Browse
Subjects
Records with Subject: Materials
Showing records 3875 to 3899 of 4208. [First] Page: 1 152 153 154 155 156 157 158 159 160 Last
Simultaneous Adsorption of 4,6-Dimethyldibenzothiophene and Quinoline over Nickel and Boron Modified Gamma-Al2O3 Adsorbent
Esteban Camu, Barbara Pasten, Camila Matus, Fernanda Ramirez, Juan Ojeda, Gonzalo Aguila, Patricio Baeza
June 10, 2020 (v1)
Subject: Materials
Keywords: 4,6-dimethyldibenzothiophene, Adsorption, alumina, boron, nickel, quinoline
The simultaneous adsorption of quinoline and 4,6-dimethyldibenzothiophene over adsorbents, based on alumina modified with boron and nickel under ambient temperature and pressure, was studied. The adsorbents were characterized by BET specific surface area, a potentiometric method for the determination of acid strength, electrophoretic migration, and X-ray diffraction. The results showed that the adsorbent containing nickel had better adsorption capacity than the adsorbent modified with nickel and boron, which was attributed to its greater acidity and ability to generate π-complexation between the adsorbent and the molecules. In terms of selectivity, quinoline was more adsorbed than 4,6-dimethyldibenzothiophene in all systems, due to the basic nature of quinoline. The experimental data in all cases were adjusted by three kinetic models (Yoon−Nelson, Yan and Thomas), and the regression coefficients in all models were close to one. Finally, the values of the kinetic constant obtained by th... [more]
Preparation and Characterization of Environmentally Friendly Controlled Release Fertilizers Coated by Leftovers-Based Polymer
Cong Jia, Panfang Lu, Min Zhang
June 10, 2020 (v1)
Subject: Materials
Keywords: bio-based polyurethane, controlled release fertilizers, environment-friendly, leftovers
In this work, a novel bio-based polyurethane (PU) was synthesized by using a leftovers (SF)-based polyol and isocyanate for controlled release fertilizers (CRFs). Its chemical structure, surface elemental compositions and distribution were examined by Fourier transform infrared (FTIR), energy dispersive spectroscopy (EDX) and a multifunctional imaging electron spectrometer (XPS). The microstructure morphology of CRFs were examined by SEM. The nutrient release behaviors of CRFs were observed in water. The results demonstrated that SF-based PU-coated urea (FPU) had a denser structure and better nutrient releasing ability. Findings from this work indicated that the use of SF as a coating material of environment-friendly CRFs had great potential, and would hopefully be used for horticultural and agricultural applications.
Investigation of Heating and Freezing Pretreatments on Mechanical, Chemical and Spectral Properties of Bulk Sunflower Seeds and Oil
Gürkan Alp Kağan Gürdil, Abraham Kabutey, Kemal Çağatay Selvi, Petr Hrabě, David Herák, Adéla Fraňková
June 10, 2020 (v1)
Subject: Materials
Keywords: energy demand, linear compression, oil expression efficiency, oil quality, oil-bearing crop
The present study examined the effects of heating and freezing pretreatments on the mechanical, chemical, and spectral characteristics of sunflower seeds and oil under a linear compression process involving a universal compression-testing machine and a pressing vessel of diameter 60 mm with a plunger. The heating temperatures ranged from 40 to 80 °C and freezing temperatures from −2 to −36 °C at constant heating time of 30 min. The pretreated samples of initial height of 80 mm (22.6 × 10−5 m3) were compressed under a preset load of 100 kN and a speed of 5 mm/min. The results showed that oil expression efficiency significantly increased (p < 0.05) with increased heating temperatures but decreased with freezing temperatures. The lowest energy per volume oil of 22.55 ± 0.919 kJ/L was recorded at 80 °C compared to 26.40 ± 0.307 kJ/L noticed at −2 °C and control (25 °C) of 33.93 ± 3.866 kJ/L. The linear regression equations expressing oil expression efficiency, energy per volume oil, per... [more]
NMR Determination of Free Fatty Acids in Vegetable Oils
Maria Enrica Di Pietro, Alberto Mannu, Andrea Mele
June 10, 2020 (v1)
Subject: Materials
Keywords: acid value, free fatty acids, NMR quantification, nuclear magnetic resonance, waste cooking oils, waste oil characterization
The identification and quantification of free fatty acids (FFA) in edible and non-edible vegetable oils, including waste cooking oils, is a crucial index to assess their quality and drives their use in different application fields. NMR spectroscopy represents an alternative tool to conventional methods for the determination of FFA content, providing us with interesting advantages. Here the approaches reported in the literature based on 1H, 13C and 31P NMR are illustrated and compared, highlighting the pros and cons of the suggested strategies.
