Browse
Records Added in November 2019
Records added in November 2019
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December
Showing records 101 to 115 of 115. [First] Page: 1 2 3 4 5 Last
Comparison of Surface Tension Models for the Volume of Fluid Method
Kurian J. Vachaparambil, Kristian Etienne Einarsrud
November 5, 2019 (v1)
Keywords: capillary rise, rising bubbles, surface tension modelling, VOF
With the increasing use of Computational Fluid Dynamics to investigate multiphase flow scenarios, modelling surface tension effects has been a topic of active research. A well known associated problem is the generation of spurious velocities (or currents), arising due to inaccuracies in calculations of the surface tension force. These spurious currents cause nonphysical flows which can adversely affect the predictive capability of these simulations. In this paper, we implement the Continuum Surface Force (CSF), Smoothed CSF and Sharp Surface Force (SSF) models in OpenFOAM. The models were validated for various multiphase flow scenarios for Capillary numbers of 10 − 3 −10. All the surface tension models provide reasonable agreement with benchmarking data for rising bubble simulations. Both CSF and SSF models successfully predicted the capillary rise between two parallel plates, but Smoothed CSF could not provide reliable results. The evolution of spurious current were studied f... [more]
Numerical Investigation of a High-Pressure Submerged Jet Using a Cavitation Model Considering Effects of Shear Stress
Yongfei Yang, Wei Li, Weidong Shi, Wenquan Zhang, Mahmoud A. El-Emam
November 5, 2019 (v1)
Keywords: cavitation model, Computational Fluid Dynamics, nozzle, Optimization, shear stress, submerged jet
In the current research, a high-pressure submerged cavitation jet is investigated numerically. A cavitation model is created considering the effect of shear stress on cavitation formation. As such, this model is developed to predict the cavitation jet, and then the numerical results are validated by high-speed photography experiment. The turbulence viscosity of the renormalization group (RNG) k-ε turbulence model is used to provide a flow field for the cavitation model. Furthermore, this model is modified using a filter-based density correction model (FBDCM). The characteristics of the convergent-divergent cavitation nozzle are investigated in detail using the current CFD simulation method. It is found that shear stress plays an important role in the cavitation formation in the high-pressure submerged jet. In the result predicted by the Zwart-Gerber-Belamri (ZGB) cavitation model, where critical static pressure is used for the threshold of cavitation inception, the cavitation bubble on... [more]
Fault Ride-Through Capability Enhancement of Type-4 WECS in Offshore Wind Farm via Nonlinear Adaptive Control of VSC-HVDC
Yiyan Sang, Bo Yang, Hongchun Shu, Na An, Fang Zeng, Tao Yu
November 5, 2019 (v1)
Keywords: fault ride-through, nonlinear adaptive control, VSC-HVDC system, wind energy conversion system
This paper proposes a perturbation estimation-based nonlinear adaptive control (NAC) for a voltage-source converter-based high voltage direct current (VSC-HVDC) system which is applied to interconnect offshore large-scale wind farms to the onshore main grid in order to enhance the fault ride-through (FRT) capability of Type-4 wind energy conversion systems (WECS). The VSC-HVDC power transmission system is regraded as a favourable solution for interconnecting offshore wind farms. To improve the FRT capability of offshore power plants, a de-loading strategy is investigated with novel advanced control of the VSC-HVDC systems. The proposed NAC does not require an accurate and precise model and full state measurements since the combinatorial effects of nonlinearities, system parameter uncertainties, and external disturbances are aggregated into a perturbation term, which are estimated by a high-gain perturbation observer (HGPO) and fully compensated for. As the proposed NAC is adaptive to s... [more]
Digitalizing the Paints and Coatings Development Process
Tomaž Kern, Eva Krhač, Marjan Senegačnik, Benjamin Urh
November 5, 2019 (v1)
Keywords: coatings industry, development process, digitalization, process analysis, process simulation, technical enabler
