Browse
Keywords
Records with Keyword: Wastewater
Showing records 76 to 87 of 87. [First] Page: 1 2 3 4 Last
Increase by Substitution of Galvanized Steel for Aluminum Mirrors in the UV Solar Radiation in Canal with Fins and Side Panels That Disinfect Wastewater
Pedro Cisterna-Osorio, María Galvez-Gonzalez, Miguel Moraga-Chaura, Sergio Quijada-Vera
February 17, 2023 (v1)
Subject: Materials
Keywords: disinfection, solar radiation, Wastewater
The need arises to seek new depuration technological responses aimed at the reuse of wastewater, which requires the development and promotion of economically and environmentally sustainable technologies. In this paper, it studies an improvement to a disinfection system sustainable, low-cost, patented in 2019, and based on solar energy. The water passes through a canal of reflective material in the continuous regime, and in the batch regime, the water remains in the canal. The panels are located parallel to the lateral faces of the canal. The fraction of the radiation reflected outside the canal reaches the reflective side panels that return the radiation to the canal. These panels concentrate the radiation in the canal through reflection. The disinfectant canal with fins and side panels uses ultraviolet radiation to eliminate the bacterial load carried by treated wastewater. For this reason, the present work analyzes the incidence in the area of influence of the disinfectant canal. Whe... [more]
Enhancement of Biomass and Lipid Productivities of Scenedesmus sp. Cultivated in the Wastewater of the Dairy Industry
Ingrid Mercado, Xavier Álvarez, María-Eloiza Verduga, Andrea Cruz
May 26, 2021 (v1)
Keywords: lipid production, microalgae, nutrient removal, Scenedesmus sp., Wastewater
Microalgae are photoautotrophic microorganisms capable of producing compounds with potential bioenergetic applications as an alternative energy source due to the imminent exhaustion of fossil fuels, their impact on the environment, and the constant population increase. The mass cultivation of these microorganisms requires high concentrations of nutrients, which is not profitable if analytical grade culture media are used. A viable alternative is the use of agro-industrial wastewater, due to the metabolic flexibility of these microorganisms and their ability to take advantage of the nutrients present in these substrates. For the reasons mentioned above, the effect of the cultivation in wastewater from cheese processing on the growth parameters and biomass composition of Scenedesmus sp. was evaluated, and its nutrient removal capacity determined. A high lipid concentration was obtained in the cultures with the dairy effluent (507.81 ± 19.09 mg g−1) compared to the standard culture medium... [more]
Sorbent Based on Polyvinyl Butyral and Potassium Polytitanate for Purifying Wastewater from Heavy Metal Ions
Anna Ermolenko, Maria Vikulova, Alexey Shevelev, Elena Mastalygina, Peter Ogbuna Offor, Yuri Konyukhov, Anton Razinov, Alexander Gorokhovsky, Igor Burmistrov
September 15, 2020 (v1)
Subject: Materials
Keywords: heavy metals, polymer composite, polyvinyl butyral, potassium polytitanate, sorbent, Wastewater
Currently, the rapid development of industry leads to an increase in negative anthropogenic impacts on the environment, including water ecosystems. This circumstance entails toughening environmental standards and, in particular, requirements for the content of pollutants in wastewater. As a result, developing technical and cost-effective ways for wastewater purification becomes relevant. This study is devoted to the development of a novel composite sorbent, based on polyvinyl butyral and potassium polytitanate, designed to purify water from heavy metal ions. The co-deposition of a mixture based on a polymer solution and a filler suspension was used to obtain a composite material. In this work, the influence of the deposition conditions on the structure and properties of the resulting composites was studied, as well as the optimal ratio of components, including solvent, precipitant, polymer binder, and filler, were established. In the course of this study on the sorption properties of t... [more]
Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste
Uduakobong A. Edet, Augustine O. Ifelebuegu
August 29, 2020 (v1)
Keywords: Adsorption, brick particles, phosphates, recycle, Wastewater