Evaluation of Calcium Oxide Nanoparticles from Industrial Waste on the Performance of Hardened Cement Pastes: Physicochemical Study
Youssef Abdelatif, Abdel-Aal M. Gaber, Abd El-Aziz S. Fouda, Tarek Alsoukarry
June 10, 2020 (v1)
Subject: Materials
Keywords: blended cement paste, bulk density, calcination, calcium oxide nanoparticles, compressive strength, mix design
Large amounts of carbonated mud waste (CMW) require disposal during sugar manufacturing after the carbonation process. The lightweight of CMW enables its utilization as a partial replacement for the cement to reduce costs and CO2 emissions. Here, various levels of CMW, namely, 0, 5, 10, 15, 20, and 25 wt.% were applied to produce composite cement samples with ordinary Portland cement (OPC) as a regular mix design series. Pure calcium oxide (CaO) nanoparticles were obtained after the calcination of CMW. The techniques of X-ray fluorescence spectrometers (XRF), Transmission electron microscope (TEM), Selected area diffraction (SAED), Scanning electron microscope (SEM), energy dixpersive X-ray (EDX), and dynamic light scattering (DLS) were used to characterize the obtained CaO nanoparticles. According to the compressive strength and bulk density results, 15 wt.% CMW was optimal for the mix design. The specific surface area increased from 27.8 to 134.8 m2/g when the CMW was calcined to 600... [more]
A Simple Approach for Determining the Maximum Sorption Capacity of Chlorpropham from Aqueous Solution onto Granular Activated Charcoal
Bandar R. M. Alsehli
June 10, 2020 (v1)
Subject: Materials
Keywords: chlorpropham, isotherm models, UV/VIS
UV-Vis spectrophotometer was used to determine chlorpropham (CIPC) concentration in aqueous solution. The method was validated in term of linearity, precision and limit of detection and limit of quantitation. The correlation coefficient of standards calibration curve of (1.0−10.0 µg/mL CIPC) was R2 = 1 with a precision (RSD%, n=10) ranged from (0.87−0.53%). The limit of detection (LOD) and limit of quantitation (LOQ) based on the regression statistics of the calibration curve data of (1.0−10.0 µg/mL CIPC) were 0.04 µg/mL and 0.11 µg/mL respectively. The activated carbon adsorbent was found to be effective for the removal approximately 80% of CIPC from aqueous solution. Several isotherm models (Langmuir, Freundlich, Tempkin and Dubinin−Radushkevich) were evaluated. The maximum monolayer sorption capacity (Qm) from the Langmuir isotherm model was determined to be (44316.92 µg/g). The separation factor (RL) is 0.11 which indicates a favorable equilibrium sorption with the R2 value of 0.99... [more]
Methane Adsorption Interpreting with Adsorption Potential and Its Controlling Factors in Various Rank Coals
Feng Qiu, Dameng Liu, Yidong Cai, Ning Liu, Yongkai Qiu
June 3, 2020 (v1)
Subject: Materials
Keywords: adsorption potential, coalbed methane, controlling factors, Langmuir adsorption curve, pore structure
Water content, metamorphism (coal rank) particle size, and especially pore structure, strongly influence the adsorption capacity of coal to methane. To understand the mechanism of methane adsorption in different rank coals, and its controlling factors, isothermal adsorption experiments with different coal ranks, moisture contents and particle sizes at the temperature of 303.15 K were conducted. In addition, the pore structures of coals were investigated through N2 adsorption/desorption experiments at the low-temperature of 77 K for selected coals from the Junggar Basin of NW China, Qinshui Basin and Ordos Basin of north China. Moreover, the adsorption potential of methane on the surface of the coal matrix was calculated, the controlling factors of which were discussed. The obtained methane isothermal adsorption result shows that the Langmuir volume (VL) of coal is independent of the particle size, and decreases with the increase of moisture content, which decreases first and then incre... [more]
Low-Molecular-Weight Phenols Recovery by Eco-Friendly Extraction from Quercus Spp. Wastes: An Analytical and Biomass-Sustainability Evaluation
Federica Ianni, Enrico Segoloni, Francesca Blasi, Francesco Di Maria
June 3, 2020 (v1)
Subject: Materials
Keywords: circular economy, lignin, mild extraction/hydrolysis protocols, phenolic compounds recovery, wood waste
In this work, chemical−physical protocols aimed at the implementation of eco-friendly and biomass-sustainable recovery processes of useful compounds from forestry and/or wood industry wastes were evaluated. Four species of interest in industrial and environmental fields (Quercus cerris, Quercus ilex, and Robinia pseudoacacia from Central Italy, Quercus petraea from France) were submitted to neutral extraction and analyzed by gaschromatography, with mass spectrometry identification of low-molecular-weight phenols. Moreover, Quercus petraea heartwood samples were submitted to three extraction/hydrolysis protocols in an alkaline environment, and the byproducts from the lignin degradation were identified and evaluated. The recovery of bioactive phenols from forestry wastes by applying eco-friendly extractive protocols may reveal a precious strategy for rethinking the management of such wastes, in line with the fundamentals of “circular economy”.
Adsorption and Separation of the H2O/H2SO4 and H2O/C2H5OH Mixtures: A Simulated and Experimental Study
Jesse Y. Rumbo Morales, Alan F. Perez Vidal, Gerardo Ortiz Torres, Alexis U. Salas Villalobo, Felipe de J. Sorcia Vázquez, Jorge A. Brizuela Mendoza, Miguel De-la-Torre, Jorge S. Valdez Martínez
May 22, 2020 (v1)
Subject: Materials
Keywords: heat and chemical treatment, natural and synthetic zeolites, pressure swing adsorption process
Adsorption processes are characterized by their kinetics and equilibrium isotherms described by mathematical models. Nowadays, adsorption with molecular sieves is a method used to separate certain elements or molecules from a mixture and produce hydrogen, nitrogen, oxygen, ethanol, or water treatment. This study had two main objectives. The first one was focused on the use of different natural (Clinoptilolite-S.L. Potosi, Clinoptilolite-Puebla, and Heulandite-Sonora) and synthetic (Zeolite Type 3A) adsorbents to separate the mixtures H 2 O / H 2 S O 4 and H 2 O / C 2 H 5 O H . It was determined that both Zeolite Type-3A and Heulandite-Sonora have greater adsorption capacity in a shorter time compared with the Clinoptilolites at different temperatures. The second objective was the simulation of a pressure swing adsorption process to dehydrate ethanol using the parameters obtained from Zeolite Type 3A (with maximum adsorption capacity). Several configurations w... [more]
Metal−Organic Framework Thin Films: Fabrication, Modification, and Patterning
Yujing Zhang, Chih-Hung Chang
May 22, 2020 (v1)
Subject: Materials
Keywords: fabrication, metal–organic framework, patterning, thin film
Metal−organic frameworks (MOFs) have been of great interest for their outstanding properties, such as large surface area, low density, tunable pore size and functionality, excellent structural flexibility, and good chemical stability. A significant advancement in the preparation of MOF thin films according to the needs of a variety of applications has been achieved in the past decades. Yet there is still high demand in advancing the understanding of the processes to realize more scalable, controllable, and greener synthesis. This review provides a summary of the current progress on the manufacturing of MOF thin films, including the various thin-film deposition processes, the approaches to modify the MOF structure and pore functionality, and the means to prepare patterned MOF thin films. The suitability of different synthesis techniques under various processing environments is analyzed. Finally, we discuss opportunities for future development in the manufacturing of MOF thin films.