Numerous laboratory tests are used to determine the appropriateness of new formulations in the development process in the paint and coatings industry. New formulations are most often functionally inadequate, unacceptable for environmental or health reasons, or too expensive. Formulators are obliged to repeat laboratory tests until one of the formulations fulfills the minimum requirements. This is cumbersome, slow, and expensive, and can cause ecological problems, wasting materials on tests that do not produce the desired results. The purpose of this research was to find out if there might be a better way forward to increase efficiency and free up formulators to focus on new products. In this experiment, a new paints and coatings development process was redesigned based on the potential benefits of formulation digitalization. Instead of laboratory testing, a digital platform was used that has been developed and stocked with relevant, up-to-date, and complete, usable data. This study fou... [more]
Adsorption of NO Gas Molecules on Monolayer Arsenene Doped with Al, B, S and Si: A First-Principles Study
Keliang Wang, Jing Li, Yu Huang, Minglei Lian, Dingmei Chen
November 5, 2019 (v1)
Subject: Materials
Keywords: arsenene, doping, first principles study, gas adsorption, two-dimensional
The structures and electronic properties of monolayer arsenene doped with Al, B, S and Si have been investigated based on first-principles calculation. The dopants have great influences on the properties of the monolayer arsenene. The electronic properties of the substrate are effectively tuned by substitutional doping. After doping, NO adsorbed on four kinds of substrates were investigated. The results demonstrate that NO exhibits a chemisorption character on Al-, B- and Si-doped arsenene while a physisorption character on S-doped arsenene with moderate adsorption energy. Due to the adsorption of NO, the band structures of the four systems have great changes. It reduces the energy gap of Al- and B-doped arsenene and opens the energy gap of S- and Si-doped arsenene. The large charge depletion between the NO molecule and the dopant demonstrates that there is a strong hybridization of orbitals at the surface of the doped substrate because of the formation of a covalent bond, except for S... [more]
Digital Twin for Monitoring of Industrial Multi-Effect Evaporation
Rafael M. Soares, Maurício M. Câmara, Thiago Feital, José Carlos Pinto
November 5, 2019 (v1)
Keywords: digital twin, dynamic model, evaporation modeling, monitoring, multi-effect evaporation, softsensor, sugar industry
Digital twins are rigorous mathematical models that can be used to represent the operation of real systems. This connection allows for deeper understanding of the actual states of the analyzed system through estimation of variables that are difficult to measure otherwise. In this context, the present manuscript describes the successful implementation of a digital twin to represent a four-stage multi-effect evaporation train from an industrial sugar-cane processing unit. Particularly, the complex phenomenological effects, including the coupling between thermodynamic and fluid dynamic effects, and the low level of instrumentation in the plant constitute major challenges for adequate process operation. For this reason, dynamic mass and energy balances were developed, implemented and validated with actual industrial data, in order to provide process information for decision-making in real time. For example, the digital twin was able to indicate failure of process sensors and to provide est... [more]
Recovering Cobalt and Sulfur in Low Grade Cobalt-Bearing V−Ti Magnetite Tailings Using Flotation Process
Junhui Xiao, Yushu Zhang
November 5, 2019 (v1)
Subject: Materials
Keywords: cobalt, cobalt pyrite, flotation, linneite, pyrite, V–Ti magnetite tailings
There is 0.032% cobalt and 0.56% sulfur in the cobalt-bearing V−Ti tailings in the Panxi Region, with the metal sulfide minerals mainly including FeS2, Fe1−xS, Co3S4, and (Fe,Co)S2, and the gangue minerals mainly including aluminosilicate minerals. The flotation process was used to recover cobalt and sulfur in the cobalt-bearing V−Ti tailings. The results showed that an optimized cobalt−sulfur concentrate with a cobalt grade of 2.08%, sulfur content of 36.12%, sulfur recovery of 85.79%, and cobalt recovery and 84.77% were obtained by flotation process of one roughing, three sweeping, and three cleaning under roughing conditions, which employed pulp pH of 8, grinding fineness of <0.074 mm occupying 80%, flotation concentration of 30%, and dosages of butyl xanthate, copper sulfate, and pine oil of 100 g/t, 30 g/t, and 20 g/t, respectively. Optimized one sweeping, two sweeping, and three sweeping conditions used a pulp pH of 9, and dosages of butyl xanthate, copper sulfate, and pine oi... [more]
Application of Transformation Matrices to the Solution of Population Balance Equations
Vasyl Skorych, Nilima Das, Maksym Dosta, Jitendra Kumar, Stefan Heinrich
November 5, 2019 (v1)
Keywords: agglomeration, dynamic flowsheet simulation, milling, multidimensional distributed parameters, population balance equation, process modelling, solids, transformation matrix
The development of algorithms and methods for modelling flowsheets in the field of granular materials has a number of challenges. The difficulties are mainly related to the inhomogeneity of solid materials, requiring a description of granular materials using distributed parameters. To overcome some of these problems, an approach with transformation matrices can be used. This allows one to quantitatively describe the material transitions between different classes in a multidimensional distributed set of parameters, making it possible to properly handle dependent distributions. This contribution proposes a new method for formulating transformation matrices using population balance equations (PBE) for agglomeration and milling processes. The finite volume method for spatial discretization and the second-order Runge−Kutta method were used to obtain the complete discretized form of the PBE and to calculate the transformation matrices. The proposed method was implemented in the flowsheet mod... [more]
Effects of Bromelain and Trypsin Hydrolysis on the Phytochemical Content, Antioxidant Activity, and Antibacterial Activity of Roasted Butterfly Pea Seeds
Kah-Yaw Ee, Li-Ying Khoo, Wen-Jie Ng, Fai-Chu Wong, Tsun-Thai Chai
November 5, 2019 (v1)
Subject: Biosystems
Keywords: antibacterial activity, antioxidant activity, enzymatic hydrolysis, phenolic compounds, roasted butterfly pea
Butterfly pea (Clitoria ternatea L.) is a traditional medicinal and edible herb, whose health-promoting benefits have been attributed to its phenolic constituents. In this study, the effects of enzymatic hydrolysis on total phenolic content (TPC) and total flavonoid content (TFC), antioxidant (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP)) and antibacterial activities of raw and roasted (200 °C, 10−20 min) butterfly pea seeds were investigated. Roasting reduced the yield of seed aqueous extracts, but it increased the TPC and FRAP values, hence the reducing ability, of the extracts. Bromelain hydrolysis enhanced the TPC and TFC of the roasted seeds up to 2- and 18-fold higher, respectively. Trypsin hydrolysis drastically increased the TPC, but not TFC, of roasted seeds; trypsin-hydrolyzed, 20 min roasted sample had the highest TPC (54.07 μg gallic acid equivalent (GAE)/mg... [more]
Slow Mode-Based Control Method for Multi-Point Temperature Control System
Song Xu, Seiji Hashimoto, Wei Jiang, Yuqi Jiang, Katsutoshi Izaki, Takeshi Kihara, Ryota Ikeda
November 5, 2019 (v1)
Keywords: multi-input multi-output (MIMO) temperature system, slow-mode-based control, temperature differences, transient response
In recent years, thermal processing systems with integrated temperature control have been increasingly needed to achieve high quality and high performance. In this paper, responding to the growing demands for proper transient response and to provide more accurate temperature controls, a novel slow-mode-based control (SMBC) method is proposed for multi-point temperature control systems. In the proposed method, the temperature differences and the transient response of all points can be controlled and improved by making the output of the fast modes follow that of the slow mode. Both simulations and experiments were carried out, and the results were compared to conventional control methods in order to verify the effectiveness of the proposed method.
Study on Interfacial Surface in Modified Spray Tower
Marek Ochowiak, Sylwia Włodarczak, Ivan Pavlenko, Daniel Janecki, Andżelika Krupińska, Małgorzata Markowska
November 5, 2019 (v1)
Keywords: confusor, interfacial surface, modified spray tower, Sauter mean diameter
This paper presents an analysis of the changes in interfacial surface and the size of droplets formed in a spray tower. The interfacial surface and the size of droplets formed are of fundamental importance to the performance of the equipment, both in terms of pressure drop and process efficiency. Liquid film and droplet sizes were measured using a microphotography technique. The confusors studied were classical, with profiled inside surface, and with double profiled inside surface. The liquids studied were water and aqueous solutions of high-molecular polyacrylamide (PAA) of power-law characteristics. The ranges of process Reynolds number studied were as follows: ReG ∈ (42,700; 113,000), ReL ∈ (170; 15,200). A dimensionless correlation for reduced Sauter mean diameter is proposed.
Impact of Ornamental Vegetation Type and Different Substrate Layers on Pollutant Removal in Constructed Wetland Mesocosms Treating Rural Community Wastewater
Sergio Zamora, Luis Sandoval, J. Luis Marín-Muñíz, Gregorio Fernández-Lambert, M. Graciela Hernández-Orduña
November 5, 2019 (v1)
Subject: Biosystems
Keywords: constructed wetlands, ornamental vegetation, phytoremediation, water cleaning
Improving water quality is a relevant environmental aspect, and using constructed wetlands (CWs) is a sustainable option for this; both porous material filled cells and plants that collectively remove contaminants must be readily available and inexpensive. This study evaluated CWs and their functionality by comparing two ornamental plants (Spathiphyllum wallisii and Hedychium coronarium) planted in experimental mesocosm units filled with layers of porous river rock, tepezil, and soil, or in mesocosms with layers of porous river rock, and tepezil, without the presence of soil. The findings during the experiments (180 days), showed that the removal of pollutants (chemical oxygen demand (COD), total solids suspended (TSS), nitrogen as ammonium (N-NH4), as nitrate (N-NO3), and phosphate (P-PO4) was 20−50% higher in mesocosms with vegetation that in the absence of this, and those mesocosms with the soil layer between 33−45% favored removal of P-PO4. Differences regarding of vegetation remov... [more]
A Wind Farm Active Power Dispatch Strategy Considering the Wind Turbine Power-Tracking Characteristic via Model Predictive Control
Wei Li, Dean Kong, Qiang Xu, Xiaoyu Wang, Xiang Zhao, Yongji Li, Hongzhi Han, Wei Wang, Zhenyu Chen
November 5, 2019 (v1)
Keywords: automatic generation control, frequency-domain analysis, Model Predictive Control, power-tracking characteristic, wind farm
In this paper, an industrial application-oriented wind farm automatic generation control strategy is proposed to stabilize the wind farm power output under power limitation conditions. A wind farm with 20 units that are connected beneath four transmission lines is the selected control object. First, the power-tracking dynamic characteristic of wind turbines is modeled as a first-order inertial model. Based on the wind farm topology, the wind turbines are grouped into four clusters to fully use the clusters’ smoothing effect. A method for frequency-domain aggregation and approximation is used to obtain the clusters’ power-tracking equivalent model. From the reported analysis, a model predictive control strategy is proposed in this paper to optimize the rapidity and stability of the power-tracking performance. In this method, the power set-point for the wind farm is dispatched to the clusters. Then, the active power control is distributed from the cluster to the wind turbines using the c... [more]
Production Planning to Reduce Production Cost and Formaldehyde Emission in Furniture Production Process Using Medium-Density Fiberboard
Taeho Kim
November 5, 2019 (v1)
Keywords: formaldehyde emission, furniture production process, medium density fiberboard, production cost, two-dimensional bin packing/cutting stock problem
This research seeks to improve the production process in the Korean furniture industry by reducing the amount of medium-density fibreboard, that is commonly used to produce furniture, in order to reduce production costs and formaldehyde emissions. This research selects a representative company from the Korean furniture industry to examine its optimal amount of medium-density fibreboard used, using the variables of a previous company; the sale levels, the Korea National Productivity Award Index, and technical efficiencies obtained from a previous study. By using its 2016 production level, we compare it with the amount of medium-density fibreboards actually used in 2016, and apply the results to the entire Korean furniture industry. In conclusion, the Korean furniture industry can minimize the amount of medium-density fibreboards used without reducing current production levels, and thereby save production costs, and contribute to substantially reducing formaldehyde emissions.
Towards Quality by Design to recover high-quality products from waste and wastewater streams
Céline Vaneeckhaute
November 2, 2019 (v1)
Subject: Optimization
Keywords: Mathematical modelling, Optimization, Process control, Product quality, Quality by Design, Resource Recovery
Recovering nutrients from wastewaters and wastes, such as sewage sludge and food waste, as sustainable bio-based products provides a key solution to major environmental problems. Classical technology development approaches for resource recovery largely ignore the real-world variability in raw waste materials, which currently hinders the successful implementation of recovery strategies. A major challenge is to create a consistent, sustainable and environmentally friendly supply of high-quality end-products that can compete with fossil-derived products currently on the market. There is urgent need for a paradigm shift from classical technology development approaches to sustainable integrated end-user focused strategies, supported by a reliable, competitive and repeatable quality assurance framework. An improved balance between efficiency and cost in bio-based production chains is needed, while continuously assuring product quality and safety. This
presentation suggests the use of a qual... [more]
Showing records 101 to 115 of 115. [First] Page: 1 2 3 4 5 Last
Change year: 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024
Change month: January | February | March | April | May | June | July | August | September | October | November | December