic fracture has difficulty crossing the interbeds and is prone to divert along the bedding faces, and the fracturing effectiveness is not good. However, for the model blocks with thin and low strength interbeds, more long branches are generated along the main fracture, which is beneficial to the formation of the fracture network. What is more, combining the macroscopic descriptions with microscopic o... [more]
1158. LAPSE:2019.0058
Artist Photovoltaic Modules
January 7, 2019 (v1)
Subject: Other
Keywords: building-integrated photovoltaic (BIPV), full-color, laser process, photovoltaic (PV) module
In this paper, a full-color photovoltaic (PV) module, called the artist PV module, is developed by laser processes. A full-color image source is printed on the back of a protective glass using an inkjet printer, and a brightened grayscale mask is used to precisely define regions on the module where colors need to be revealed. Artist PV modules with 1.1 × 1.4 m² area have high a retaining power output of 139 W and an aesthetic appearance making them more competitive than other building-integrated photovoltaic (BIPV) products. Furthermore, the installation of artist PV modules as curtain walls without metal frames is also demonstrated. This type of installation offers an aesthetic advantage by introducing supporting fittings, originating from the field of glass technology. Hence, this paper is expected to elevate BIPV modules to an art form and generate research interests in developing more functional PV modules.
1159. LAPSE:2019.0023
Implementation of Rapid Prototyping Tools for Power Loss and Cost Minimization of DC-DC Converters
January 7, 2019 (v1)
Subject: Other
Keywords: DC-DC converters, design methodology, design optimization, rapid prototyping, user centered design, user interface
In this paper, power loss and cost models of power electronic converters based on converter ratings and datasheet information are presented. These models aid in creating rapid prototypes which facilitate the component selection process. Through rapid prototyping, users can estimate power loss and cost which are essential in design decisions. The proposed approach treats main power electronic components of a converter as building blocks that can be arranged to obtain multiple topologies to facilitate rapid prototyping. In order to get system-level power loss and cost models, two processes are implemented. The first process automatically provides minimum power loss or cost estimates and identifies components for specific applications and ratings; the second process estimates power losses and costs of each component of interest as well as the whole system. Two examples are used to illustrate the proposed approaches—boost and buck converters in continuous conduction mode. Achieved cost and... [more]
1160. LAPSE:2019.0022
Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array
January 7, 2019 (v1)
Subject: Other
Keywords: acoustic emission, coal bed methane, coal permeability, hydraulic fracturing, tree-type borehole array
High-pressure hydraulic fracturing technology in coal and coal bed methane mines can lead to roof and floor damage, and fracture initiation disorder that leads to a “blank area”, and other issues. A new method of hydraulic fracturing is proposed to increase the homogeneous permeability of coal in underground coalmines. Numerical and other simulation tests for different forms of a tree-type, branched borehole model are presented. The results show that the branched array causes cracks to initiate from the bottom of the array, and these extend along the direction of the adjacent boreholes. Generally, as the number of branched boreholes increases, the coal seam fracture network also increase, improving the distribution of the fracture network, making the fracturing effect better. The branched boreholes appear to reduce initiation pressure and, with increasing branches, the initiation pressure decreases. A model with four tree-type, branched boreholes leads to a reduction in initiation pres... [more]
1161. LAPSE:2019.0003
An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications
January 7, 2019 (v1)
Subject: Other
Keywords: AC/DC converter, DC/DC converter, electric vehicle, integrated bidirectional charger
This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs). The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.
1162. LAPSE:2018.1183
A Study on a Linear Magnetic-Geared Interior Permanent Magnet Generator for Direct-Drive Wave Energy Conversion
December 3, 2018 (v1)
Subject: Other
Keywords: finite element analysis, linear permanent magnet generator, magnetic gear, wave energy conversion
The conventional linear permanent magnet generator (CLPMG) for direct-drive wave energy conversion (WEC) has experienced many drawbacks that are difficult to overcome such as low power density and bulky system volume. To improve power density, this paper proposes a linear magnetic-geared interior permanent magnet generator (LMGIPMG) with tubular topology, which artfully incorporates a linear magnetic gear into a linear permanent magnet generator. The operating principle of the LMGIPMG is introduced, and a detailed analysis of air gap flux density, thrust force characteristics, and no-load and load performances are presented and discussed by using finite element method. The CLPMG, which produces the same power as the LMGIPMG, has about four times the volume of the latter. A prototype CLPMG is manufactured to verify simulation results against experimental tests. The design method and the operation conditions of LMGIPMG and CLPMG are both consistent; thus, the performance of LMGIPMG meets... [more]
1163. LAPSE:2018.1174
Slide Valves for Single-Screw Expanders Working Under Varied Operating Conditions
December 3, 2018 (v1)
Subject: Other
Keywords: organic Rankine cycle (ORC), part-load, single-screw expander, slide valve
This paper fully describes the working principle of slide valves in single-screw expanders (SSEs). A geometric analysis of suction and volume ratio slide valves is presented to determine the relations between volume ratio, suction closure volume, discharge opening volume and slide valves displacement. An organic Rankine cycle (ORC) thermodynamic model with SSE integrated with slide valves is developed to analyze the power output of SSE and the net power output of ORC system and variation law of slide valves displacement. Analysis of a typical ORC system under changing operating conditions shows that the power output of the expander and the net output power of the ORC system with slide valves are much better than those without slide valves. When the condensing temperature is 40 °C and the waste availability is 80 kW, the increase in output power and net output power are approximately 3.4 kW and 5 kW, respectively. The presented geometric analysis of slide valves and the thermodynamic mo... [more]
1164. LAPSE:2018.1170
A Novel Design of Radio Frequency Energy Relays on Power Transmission Lines
November 28, 2018 (v1)
Subject: Other
Keywords: high-voltage power transmission line, radio frequency identification (RFID) technology, wireless energy transmission
In this paper, we investigate the energy problem of monitoring sensors on high-voltage power transmission lines and propose a wireless charging scheme for a Radio Frequency IDentification (RFID) sensor tag to solve a commercial efficiency problem: the maintenance-caused power outage. Considering the environmental influences on power transmission lines, a self-powered wireless energy relay is designed to meet the energy requirement of the passive RFID sensor tag. The relay can obtain the electric field energy from the transmission lines and wirelessly power the RFID sensor tags around for longer operating distance. A prototype of the energy relay is built and tested on a 110 kv line. The measurement results show that the energy relay can provide stable energy even with the influences of wind, noise and power outage. To our knowledge, it is the first work to power the RFID sensor tags on power transmission lines.