Phosphates in wastewater at elevated concentrations cause eutrophication of water bodies and their removal from treated wastewater is essential before effluents are discharged to the environment. Phosphates are predominately removed during wastewater treatment by chemical precipitation which is usually expensive and has a significant environmental footprint. The purpose of this study was to investigate the effectiveness of waste recycled bricks as adsorbent for phosphate removal during wastewater treatment. The kinetics, isotherms, and thermodynamics of adsorption were investigated to establish the mechanisms of adsorption. The results showed that adsorption capacities increased with an increase in contact time, adsorbent dosage, and initial phosphate concentration. The kinetic study indicated that adsorption was governed by several mechanisms with various processes dominating different stages of the adsorption. The adsorption process was better represented by the pseudo-second-order k... [more]
The Effect of Temperature on the Biosorption of Dyes from Aqueous Solutions
Lech Smoczyński, Bogusław Pierożyński, Tomasz Mikołajczyk
August 5, 2020 (v1)
Subject: Other
Keywords: biosorption, dye, temperature, Wastewater
This work is a review of scientific papers on the influence of temperature (T) on the biosorption of various dyes from aqueous solutions and wastewaters. The dyeing process of textiles is usually carried out at high temperatures, and therefore, the wastewater generated there when entering the treatment plant may still be hot. Hence, depending on the climatic conditions of a given region, the biosorption method used for their purification may occur at various temperatures. Most of the papers clearly stated the positive influence of T on biosorption, generally indicating the chemical nature of this process. At the same time, substantial number of authors confirmed the positive effect of T on the biosorption with an initial T-rise from approximately 20 °C to about 30−40 °C range; conversely, at higher temperatures, they indicated a decrease in the biosorption efficiency. Additionally, many authors clearly implied the negative impact of T on the biosorption parameters. They generally envis... [more]
An Environmental and Economic Analysis of Flocculation Technology Applied to a Corn-Based Ethanol Plant
Maria da Conceição T. B. e Oliveira, Kurt A. Rosentrater
May 2, 2020 (v1)
Keywords: bioflocculants, Ethanol, Wastewater
The stimulation of renewable fuel production is related to the environmental issues resulting from the extraction and utilization of fossil fuels. Although corn-based ethanol is one of the leading renewable fuels and promises to mitigate these environmental impacts, it generates large volumes of wastewater with high concentrations of organic material (CODcr > 30,000 mg/L) and low pH (3.5−4.5), which leads to serious environmental concerns. A common method of treatment of distillery wastewater is the Dry Distilled Grain Soluble (DDGS) process, which separates liquid and solid fractions; however, a disadvantage of this process is its high energy consumption. Other commonly implemented methods are often costly and not environmentally safe. To minimize these problems, a flocculation process can be applied as a potential lower energy consumption process utilizing bioflocculants, which have been proven harmless to the environment. Therefore, the main goal of this study was to analyze the eco... [more]
Anaerobic Co-Digestion of Wastewater Sludge: A Review of Potential Co-Substrates and Operating Factors for Improved Methane Yield
Wei Ling Chow, Siewhui Chong, Jun Wei Lim, Yi Jing Chan, Mei Fong Chong, Timm Joyce Tiong, Jit Kai Chin, Guan-Ting Pan
February 12, 2020 (v1)
Keywords: anaerobic digestion, biogas production, co-digestion, methane yield, sludge, Wastewater
Anaerobic digestion has been widely employed in waste treatment for its ability to capture methane gas released as a product during the digestion. Certain wastes, however, cannot be easily digested due to their low nutrient level insufficient for anaerobic digestion, thus co-digestion is a viable option. Numerous studies have shown that using co-substrates in anaerobic digestion systems improve methane yields as positive synergisms are established in the digestion medium, and the supply of missing nutrients are introduced by the co-substrates. Nevertheless, large-scale implementation of co-digestion technology is limited by inherent process limitations and operational concerns. This review summarizes the results from numerous laboratory, pilot, and full-scale anaerobic co-digestion (ACD) studies of wastewater sludge with the co-substrates of organic fraction of municipal solid waste, food waste, crude glycerol, agricultural waste, and fat, oil and grease. The critical factors that infl... [more]
Impact Analysis of Water Quality on the Development of Construction Materials
Hamad Farid, Muhammad Shoaib Mansoor, Syyed Adnan Raheel Shah, Nasir Mahmood Khan, Rana Muhammad Farooq Shabbir, Muhammad Adnan, Hunain Arshad, Inzmam-Ul Haq, Muhammad Waseem
November 24, 2019 (v1)
Subject: Materials
Keywords: materials, strength, Wastewater, water management, water quality
This research dealt with the impact of the quality of the water source on the mechanical properties of construction materials. The mechanical properties of construction materials include compressive, tensile, and flexural strength. Water samples were collected from different resources, these samples were then synthetically investigated to identify and compare their quality parameters. After a detailed chemical analysis of water samples from three sources—wastewater, surface or canal water, and ground water—construction concrete material samples were prepared. The construction materials were developed with the same water−cement ratio, i.e., 0.60 for each concrete mix sample at two mix ratios—M1 (1:2:4) and M2 (1:1.5:3). Slump cone and compacting factor tests were conducted on the fresh concrete to determine its workability prior to its hardening. Then, at 7, 14, 21, and 28 days for each mix, tests for mechanical properties were carried out to determine the compressive, tensile, and flex... [more]
The Use of Polymers in the Flotation Treatment of Wastewater
Brian Bolto, Zongli Xie
August 14, 2019 (v1)
Subject: Materials
Keywords: flotation, hydrophobic polymers, oil recovery, polyelectrolyte, polymer, Wastewater
The use of flotation for the treatment of wastewaters in general, but especially for the removal of oil, grease, general organic matter, and suspended solids, is well established as a low energy process. Polyelectrolytes (PEs) can enhance performance without adding to the solids load that occurs with inorganic additives such as alum. The bridging of pollutants and the attachment of the resulting aggregates to the air-water interface can be effectively carried out with most wastewaters. Hydrophobic modification of the PEs can be useful for difficult species. It should be applied to the flotation of polyfluoroalkyl substances, for example, as they are not amenable to economical conventional treatment. Similarly, the removal of microplastic particles from sewage effluents by flotation could be enhanced.
Assessment of On-Site Treatment Process of Institutional Building’s Wastewater
Motasem N. Saidan, Haifa Al-Yazjeen, Ahlam Abdalla, Hussam J. Khasawneh, Hanan Al-Naimat, Nivin Al Alami, Malik Adawy, Mahmoud S. Jaber, Nidal Sowan
July 31, 2018 (v1)
Keywords: irrigation, Jordan, on-site treatment process, Wastewater, water reuse
This study is conducted to investigate the characteristics of outflow wastewater of the 1 m³ on-site wastewater treatment unit on the basis of the testing and measurement data of the samples that were taken during the study monitored period (August 2017 to January 2018). For this purpose, samples were taken on a weekly basis from the treated wastewater effluent and five quality parameters (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), pH, E-coli counts) were monitored and measured. The average values of the five parameters were compared with the Jordanian standard maximum values, and water reuse in irrigation of plants classifications have been assessed and investigated. Average values of BOD, COD, TSS, pH, and E-coli in treated wastewater were 11 mg/L, 104 mg/L, 15 mg/L, 7.51, and 387 counts, respectively. The installation of in-line ultraviolet (UV) unit in recirculating delivery system played a vital role in the reduction of counts far... [more]
Effects of Inoculum Type and Aeration Flowrate on the Performance of Aerobic Granular SBRs
Mariele K. Jungles, