Browse
Keywords
Records with Keyword: Process Intensification
76. LAPSE:2018.0149
Integrated Process Design and Control of Cyclic Distillation Columns
July 30, 2018 (v1)
Subject: Process Design
Keywords: Cyclic Distillation, Driving Froce, Process Control, Process Design, Process Intensification
Integrated process and control design approach for cyclic distillation columns is proposed. The design methodology is based on application of simple graphical design approaches, known from simpler conventional distillation columns. Here, a driving force approach and McCabe-Thiele type analysis is combined. It is demonstrated, through closed-loop and open-loop analysis, that operating the column at the largest available driving force results in an optimal design in terms of controllability and operability. The performance of a cyclic distillation column designed to operate at the maximum driving force is compared to alternative sub-optimal designs. The results suggest that operation at the largest driving force is less sensitive to disturbances in the feed and inherently has the ability to efficiently reject disturbances.
77. LAPSE:2018.0135
Space-constrained purification of dimethyl ether through process intensification using semicontinuous dividing wall columns
June 12, 2018 (v1)
Subject: Process Design
Keywords: Aspen Plus, Dimethyl Ether, Dividing wall column, Mobile Plant, Plant-on-a-truck, Process Intensification, Semicontinuous Distillation, Simulation
In this work, a distillation system is designed to purify dimethyl ether (DME) from its reaction by-products in the conversion of flare gas into a useful energy product. The distillation equipment has a size constraint for easy transportation, making process intensification the best strategy to efficiently separate the mixture. The process intensification distillation techniques explored include the dividing wall column (DWC) and a novel semicontinuous dividing wall column (S-DWC). The DWC and the S-DWC both purify DME to fuel grade purity along with producing high purity waste streams. An economic comparison is made between the two systems. The DWC is a cheaper method of producing DME however the purity of methanol, a reaction intermediate, is not as high as the S-DWC. Overall, this research shows that it is possible to purify DME and its reaction by-products in a 40-foot distillation column at a cost that is competitive with Diesel.