1165. LAPSE:2018.1161
Streamer Propagation and Breakdown in a Very Small Point-Insulating Plate Gap in Mineral Oil and Ester Liquids at Positive Lightning Impulse Voltage
November 28, 2018 (v1)
Subject: Other
Keywords: breakdown, lightning impulse, mineral oil, natural ester, streamer propagation, synthetic ester
This article presents the results of comparative studies on streamer propagation and breakdown in a point-insulating plate electrode system in mineral oil and two ester liquids. The studies were performed for a 10-mm gap and a positive standard lightning impulse. The work was focused on the comparison of light waveforms registered using the photomultiplier technique. The results indicated that both esters demonstrate a lower resistance against the appearance of fast energetic streamers than mineral oil. The reason for such a conclusion is that the number of lightning impulses supplied to the electrode system for which the above-mentioned fast streamers appeared at a given voltage level was always higher in the case of ester liquids than mineral oil. In terms of breakdown, the esters tested were assessed as more susceptible to the appearance of breakdown in the investigated electrode system. The number of breakdowns recorded in the case of esters was always greater than the correspondin... [more]
1166. LAPSE:2018.1155
A Novel Protection Method for Single Line-to-Ground Faults in Ungrounded Low-Inertia Microgrids
November 28, 2018 (v1)
Subject: Other
Keywords: distributed energy resources, microgrid protection, single line-to-ground (SLG) fault, ungrounded low-inertia microgrid
This paper proposes a novel protection method for single line-to-ground (SLG) faults in ungrounded low-inertia microgrids. The proposed method includes microgrid interface protection and unit protection. The microgrid interface protection is based on the difference between the zero-sequence voltage angle and the zero-sequence current angle at the microgrid interconnection transformer for fast selection of the faulty feeder. The microgrid unit protection is based on a comparison of the three zero-sequence current phase directions at each junction point of load or distributed energy resources. Methods are also included to locate the minimum fault section. The fault section location technology operates according to the coordination of microgrid unit protection. The proposed method responds to SLG faults that may occur in both the grid and the microgrid. Simulations of an ungrounded low-inertia microgrid with a relay model were carried out using Power System Computer Aided Design (PSCAD)/E... [more]
1167. LAPSE:2018.1154
Combining Unsteady Blade Pressure Measurements and a Free-Wake Vortex Model to Investigate the Cycle-to-Cycle Variations in Wind Turbine Aerodynamic Blade Loads in Yaw
November 28, 2018 (v1)
Subject: Other
Keywords: dynamic stall, free-wake vortex model, NREL Phase VI rotor, unsteady angle of attack, wind turbine aerodynamics, yawed rotor
Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different bl... [more]
1168. LAPSE:2018.1098
Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines
November 28, 2018 (v1)
Subject: Other
Keywords: alternative fuel, blending, emission, macadamia oil, properties
This paper investigated the prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engine. The biodiesel was produced using conventional transesterification process using the base catalyst (KOH). A multi-cylinder diesel engine was used to evaluate the performance and emission of 5% (B5) and 20% (B20) macadamia biodiesel fuel at different engine speeds and full load condition. It was found that the characteristics of biodiesel are within the limit of specified standards American Society for Testing and Materials (ASTM D6751) and comparable to diesel fuel. This study also found that the blending of macadamia biodiesel⁻diesel fuel significantly improves the fuel properties including viscosity, density (D), heating value and oxidation stability (OS). Engine performance results indicated that macadamia biodiesel fuel sample reduces brake power (BP) and increases brake-specific fuel consumption (BSFC) while emission results indicated that it reduces the averag... [more]
1169. LAPSE:2018.1097
Application of a Diffuser Structure to Vertical-Axis Wind Turbines
November 28, 2018 (v1)
Subject: Other
Keywords: vertical-axis wind turbine, wind acceleration device, wind lens, wind tunnel experiment
The effects of using a wind acceleration device (wind lens) with vertical-axis wind turbines in wind tunnel experiments were examined. A wind lens consists of a diffuser and flanges, and this study investigated the optimum parameters of their configuration with regard to the power augmentation of the turbines. The wind lens with a flat-panel-type diffuser demonstrated power augmentation by a factor of 2.0 compared with an open wind turbine. An increase from 5° to 20° in the semi-open angle of the diffuser made it possible to generate a 30% high power output over a wide range of tip speed ratios. On that basis, an optimum semi-open angle was determined. For the flat-panel-type diffuser, a recommended diffuser length is the half of the throat width, and its semi-open angle is 20°.The inlet enhanced power augmentation over a wide range of tip speed ratios. The optimum location for the wind lens in the streamwise direction was aligned with the center of the vertical-axis wind turbines. The... [more]

