Browse
Subjects
Records with Subject: Process Control
101. LAPSE:2023.33898
Energy Savings by Optimization of Thrusters Allocation during Complex Ship Manoeuvres
April 24, 2023 (v1)
Subject: Process Control
Keywords: berthing, constrained optimization, Energy Efficiency, FMBS, harbour manoeuvring, ship control by joystick, simulator, thrust allocation
The International Maritime Organization adopted a strategy to reduce the total annual GHG emissions from international shipping by at least 50% by 2050, compared to 2008 levels. The European Union proposed an even farther reaching transformation: the European Commission adopted a set of proposals to make the EU’s transport policies fit for reducing net greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels. Therefore, all industrial actions in line and consistent with these strategies are essential. One of such activities may be a gradual transition from the most common independent controls of transport ships’ thrusters, propellers, and rudders to an integrated, power optimized, 3 degrees of freedom joystick control. In this paper, the full mission bridge simulator (FMBS) research on potential energy savings and, consequently, a GHG emission reduction, while steering a RoPax twin-screw ferry equipped with bow thrusters by a joystick control, is presented. The task of... [more]
102. LAPSE:2023.33895
Modeling and Control of Dynamic Stall Loads on a Smart Airfoil at Low Reynolds Number
April 24, 2023 (v1)
Subject: Process Control
Keywords: airfoil pitching, dynamic stall model, ONERA, trailing edge flap, unsteady, vortex shedding
This article describes the development and testing of a modified, semi-empirical ONERA dynamic stall model for an airfoil with a trailing edge flap—a “smart airfoil”—pitching at reduced frequencies up to 0.1. The Reynolds number is 105. The model reconstructs the load fluctuations associated with the shedding of multiple dynamic stall vortices (DSVs) in a time-marching solution, which makes it suitable for real-time control of a trailing edge flap (TEF). No other model captures the effect of the DSVs on the aerodynamic loads on smart airfoils. The model was refined and tuned for force measurements on a smart NACA 643-618 airfoil model that was pitching with an inactive TEF and was validated against the measurements when the TEF was activated. A substantial laminar separation bubble can develop on this airfoil, which is challenging for modelers of the unsteady response. A closed-loop controller was designed offline in SIMULINK, and the output of the controller was applied to the TEF in... [more]
103. LAPSE:2023.33892
Real-Time Implementation of Robust Loop-Shaping Controller for a VSC HVDC System
April 24, 2023 (v1)
Subject: Process Control
Keywords: d-q vector control, graphical loop-shaping, H∞ controller, HVDC, PI controller, real-time HIL, robust controller, VSC
Voltage source converter (VSC) based HVDC systems are one of the most promising technologies for high voltage bulk power transmission. The reliability and stability of a VSC-based HVDC system greatly depends on the design of a proper controller for the inner decoupled d-q current loop. One of the major causes of instability in a properly tuned controller is due to system parameter variation. This paper presents the design of a fixed parameter robust controller for the inner decoupled d-q current loop for a VSC-based HVDC system to deal with the uncertainties due to system parameter variations. The method of multiplicative uncertainty is employed in the robust design to model the variations in the system parameters. The robust control design was realized through a graphical procedure known as the loop-shaping technique. The graphical loop shaping technique is a much simpler and more straightforward method compared to the traditional H∞-based algorithms for robust controller design. The... [more]
104. LAPSE:2023.33891
Model Predictive Control with Modulator Applied to Grid Inverter under Voltage Distorted
April 24, 2023 (v1)
Subject: Process Control
Keywords: distorted voltage, distributed generation, grid current control, inverter connected to the grid, Model Predictive Control
This research paper presents a model of predictive control with a modulator for the inverter linked to the electrical grid, using the stationary reference frame and operating under grid distorted voltage. The stationary reference frame model for the system is obtained in its fundamental frequency and then the model predictive technique is implemented, which predicts the system actions using the obtained system model without the need of any other harmonic consideration. The controller calculates the voltage vector of the inverter through the minimization of the cost function. Thus, the proposal demonstrates, through experiments, its positive results regarding the low impact of the distorted voltage in the grid current without using any harmonic consideration on the model. Experimental results and comparisons carried out endorse the proposal of this work.
105. LAPSE:2023.33889
Sub-Transient Response of the DSC Controlled Inverter under Fault
April 24, 2023 (v1)
Subject: Process Control
Keywords: distributed energy resources, grid connected converter, initial fault response
The most important element of the new active distribution system concept is the grid connected converter that needs to offer fault ride through capabilities. The new system topologies require new tools for fault state calculation that would consider different control methodologies. In that regard, this paper investigates the initial response of the grid connected inverter under fault that operates using new control methodology based on the integration of the delay signal cancellation. Using modern laboratory setup for testing of renewable energy sources and their integration in the power system the technique is weighed against the classical technique that does not provide the adequate control under unbalanced faults. Furthermore, through a set of specific experiments the paper demonstrates the behavior of the converter under fault, preparing the outline for the fault response modeling of distributed energy resources. Experimental results present the sub-transient period and the transie... [more]
106. LAPSE:2023.33867
A Novel Driving Scheme for Three-Phase Bearingless Induction Machine with Split Winding
April 24, 2023 (v1)
Subject: Process Control
Keywords: bearingless, DSP, induction motor, radial position control
In order to reduce the costs of implementing the radial position control system of a three-phase bearingless machine with split winding, this article proposes a driving method that uses only two phases of the system instead of the three-phase traditional one. It reduces from six to four the number of inverter legs, drivers, sensors, and current controllers necessary to drive and control the system. To justify the proposal, this new power and control configuration was applied to a 250 W machine controlled by a digital signal processor (DSP). The results obtained demonstrated that it is possible to carry out the radial position control through two phases, without loss of performance in relation to the conventional three-phase drive and control system.
107. LAPSE:2023.33841
Induction Motor PI Observer with Reduced-Order Integrating Unit
April 24, 2023 (v1)
Subject: Process Control
Keywords: field oriented control (FOC), induction motor, Luenberger observer, proportional-integral (PI) observer, speed sensorless control
This article presents an innovative induction motor state observer designed to reconstruct magnetic fluxes and the angular speed of an induction motor for speed sensorless control system applications such as field-oriented control (FOC). This observer is an intermediate solution between the proportional observer and the classical proportional-integral (PI) observer with respect to which the order of the integrating unit is reduced. Additional modifications of the observer’s structure have been implemented to ensure stability and to improve its functional properties. As a result, two versions of the observer structure were produced and experimentally tested using a sensorless FOC control system. Both structures resulted in correct control system operation for a wide range of angular speeds, including low speed ranges.
108. LAPSE:2023.33839
Analysis of Dynamic Characteristics and Power Losses of High Speed on/off Valve with Pre-Existing Control Algorithm
April 24, 2023 (v1)
Subject: Process Control
Keywords: dynamic response, multiphysics methodology, power loss, solenoid valve, temperature rising
A high-speed on/off valve (HSV) is generally the core component of a digital hydraulic transmission system. Therefore, its dynamic characteristics often restrict the overall performance of the digital hydraulic system. Most of the current studies focus on the optimization on the dynamic characteristics or the energy characteristics, few studies have comprehensively considered the two characteristics of the valve together. In this paper, a pre-existing control algorithm (PECA) is proposed to improve the dynamic characteristics of the HSV, and simultaneously optimize the power losses of the HSV to improve its energy conversion efficiency. The results show that, compared with the traditional single-voltage driven strategy, the opening time of the PECA decreases by 29.4%, the closing time decreases by 59.6%, and the energy conversion rate increases by 7.9%.
109. LAPSE:2023.33838
Modeling and Performance Assessment of the Split-Pi Used as a Storage Converter in All the Possible DC Microgrid Scenarios. Part I: Theoretical Analysis
April 24, 2023 (v1)
Subject: Process Control
Keywords: bidirectional converter, current control, DC microgrid, droop control, electrical storage system, feed-forward control, Split-pi
The integration of an electrical storage system (ESS) into a DC microgrid using a bidirectional DC/DC converter provides substantial benefits but requires careful design. Among such converter topologies, the Split-pi converter presents several merits at the cost of non-isolated operation. However, the few works in the literature on the Split-pi presented only closed-loop control with a single control loop; furthermore, they neglected the reactive components’ parasitic resistances and did not perform any experimental validation. This work aimed at investigating the use of the Split-pi converter as a power interface between an ESS and a DC microgrid. Five typical microgrid scenarios are presented, where each of which requires a specific state-space model and a suitable control scheme for the converter to obtain high performance. In this study, two different state-space models of the converter that consider the parasitic elements are presented, the control schemes are discussed, and crite... [more]
110. LAPSE:2023.33837
Adaptive Impedance Control of a Novel Automated Umbilical System for Propellant Loading
April 24, 2023 (v1)
Subject: Process Control
Keywords: force control, hydraulic servo, parallel manipulator, propellant loading, umbilical system
In this paper, an automated umbilical system based on a 6-dof (degree of freedom) hydraulic parallel mechanism is proposed to automate the rocket propellant loading process. The mechanical structure, vision acquisition algorithm, and control algorithm used in the system are described in detail in the paper. To address the fluid nonlinearity problem of the hydraulic drive system, nonlinear compensation and three-state feedback control are used in the paper to enhance the performance of the hydraulic system. For the problem of force tracking during the docking process between the umbilical system and the rocket, an adaptive impedance control algorithm based on the online environmental parameter estimation is proposed in the paper, which effectively reduces the contact force during the docking process. The dynamic tracking and docking experiments indicate that this automated umbilical system features rapid reaction speed, high measurement precision, and good flexibility, which can be used... [more]
111. LAPSE:2023.33836
Heat Transfer Performance Potential with a High-Temperature Phase Change Dispersion
April 24, 2023 (v1)
Subject: Process Control
Keywords: convective heat transfer, Nusselt number, phase change, phase change slurry, temperature control
Phase change dispersions are useful for isothermal cooling applications. As a result of the phase changes that occur in PCDs, they are expected to have greater storage capacities than those of single-phase heat transfer fluids. However, for appropriate heat exchanger dimensions and geometries for use in phase change dispersions, knowledge about the convective heat transfer coefficients of phase change dispersions is necessary. A test unit for measuring the local heat transfer coefficients and Nusselt numbers of PCDs was created. The boundary condition of constant heat flux was chosen for testing, and the experimental heat transfer coefficients and Nusselt numbers for the investigated phase change dispersion were established. Different experimental parameters, such as the electrical wall heat input, Reynolds number, and mass flow rate, were varied during testing, and the results were compared to those of water tests. It was found that, due to the tendency of low-temperature increases in... [more]
112. LAPSE:2023.33830
A Novel Power Sharing Strategy Based on Virtual Flux Droop and Model Predictive Control for Islanded Low-Voltage AC Microgrids
April 24, 2023 (v1)
Subject: Process Control
Keywords: droop control, microgrid, Model Predictive Control, power sharing, remote community energy resilience, virtual flux
The droop control scheme based on Q − ω and P − V characteristics is conventionally employed to share the load power among sources in an islanded low-voltage microgrid with resistive line impedances. However, it suffers from poor active power sharing, and is vulnerable to sustained deviations in frequency and voltage. Therefore, accurate power sharing and maintaining the frequency and voltage in the desired ranges are challenging. This paper proposes a novel microgrid control strategy to address these issues. The proposed strategy consists of a virtual flux droop and a model predictive control, in which the virtual flux is the time integral of the voltage. Firstly, the novel virtual flux droop control is proposed to accurately control the power sharing among DGs. Then, the model predictive flux control is employed to generate the appropriate switching signals. The proposed strategy is simple without needing multiple feedback control loops. In addition, pulse width modulation is not req... [more]
113. LAPSE:2023.33807
Research on Energy Transmission Mechanism of the Electro-Hydraulic Servo Pump Control System
April 24, 2023 (v1)
Subject: Process Control
Keywords: dynamic position following, electro-hydraulic servo pump control system (EHSPCS), energy transfer, steady-state position retention, transfer efficiency
The electro-hydraulic servo pump control system (EHSPCS) is a volume control system that uses a permanent magnet synchronous motor (PMSM) with a fixed displacement pump to directly drive and control the hydraulic cylinder. The energy transmission law of the system is very complicated due to the transformation of electrical, mechanical and hydraulic energy as well as other energy fields, and qualitative analysis of the energy transfer efficiency is difficult. Energy transfer analysis of the EHSPCS under different working conditions and loads is proposed in this paper. First, the energy flow transfer mechanism was analyzed, and the mathematical and energy transfer models of the key components of the system were established to explore the energy characteristic state transition rule. Second, a power bond diagram model was built, its state equation and state matrix were deduced, and a system simulation model was built. Finally, combined with the EHSPCS experimental platform, simulation expe... [more]
114. LAPSE:2023.33796
Enhancement of Induction Motor Dynamics Using a Novel Sensorless Predictive Control Algorithm
April 24, 2023 (v1)
Subject: Process Control
Keywords: IM, Luenberger observer, predictive control, sensorless control, SMO, state estimation, torque control
The paper introduces a novel predictive voltage control (PVC) procedure for a sensorless induction motor (IM) drive. In the constructed PVC scheme, the direct and quadrature (d-q) components of applied voltages are primarily managed instead of controlling the torque and flux as in the classic predictive torque control (PTC) technique. The theoretical basis of the designed PVC is presented and explained in detail, starting from the used cost-function with its relevant components. A comprehensive performance comparison is established between the two controllers, from which the superiorities of the designed PVC over the PTC approach can be easily investigated through the reduced ripples, reduced computation time, and faster dynamics. To sustain the system’s reliability, a combined Luenberger−sliding mode observer (L-SMO) is designed and verified for different operating speeds for the two controllers. The Luenberger component is concerned with estimating the stator current, rotor flux, and... [more]
115. LAPSE:2023.33784
An Improved Method Based on Deep Learning for Insulator Fault Detection in Diverse Aerial Images
April 24, 2023 (v1)
Subject: Process Control
Keywords: aerial image, complex backgrounds, deep learning, DenseNet, insulator fault detection, YOLO
Insulators play a significant role in high-voltage transmission lines, and detecting insulator faults timely and accurately is important for the safe and stable operation of power grids. Since insulator faults are extremely small and the backgrounds of aerial images are complex, insulator fault detection is a challenging task for automatically inspecting transmission lines. In this paper, a method based on deep learning is proposed for insulator fault detection in diverse aerial images. Firstly, to provide sufficient insulator fault images for training, a novel insulator fault dataset named “InSF-detection” is constructed. Secondly, an improved YOLOv3 model is proposed to reuse features and prevent feature loss. To improve the accuracy of insulator fault detection, SPP-networks and a multi-scale prediction network are employed for the improved YOLOv3 model. Finally, the improved YOLOv3 model and the compared models are trained and tested on the “InSF-detection”. The average precision (... [more]
116. LAPSE:2023.33779
Overview of Control Algorithm Verification Methods in Power Electronics Systems
April 24, 2023 (v1)
Subject: Process Control
Keywords: model checking, performance assessment, power electronics, reliability validation testing, verification
The paper presents the existing verification methods for control algorithms in power electronics systems, including the application of model checking techniques. In the industry, the most frequently used verification methods are simulations and experiments; however, they have to be performed manually and do not give a 100% confidence that the system will operate correctly in all situations. Here we show the recent advancements in verification and performance assessment of power electronics systems with the usage of formal methods. Symbolic model checking can be used to achieve a guarantee that the system satisfies user-defined requirements, while statistical model checking combines simulation and statistical methods to gain statistically valid results that predict the behavior with high confidence. Both methods can be applied automatically before physical realization of the power electronics systems, so that any errors, incorrect assumptions or unforeseen situations are detected as ear... [more]
117. LAPSE:2023.33774
Generalized Normal Distribution Algorithm-Based Control of 3-Phase 4-Wire Grid-Tied PV-Hybrid Energy Storage System
April 24, 2023 (v1)
Subject: Process Control
Keywords: adaptive control, hybrid energy storage system, Optimization, power electronics, power quality, PV
The presented work employs the multiple random feature kernel mean p-power algorithm (MRFKMP) for the voltage source converter (VSC) control of a three-phase four-wire grid-tied dual-stage photovoltaic-hybrid energy storage system (HESS) to achieve multiple objectives during various induced dynamic conditions. The proposed control enables the VSC to accomplish manifold goals, i.e., reactive power compensation, power quality enhancement, load, power balancing at common coupling point and grid voltage balancing during unity power factor mode of operation. The proposed system is scrutinized under steady-state and numerous dynamic states such as irradiation variation, specified power mode, abnormal grid voltage, load, and grid voltage unbalancing. The seamless control facilitates the swift resynchronization of the grid as well as maintaining stability during islanding and re-synchronization operations while satisfying the necessary load requirements. The associated HESS consisting of batte... [more]
118. LAPSE:2023.33769
Measurement Tests and FEM Calculations of DC Excited Flux Switching Motor Prototype
April 24, 2023 (v1)
Subject: Process Control
Keywords: DCEFSM, electric motor prototype, FEM 2D calculations, laboratory tests, PMSM, vector control
The paper presents the results of laboratory tests and FEM 2D calculations of the DCEFSM (Direct Current Excited Flux Switching Machine) electric motor prototype, made based on the stator ferromagnetic sheets of the induction motor. Static measurements of torques, currents, power, efficiency, electromotive forces, and voltages of the motor under various operating conditions were performed, as well as the recordings of its currents and back-EMFs waveforms. FEM calculations of measured values were also performed. The obtained results allow us to conclude that the motor has the operating properties of an under-excited synchronous cylindrical motor and can be vector controlled like the PMSM motor. The results of measurements and calculations indicate the need to redesign the magnetic circuit of the stator.
119. LAPSE:2023.33765
AI and Data Democratisation for Intelligent Energy Management
April 24, 2023 (v1)
Subject: Process Control
Keywords: Artificial Intelligence, data democratisation, data sharing, decarbonisation, decision support, energy data spaces, energy management, interoperability
Despite the large number of technology-intensive organisations, their corporate know-how and underlying workforce skill are not mature enough for a successful rollout of Artificial Intelligence (AI) services in the near-term. However, things have started to change, owing to the increased adoption of data democratisation processes, and the capability offered by emerging technologies for data sharing while respecting privacy, protection, and security, as well as appropriate learning-based modelling capabilities for non-expert end-users. This is particularly evident in the energy sector. In this context, the aim of this paper is to analyse AI and data democratisation, in order to explore the strengths and challenges in terms of data access problems and data sharing, algorithmic bias, AI transparency, privacy and other regulatory constraints for AI-based decisions, as well as novel applications in different domains, giving particular emphasis on the energy sector. A data democratisation fr... [more]
120. LAPSE:2023.33736
Electricity Markets during the Liberalization: The Case of a European Union Country
April 24, 2023 (v1)
Subject: Process Control
Keywords: decision support systems, electricity consumption, electricity market liberalization, electricity market operation, electricity prices, European Energy Exchange, European Union, households, industry, Slovenia
This paper analyzes electricity markets in Slovenia during the specific period of market deregulation and price liberalization. The drivers of electricity prices and electricity consumption are investigated. The Slovenian electricity markets are analyzed in relation with the European Energy Exchange (EEX) market. Associations between electricity prices on the one hand, and primary energy prices, variation in air temperature, daily maximum electricity power, and cross-border grid prices on the other hand, are analyzed separately for industrial and household consumers. Monthly data are used in a regression analysis during the period of Slovenia’s electricity market deregulation and price liberalization. Empirical results show that electricity prices achieved in the EEX market were significantly associated with primary energy prices. In Slovenia, the prices for daily maximum electricity power were significantly associated with electricity prices achieved on the EEX market. The increases i... [more]
121. LAPSE:2023.33722
Asymmetric Multilevel Inverter Topology and Its Fault Management Strategy for High-Reliability Applications
April 24, 2023 (v1)
Subject: Process Control
Keywords: Fault Detection, fault tolerance, multilevel inverters, power electronics
As the applications of power electronic converters increase across multiple domains, so do the associated challenges. With multilevel inverters (MLIs) being one of the key technologies used in renewable systems and electrification, their reliability and fault ride-through capabilities are highly desirable. While using a large number of semiconductor components that are the leading cause of failures in power electronics systems, fault tolerance against switch open-circuit faults is necessary, especially in remote applications with substantial maintenance penalties or safety-critical operation. In this paper, a fault-tolerant asymmetric reduced device count multilevel inverter topology producing an 11-level output under healthy conditions and capable of operating after open-circuit fault in any switch is presented. Nearest-level control (NLC) based Pulse width modulation is implemented and is updated post-fault to continue operation at an acceptable power quality. Reliability analysis of... [more]
122. LAPSE:2023.33714
A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines
April 24, 2023 (v1)
Subject: Process Control
Keywords: eccentricity, electric machine, fault diagnosis, rotor
Research on the modeling and fault diagnosis of rotor eccentricities has been conducted during the past two decades. A variety of diagnostic theories and methods have been proposed based on different mechanisms, and there are reviews following either one type of electric machines or one type of eccentricity. Nonetheless, the research routes of modeling and diagnosis are common, regardless of machine or eccentricity types. This article tends to review all the possible modeling and diagnostic approaches for all common types of electric machines with eccentricities and provide suggestions on future research roadmap. The paper indicates that a reliable low-cost non-intrusive real-time online visualized diagnostic method is the trend. Observer-based diagnostic strategies are thought promising for the continued research.
123. LAPSE:2023.33686
A Novel Condition Monitoring Procedure for Early Detection of Copper Corrosion Problems in Oil-Filled Electrical Transformers
April 21, 2023 (v1)
Subject: Process Control
Keywords: CBM strategy, condition monitoring, copper corrosion, Fault Detection, transformer failures
The negative impacts of catastrophic fire and explosion accidents due to copper corrosion problems of oil-filled electrical transformers are still in the spotlight due to a lack of effective methods for early fault detection. To address this gap, a condition monitoring (CM) procedure that can detect such problems in the initial stage is proposed in this paper. The suggested CM procedure is based on identified measurable variables, which are the relevant by-products of the corrosion reaction, and utilizes an Early Fault Diagnosis (EFD) model to detect and solve the copper corrosion problems. The EFD model includes a fault trend chart that can track a fault progression during the useful life of transformers. The purpose of this paper is to verify and validate the effectiveness of the suggested CM procedure by an empirical study in a power plant. The result of applying this procedure was early detection of copper corrosion problems in two transformers with suspected copper corrosion propa... [more]
124. LAPSE:2023.33669
On the Physical Nature of Frequency Control Problems of Induction Motor Drives
April 21, 2023 (v1)
Subject: Process Control
Keywords: frequency control, induction motor drives, nonlinear dynamical systems, sensorless control, vector control
This article considers the possibility of connecting the problems of the engineering synthesis of frequency control systems for induction motor drives (IMD) with the theory of the identification of IMD based on the equations of a generalized AC electric machine. The article presents experimental studies of load parrying in IMD with vector (VC) and scalar (SC) controls. These results indicate the absence of fundamental advantages in a drive with VC. This advantage should manifest in a more efficient formation of the moment and fast transients. A method was proposed for describing IMD by nonlinear transfer functions, making it possible to formulate the principle of the correction of IMD and a method for assessing their efficiency. The article shows that the correction based on the proposed nonlinear transfer functions of the induction motor is much more efficient than the traditional VC, which was confirmed by detailed experiments and modeling. The most important results are given in the... [more]
125. LAPSE:2023.33660
Flyback Photovoltaic Micro-Inverter with a Low Cost and Simple Digital-Analog Control Scheme
April 21, 2023 (v1)
Subject: Process Control
Keywords: flyback photovoltaic micro-inverter, flyback transformer, isolated single-stage inverter, simple control strategy
The single-stage flyback Photovoltaic (PV) micro-inverter is considered as a simple and small in size topology but requires expensive digital microcontrollers such as Field-Programmable Gate Array (FPGA) or Digital Signal Processor (DSP) to increase the system efficiency, this would increase the cost of the overall system. To solve this problem, based on a single-stage flyback structure, this paper proposed a low cost and simple analog-digital control scheme. This control scheme is implemented using a low cost ATMega microcontroller built in the Arduino Uno board and some analog operational amplifiers. First, the single-stage flyback topology is analyzed theoretically and then the design consideration is obtained. Second, a 120 W prototype was developed in the laboratory to validate the proposed control. To prove the effectiveness of this control, we compared the cost price, overall system efficiency, and THD values of the proposed results with the results obtained by the literature. S... [more]