Browse
Keywords
Records with Keyword: Water
Showing records 51 to 62 of 62. [First] Page: 1 2 3 Last
Geothermal Potential of the Brenner Base Tunnel—Initial Evaluations
Thomas Geisler, Klaus Voit, Ulrich Burger, Tobias Cordes, Florian Lehner, Gregor Götzl, Magdalena Wolf, Thomas Marcher
February 23, 2023 (v1)
Keywords: geothermal energy, geothermal potential, hydrology, sectional discharges, tunnels, Water, water inflow
Increasing demands on mobility and transport, but limited space above ground, lead to new traffic routes being built, even more underground in the form of tunnels. In addition to improving the traffic situation, tunnels offer the possibility of contributing to climate-friendly heating by indirectly serving as geothermal power plants. In this study, the geothermal potential of the future longest railway tunnel in the world, the Brenner Base Tunnel, was evaluated. At the Brenner Base Tunnel, warm water naturally flows from the apex of the tunnel towards the city of Innsbruck, Austria. In order to estimate its geothermal potential, hydrological data of discharge rates and temperatures were investigated and analyzed. The investigations indicated the highest geothermal potential in the summertime, while the lowest occurs during winter. It could be shown that these variations were a result of cooling during discharge through areas of low overburden (mid mountain range), where the tunnel atmo... [more]
Research and Modelling the Ability of Waste from Water and Wastewater Treatment to Remove Phosphates from Water
Julita Šarko, Teresė Leonavičienė, Aušra Mažeikienė
February 21, 2023 (v1)
Keywords: filter media, Modelling, phosphate, sorption, Wastewater, Water
This research investigated the ability of two materials, which are waste generated during water treatment and wastewater treatment, to remove phosphates from water. The selected materials were quartz sand used in drinking water treatment plants (OQS) and incinerated (600 °C) sewage sludge (ISS). The materials were chosen for their composition: both contain aluminium, iron, and calcium. The experiments were carried out in the laboratory (in batch and in columns stand). Modelling of the sorption processes was performed on the basis of results from experiments in batches. The maximum adsorption capacity of the OQS was 1.14 mg/g obtained using the linearized Langmuir model and the maximum adsorption capacity of the ISS was 0.86 mg/g for the linearized Langmuir model (in batch). A pseudo-first-order model obtained using a nonlinear fit can accurately explain phosphate adsorption kinetics using both adsorbents: OQS and ISS. During the column filtration experiment, a higher sorption capacity... [more]
Optical Emission Spectroscopy of Underwater Spark Generated by Pulse High-Voltage Discharge with Gas Bubble Assistant
Vitaliy Stelmashuk, Vaclav Prukner, Karel Kolacek, Andrii Tuholukov, Petr Hoffer, Jaroslav Straus, Oleksandr Frolov, Vit Jirasek
February 21, 2023 (v1)
Keywords: black body radiation, optical emission spectroscopy, shockwave, underwater spark, Water
This paper is aimed at the investigation of the acoustic and spectral characteristics of underwater electric sparks generated between two plate electrodes, using synchronized gas bubble injection. There are two purposes served by discharge initiation in the bubble. Firstly, it creates a favorable condition for electrical breakdown. Secondly, the gas bubble provides an opportunity for the direct spectroscopy of plasma light emission, avoiding water absorption. The effect of water absorption on captured spectra was studied. It was observed that the emission intensity of the Ha line and a shockwave amplitude generated by discharge strongly depend on the size of the gas bubble in the moment of the discharge initiation. It was found that the plasma in the underwater spark channel does not correspond to a source of black-body radiation. This study can be also very useful for understanding the difference between discharges produced directly in a liquid and discharges produced in gas/vapor bub... [more]
A Machine Learning Approach for Phase-Split Calculations in n-Octane/Water and PASN/Water Systems
Sandra Lopez-Zamora, Salvador Escobedo, Hugo de Lasa
February 21, 2023 (v1)
Keywords: n-octane, PASN, regression, vapor-liquid-liquid equilibrium, Water
Flash calculations, including phase split and phase classification for both n-octane/water blends and paraffinic aromatic synthetic naphtha (PASN)/water blends present significant computational challenges. Calculations to establish the two-phase and three-phase regions, as well as the transitions between regions, were addressed by a phase classification method proposed in a recent contribution involving machine learning (ML). This work focusses on the phase-split calculations, considering (a) the lack of numerical convergence of the traditional calculations and their related numerical issues for water/n-octane and PASN/water systems based on the Rachford−Rice derived surfaces and (b) the successful implementation of an ML approach based on a K-nearest-neighbor (KNN) algorithm, which uses the abundant experimental data obtained in a CREC-VL cell.