Eucalyptus Kraft Lignin as an Additive Strongly Enhances the Mechanical Resistance of Tree-Leaf Pellets
Leonardo Clavijo, Slobodan Zlatanovic, Gerd Braun, Michael Bongards, Andrés Dieste, Stéphan Barbe
May 22, 2020 (v1)
Subject: Materials
Keywords: additive, biofuel, circular economy, eucalyptus kraft lignin, pellet, tree leaf
Pelleted biomass has a low, uniform moisture content and can be handled and stored cheaply and safely. Pellets can be made of industrial waste, food waste, agricultural residues, energy crops, and virgin lumber. Despite their many desirable attributes, they cannot compete with fossil fuel sources because the process of densifying the biomass and the price of the raw materials make pellet production costly. Leaves collected from street sweeping are generally discarded in landfills, but they can potentially be valorized as a biofuel if they are pelleted. However, the lignin content in leaves is not high enough to ensure the physical stability of the pellets, so they break easily during storage and transportation. In this study, the use of eucalyptus kraft lignin as an additive in tree-leaf pellet production was studied. Results showed that when 2% lignin is added the abrasion resistance can be increased to an acceptable value. Pellets with added lignin fulfilled all requirements of Europ... [more]
Preparation of Nano-Porous Carbon-Silica Composites and Its Adsorption Capacity to Volatile Organic Compounds
Lipei Fu, Jiahui Zhu, Weiqiu Huang, Jie Fang, Xianhang Sun, Xinya Wang, Kaili Liao
May 22, 2020 (v1)
Subject: Materials
Keywords: Adsorption, carbon-silica composites, dynamic adsorption, regenerating property, volatile organic compounds (VOCs)
Carbon-silica composites with nanoporous structures were synthesized for the adsorption of volatile organic compounds (VOCs), taking tetraethyl orthosilicate (TEOS) as the silicon source and activated carbon powder as the carbon source. The preparation conditions were as follows: the pH of the reaction system was 5.5, the hydrophobic modification time was 50 h, and the dosage of activated carbon was 2 wt%. Infrared spectrum analysis showed that the activated carbon was dispersed in the pores of aerogel to form the carbon-silica composites material. The static adsorption experiments, dynamic adsorption-desorption experiments, and regeneration experiments show that the prepared carbon-silica composites have microporous and mesoporous structures, the adsorption capacity for n-hexane is better than that of conventional hydrophobic silica gel, and the desorption performance is better than that of activated carbon. It still has a high retention rate of adsorption capacity after multiple adso... [more]
Available Technologies and Materials for Waste Cooking Oil Recycling
Alberto Mannu, Sebastiano Garroni, Jesus Ibanez Porras, Andrea Mele
May 22, 2020 (v1)
Subject: Materials
Keywords: biodiesel, biolubricant, recycling, vegetable oil degumming, vegetable oil filtration, waste cooking oil
Recently, the interest in converting waste cooking oils (WCOs) to raw materials has grown exponentially. The driving force of such a trend is mainly represented by the increasing number of WCO applications, combined with the definition, in many countries, of new regulations on waste management. From an industrial perspective, the simple chemical composition of WCOs make them suitable as valuable chemical building blocks, in fuel, materials, and lubricant productions. The sustainability of such applications is sprightly related to proper recycling procedures. In this context, the development of new recycling processes, as well as the optimization of the existing ones, represents a priority for applied chemistry, chemical engineering, and material science. With the aim of providing useful updates to the scientific community involved in vegetable oil processing, the current available technologies for WCO recycling are herein reported, described, and discussed. In detail, two main types of... [more]
Evaluation of Polymeric Materials for Chemical Enhanced Oil Recovery
Alison J. Scott, Laura Romero-Zerón, Alexander Penlidis
May 22, 2020 (v1)
Subject: Materials
Keywords: enhanced oil recovery (EOR), partially hydrolyzed polyacrylamide (HPAM), polyacrylamide, polymer flooding, xanthan gum
Polymer flooding is a promising enhanced oil recovery (EOR) technique; sweeping a reservoir with a dilute polymer solution can significantly improve the overall oil recovery. In this overview, polymeric materials for enhanced oil recovery are described in general terms, with specific emphasis on desirable characteristics for the application. Application-specific properties should be considered when selecting or developing polymers for enhanced oil recovery and should be carefully evaluated. Characterization techniques should be informed by current best practices; several are described herein. Evaluation of fundamental polymer properties (including polymer composition, microstructure, and molecular weight averages); resistance to shear/thermal/chemical degradation; and salinity/hardness compatibility are discussed. Finally, evaluation techniques to establish the polymer flooding performance of candidate EOR materials are described.
Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review
Govindasamy Rajakumar, Xiu-Hua Zhang, Thandapani Gomathi, Sheng-Fu Wang, Mohammad Azam Ansari, Govindarasu Mydhili, Gnanasundaram Nirmala, Mohammad A. Alzohairy, Ill-Min Chung
May 22, 2020 (v1)
Subject: Materials
Keywords: biomedical applications, Carbon NanoTube (CNT), carbon-based nanomaterials, Graphene (G), Graphene Oxides (GO), reduced Graphene (rGO)
Among a large number of current biomedical applications in the use of medical devices, carbon-based nanomaterials such as graphene (G), graphene oxides (GO), reduced graphene oxide (rGO), and carbon nanotube (CNT) are frontline materials that are suitable for developing medical devices. Carbon Based Nanomaterials (CBNs) are becoming promising materials due to the existence of both inorganic semiconducting properties and organic π-π stacking characteristics. Hence, it could effectively simultaneously interact with biomolecules and response to the light. By taking advantage of such aspects in a single entity, CBNs could be used for developing biomedical applications in the future. The recent studies in developing carbon-based nanomaterials and its applications in targeting drug delivery, cancer therapy, and biosensors. The development of conjugated and modified carbon-based nanomaterials contributes to positive outcomes in various therapies and achieved emerging challenges in preclinical... [more]
Facile Synthesis of Bio-Template Tubular MCo2O4 (M = Cr, Mn, Ni) Microstructure and Its Electrochemical Performance in Aqueous Electrolyte
Deepa Guragain, Camila Zequine, Ram K Gupta, Sanjay R Mishra
May 22, 2020 (v1)
Subject: Materials
Keywords: bio-template, cyclic voltammetry, electrochemical, MCo2O4 (M = Cr, Mn, Ni), specific capacitance
In this project, we present a comparative study of the electrochemical performance for tubular MCo2O4 (M = Cr, Mn, Ni) microstructures prepared using cotton fiber as a bio-template. Crystal structure, surface properties, morphology, and electrochemical properties of MCo2O4 are characterized using X-ray diffraction (XRD), gas adsorption, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), cyclic voltammetry (CV), and galvanostatic charge-discharge cycling (GCD). The electrochemical performance of the electrode made up of tubular MCo2O4 structures was evaluated in aqueous 3M KOH electrolytes. The as-obtained templated MCo2O4 microstructures inherit the tubular morphology. The large-surface-area of tubular microstructures leads to a noticeable pseudocapacitive property with the excellent electrochemical performance of NiCo2O4 with specific capacitance value exceeding 407.2 F/g at 2 mV/s scan rate. In addition, a Coulombic efficiency ~100%, and excellent cy... [more]
New Hybrid Bioactive Composites for Bone Substitution
Anna Ślósarczyk, Joanna Czechowska, Ewelina Cichoń, Aneta Zima
May 22, 2020 (v1)
Subject: Materials
Keywords: chitosan, hybrid materials, hydroxyapatite
Recently, intensive efforts have been undertaken to find new, superior biomaterial solutions in the field of hybrid inorganic−organic materials. In our studies, biomicroconcretes containing hydroxyapatite (HAp)−chitosan (CTS) granules dispersed in an α tricalcium phospahate (αTCP) matrix were investigated. The influence of CTS content and the size of granules on the physicochemical properties of final bone implant materials (setting time, porosity, mechanical strength, and phase composition) were evaluated. The obtained materials were found to be promising bone substitutes for use in non-load bearing applications.
Ecofriendly Preparation and Characterization of a Cassava Starch/Polybutylene Adipate Terephthalate Film
Tan Yi, Minghui Qi, Qi Mo, Lijie Huang, Hanyu Zhao, Di Liu, Hao Xu, Chongxing Huang, Shuangfei Wang, Yang Liu
May 22, 2020 (v1)
Subject: Materials
Keywords: mechanical properties, nano-zinc oxide, PBAT, plasticization, TPS
Composite films of polybutylene adipate terephthalate (PBAT) were prepared by adding thermoplastic starch (TPS) (TPS/PBAT) and nano-zinc oxide (nano-ZnO) (TPS/PBAT/nano-ZnO). The changes of surface morphology, thermal properties, crystal types and functional groups of starch during plasticization were analyzed by scanning electron microscopy, synchronous thermal analysis, X-ray diffraction, infrared spectrometry, mechanical property tests, and contact Angle and transmittance tests. The relationship between the addition of TPS and the tensile strength, transmittance, contact angle, water absorption, and water vapor barrier of the composite film, and the influence of nano-ZnO on the mechanical properties and contact angle of the 10% TPS/PBAT composite film. Experimental results show that, after plasticizing, the crystalline form of starch changed from A-type to V-type, the functional group changed and the lipophilicity increased; the increase of TPS content, the light transmittance and m... [more]
Synthesis, Electrical Properties and Na+ Migration Pathways of Na2CuP1.5As0.5O7
Ohud S. A. ALQarni, Riadh Marzouki, Youssef Ben Smida, Majed M. Alghamdi, Maxim Avdeev, Radhouane Belhadj Tahar, Mohamed Faouzi Zid
May 18, 2020 (v1)
Subject: Materials
Keywords: crystal structure, diphosphate-diarsenate, electrical properties, transport pathways simulation
A new member of sodium metal diphosphate-diarsenate, Na2CuP1.5As0.5O7, was synthesized as polycrystalline powder by a solid-state route. X-ray diffraction followed by Rietveld refinement show that the studied material, isostructural with β-Na2CuP2O7, crystallizes in the monoclinic system of the C2/c space group with the unit cell parameters a = 14.798(2) Å; b = 5.729(3) Å; c = 8.075(2) Å; β = 115.00(3)°. The structure of the studied material is formed by Cu2P4O15 groups connected via oxygen atoms that results in infinite chains, wavy saw-toothed along the [001] direction, with Na+ ions located in the inter-chain space. Thermal study using DSC analysis shows that the studied material is stable up to the melting point at 688 °C. The electrical investigation, using impedance spectroscopy in the 260−380 °C temperature range, shows that the Na2CuP1.5As0.5O7 compound is a fast-ion conductor with σ350 °C = 2.28 10−5 Scm−1 and Ea = 0.6 eV. Na+ ions pathways simulation using bond-valence site e... [more]
Optimization of Sintering Parameters of 316L Stainless Steel for In-Situ Nitrogen Absorption and Surface Nitriding Using Response Surface Methodology
Sadaqat Ali, Ahmad Majdi Abdul Rani, Riaz Ahmad Mufti, Syed Waqar Ahmed, Zeeshan Baig, Sri Hastuty, Muhammad Al’Hapis Abdul Razak, Abdul Azeez Abdu Aliyu
May 18, 2020 (v1)
Subject: Materials
Keywords: 316L stainless steel, nitrogen absorption, response surface methodology, sintering, surface nitriding
This research investigates the simultaneous sintering and surface nitriding of 316L stainless steel alloy using powder metallurgy method. The influence of sintering temperature and dwell time are investigated for maximum nitrogen absorption, densification and increased microhardness using response surface methodology (RSM). In this study, 316L stainless steel powder was compacted at 800 MPa and sintered at two different temperatures of 1150 and 1200 °C with varying dwell times of 1, 3, 5 and 8 h in nitrogen atmosphere. The sintered compacts were then characterized for their microstructure, densification, microhardness and nitrogen absorption. The results revealed that increased dwell time assisted nitrogen to diffuse into stainless steel matrix along with the creation of nitride layer onto the sample surface. The microhardness and density also increased with increasing dwell time. A densification of 7.575 g/cm3 and microhardness of 235 HV were obtained for the samples sintered at 1200... [more]
Photochemical Synthesis of Silver Nanodecahedrons under Blue LED Irradiation and Their SERS Activity
Mai Ngoc Tuan Anh, Dinh Tien Dung Nguyen, Ngo Vo Ke Thanh, Nguyen Thi Phuong Phong, Dai Hai Nguyen, Minh-Tri Nguyen-Le
May 18, 2020 (v1)
Subject: Materials
Keywords: LEDs, photochemical synthesis, SERS, silver nanodecahedron
Silver nanodecahedrons were successfully synthesized by a photochemical method under irradiation of blue light-emitting diodes (LEDs). The formation of silver nanodecahedrons at different LED irradiation times (0−72 h) was thoroughly investigated by employing different characterization methods such as ultraviolet−visible spectroscopy (UV−Vis), transmission electron microscopy (TEM), and Raman spectroscopy. The results showed that silver nanodecahedrons (AgNDs) were formed from silver nanoseeds after 6 h of LED irradiation. The surface-enhanced Raman scattering (SERS) effects of the synthesized AgNDs were also studied in comparison with those of spherical silver nanoparticles in the detection of 4-mercapto benzoic acid. Silver nanodecahedrons with a size of 48 nm formed after 48 h of LED irradiation displayed stronger SERS properties than spherical nanoparticles because of electromagnetic enhancement. The formation mechanism of silver nanodecahedrons is also reported in our study. The r... [more]
The Efficiency of Bimodal Silica as a Carbon Dioxide Adsorbent for Natural Gas Treatment
Fabíola Correia de Carvalho, Paula Fabiane do Nascimento, Márcio Rodrigo Oliveira de Souza, Antonio Souza Araujo
May 8, 2020 (v1)
Subject: Materials
Keywords: carbon dioxide adsorption, hybrid materials, methane, Natural Gas, silica
Natural gas (NG) production in Brazil has shown a significant increase in recent years. Oil and natural gas exploration and refining activities indicate circa 86% carbon dioxide content in NG, representing a serious problem for environmental issues related to greenhouse gas emissions and increases in global warming. New technologies using CO2 capture materials have been shown to be more efficient than conventional processes. In this work, a bimodal meso−macroporous silica adsorbent for CO2 adsorption in NG was synthesized and evaluated as a promising material for use in natural gas treatment systems, as silica has specific textural properties that facilitate the capture and storage of this gas. The adsorbent was obtained from silica via the hydrothermal method with n-dodecane emulsion and characterized by X-ray diffraction, scanning electron microscopy, infrared spectroscopy, and the BET specific surface area. Adsorption capacity tests were performed for CO2, methane, and their mixture... [more]
Maleated Natural Rubber/Halloysite Nanotubes Composites
Nabil Hayeemasae, Zareedan Sensem, Kannika Sahakaro, Hanafi Ismail
May 8, 2020 (v1)
Subject: Materials
Keywords: Halloysite Nanotubes, maleated natural rubber, maleic anhydride, natural rubber
In this study, maleic anhydride (MA) grafted natural rubber (NR), known as maleated natural rubber (MNR), was melt-prepared with the MA content varied within 1−8 phr. MNR was used as the main matrix, with Halloysite Nanotubes (HNT) as a filler, in order to obtain composites with improved performance. The compounds were investigated for their filler−filler interactions by considering their Payne effect. On increasing the MA content, scorch and cure times increased along with maximum torque and torque difference. The MNR with 4 phr of MA exhibited the least filler−filler interactions, as indicated by the retention of the storage modulus after applying a large strain to the filled compound. This MNR compound also provided the highest tensile strength among the cases tested. It is interesting to highlight that MNR, with an appropriate MA content, reduces filler−filler interactions, and, thereby, enhances the HNT filler dispersion, as verified by SEM images, leading to improved mechanical a... [more]
Green Corrosion Inhibitors from Agri-Food Wastes: The Case of Punica granatum Extract and Its Constituent Ellagic Acid. A Validation Study
Mirko Magni, Ester Postiglione, Stefania Marzorati, Luisella Verotta, Stefano P. Trasatti
May 2, 2020 (v1)
Subject: Materials
Keywords: ellagic acid, green corrosion inhibitors, iron corrosion, pomegranate extract
Giving a “new life” to wastes should be the golden rule for all production processes in the forthcoming future, aiming at making them more sustainable and environmentally friendly. In the corrosion science field, the ambitious circular economy paradigm has recently led to the employment of extracts from plants (and, in less extent, from agri-food wastes) as green inhibitors against corrosion of metals. However, in spite of the number of scientific papers published in the field, a deep revision of the scientific approach is needed both in the execution of experiments and in the critical analysis of the results. Starting from some discrepancies in published data, the corrosion inhibition effect induced by a well-characterized methanolic extract from wastes of fermented Punica granatum and by its main component (ellagic acid, EA) was validated. The corrosion behaviour of Armco® pure iron in the presence of small concentrations of ellagic acid and extract (containing ca. 10 µM and 100 µM E... [more]
Evolution of Phase Composition and Antibacterial Activity of Zr−C Thin Films
Katarzyna Mydłowska, Ewa Czerwińska, Adam Gilewicz, Ewa Dobruchowska, Ewa Jakubczyk, Łukasz Szparaga, Przemysław Ceynowa, Jerzy Ratajski
May 2, 2020 (v1)
Subject: Materials
Keywords: antimicrobial properties, medical implants, thin films, zirconium carbide
The research presented in this article concerns Zr−C coatings which were deposited on 304L steel by reactive magnetron sputtering from the Zr target in an Ar−C2H2 atmosphere at various acetylene flow rates, resulting in various atomic carbon concentrations in the coating. The article describes research covering the change in the antibacterial and anticorrosive properties of these coatings due to the change in their chemical and phase composition. The concentration of C in the coatings varied from 21 to 79 at.%. The coating morphology and the elemental distribution in individual coatings were characterized using field emission scanning electron microscopy with an energy-dispersive X-ray analytical system. X-ray diffraction and Raman spectroscopy were used to analyze their microstructure and phase composition. Parallel changes in the mechanical properties of the coatings were analyzed. Based on the obtained results, it was concluded that the wide possibility of shaping the mechanical pro... [more]
Showing records 3875 to 3899 of 4208. [First] Page: 1 152 153 154 155 156 157 158 159 160 Last
[Show All Subjects]