Amelioration of Organic Carbon and Physical Health of Structurally Disturbed Soil through Microbe−Manure Amalgam
Wenjia Jiang, Aqarab Husnain Gondal, Haroon Shahzad, Muhammad Iqbal, Mary Amelia Cardenas Bustamante, Rafael Julian Malpartida Yapias, Ruggerths Neil De La Cruz Marcos, Franklin Ore Areche, Jimmy Pablo Echevarría Victorio, Guillermo Gomer Cotrina Cabello, Dante Daniel Cruz Nieto
February 21, 2023 (v1)
Subject: Environment
Keywords: Carbon, macro aggregate, organic manures, rhizobacteria, soil, Water
Less precipitation, high temperature, and minimal natural vegetation are characteristic of regions having an arid climate. The harsh environment massively destructs the soil structure of that area by burning soil organic carbon, leading to deteriorated soil nutritional quality, creating a significant threat to agricultural production and food security. Direct application of organic wastes not only substitutes lost organic carbon but also restores soil structure and fertility. This study was conducted to assess the impact of organic amendments, i.e., farm manure (FM), poultry manure (PM), molasses (MO), and Exo-Poly Saccharides (EPS) producing rhizobacterial strains i.e., M2, M19, M22 amalgams as treatments. To assess the impact of treatments on soil carbon and structure restoration to hold more water and nutrients, a 42-day incubation experiment using a completely randomized design (CRD) under the two-factor factorial arrangement was conducted. Macro aggregation (0.25 to >1 mm), carbon... [more]
How to Power the Energy−Water Nexus: Coupling Desalination and Hydrogen Energy Storage in Mini-Grids with Reversible Solid Oxide Cells
Arianna Baldinelli, Linda Barelli, Gianni Bidini, Giovanni Cinti, Alessandro Di Michele, Francesco Mondi
June 2, 2021 (v1)
Keywords: desalination, electrolysis, Energy Storage, Hydrogen, mini-grids, power-to-gas, renewables, rSOC, sector-coupling, Water
Sustainable Development Goals establish the main challenges humankind is called to tackle to assure equal comfort of living worldwide. Among these, the access to affordable renewable energy and clean water are overriding, especially in the context of developing economies. Reversible Solid Oxide Cells (rSOC) are a pivotal technology for their sector-coupling potential. This paper aims at studying the implementation of such a technology in new concept PV-hybrid energy storage mini-grids with close access to seawater. In such assets, rSOCs have a double useful effect: charge/discharge of the bulk energy storage combined with seawater desalination. Based on the outcomes of an experimental proof-of-concept on a single cell operated with salty water, the operation of the novel mini-grid is simulated throughout a solar year. Simulation results identify the fittest mini-grid configuration in order to achieve energy and environmental optimization, hence scoring a renewable penetration of more t... [more]
Diffusion in Binary Aqueous Solutions of Alcohols by Molecular Simulation
Alexander Klinov, Ivan Anashkin
January 19, 2020 (v1)
Keywords: alcohols, diffusion coefficient, intermolecular interaction, molecular dynamics, Water
Based on the molecular dynamics method, the calculations for diffusion coefficients were carried out in binary aqueous solutions of three alcohols: ethanol, isopropanol, and tert-butanol. The intermolecular potential TIP4P/2005 was used for water; and five force fields were analyzed for the alcohols. The force fields providing the best accuracy of calculation were identified based on a comparison of the calculated self-diffusion coefficients of pure alcohols with the experimental data for internal (Einstein) diffusion coefficients of alcohols in solutions. The temperature and concentration dependences of the interdiffusion coefficients were determined using Darken’s Equation. Transport (Fickian) diffusion coefficients were calculated using a thermodynamic factor determined by the non-random two-liquid (NRTL) and Willson models. It was demonstrated that for adequate reproduction of the experimental data when calculating the transport diffusion coefficients, the thermodynamic factor has... [more]
Process Simulation of the Separation of Aqueous Acetonitrile Solution by Pressure Swing Distillation
Jing Li, Keliang Wang, Minglei Lian, Zhi Li, Tingzhao Du
September 5, 2019 (v1)
Keywords: acetonitrile, full-heat integration, pressure swing distillation, Water
The separation of aqueous acetonitrile solution by pressure swing distillation (PSD) was simulated and optimized through Aspen Plus software. The distillation sequence of the low pressure column (LPC) and high pressure column (HPC) was determined with a phase diagram. The pressures of the two columns were set to 1 and 4 atm, respectively. Total annual cost (TAC) was considered as the objective function, and design variables, such as the tray number, the reflux ratio, and the feeding position, were optimized. The optimum process parameters were obtained. For the reduction of energy consumption, the PSD with full-heat integration was designed. The TAC of this method is lower by 32.39% of that of the PSD without heat integration. Therefore, it is more economical to separate acetonitrile and water mixture by PSD with full-heat integration, which provides technical support for the separation design of such azeotropes.
The Desalination Process Driven by Wave Energy: A Challenge for the Future
Vincenzo Franzitta, Domenico Curto, Daniele Milone, Alessia Viola
February 27, 2019 (v1)
Subject: Energy Policy
Keywords: desalination, Renewable and Sustainable Energy, Water, wave
The correlation between water and energy is currently the focus of several investigations. In particular, desalination is a technological process characterized by high energy consumption; nevertheless, desalination represents the only practicable solution in several areas, where the availability of fresh water is limited but brackish water or seawater are present. These natural resources (energy and water) are essential for each other; energy system conversion needs water, and electrical energy is necessary for water treatment or transport. Several interesting aspects include the study of saline desalination as an answer to freshwater needs and the application of renewable energy (RE) devices to satisfy electrical energy requirement for the desalination process. A merge between renewable energy and desalination is beneficial in that it is a sustainable and challenging option for the future. This work investigates the possibility of using renewable energy sources to supply the desalinat... [more]
Simultaneous Energy and Water Optimisation in Shale Exploration
Doris Oke, Thokozani Majozi, Rajib Mukherjee, Debalina Sengupta, Mahmoud M. El-Halwagi
July 31, 2018 (v1)
Subject: Optimization
Keywords: Energy, hydraulic fracturing, membrane distillation, optimisation, Water
This work presents a mathematical model for the simultaneous optimisation of water and energy usage in hydraulic fracturing using a continuous time scheduling formulation. The recycling/reuse of fracturing water is achieved through the purification of flowback wastewater using thermally driven membrane distillation (MD). A detailed design model for this technology is incorporated within the water network superstructure in order to allow for the simultaneous optimisation of water, operation, capital cost, and energy used. The study also examines the feasibility of utilising the co-produced gas that is traditionally flared as a potential source of energy for MD. The application of the model results in a 22.42% reduction in freshwater consumption and 23.24% savings in the total cost of freshwater. The membrane thermal energy consumption is in the order of 244 × 10³ kJ/m³ of water, which is found to be less than the range of thermal consumption values reported for membrane distillation in... [more]
Preparation and Potential Applications of Super Paramagnetic Nano-Fe₃O₄
Hao Zhan, Yongning Bian, Qian Yuan, Bozhi Ren, Andrew Hursthouse, Guocheng Zhu
July 31, 2018 (v1)
Subject: Materials
Keywords: environment remediation, Nano-Fe3O4, super paramagnetic, Water
Ferroferric oxide nanoparticle (denoted as Nano-Fe₃O₄) has low toxicity and is biocompatible, with a small particle size and a relatively high surface area. It has a wide range of applications in many fields such as biology, chemistry, environmental science and medicine. Because of its superparamagnetic properties, easy modification and function, it has become an important material for addressing a number of specific tasks. For example, it includes targeted drug delivery nuclear magnetic resonance (NMR) imaging in biomedical applications and in environmental remediation of pollutants. Few articles describe the preparation and modification of Nano-Fe₃O₄ in detail. We present an evaluation of preparation methodologies, as the quality of material produced plays an important role in its successful application. For example, with modification of Nano-Fe₃O₄, the surface activation energy is reduced and good dispersion is obtained.
Minimizing the Effect of Substantial Perturbations in Military Water Systems for Increased Resilience and Efficiency
Corey M. James, Michael E. Webber, Thomas F. Edgar
July 31, 2018 (v1)
Keywords: control, Energy, military, Water
A model predictive control (MPC) framework, exploiting both feedforward and feedback control loops, is employed to minimize large disturbances that occur in military water networks. Military installations’ need for resilient and efficient water supplies is often challenged by large disturbances like fires, terrorist activity, troop training rotations, and large scale leaks. This work applies the effectiveness of MPC to provide predictive capability and compensate for vast geographical differences and varying phenomena time scales using computational software and actual system dimensions and parameters. The results show that large disturbances are rapidly minimized while maintaining chlorine concentration within legal limits at the point of demand and overall water usage is minimized. The control framework also ensures pumping is minimized during peak electricity hours, so costs are kept lower than simple proportional control. Thecontrol structure implemented in this work is able to sup... [more]
Showing records 51 to 62 of 62. [First] Page: 1 2 3 Last
[Show All Keywords]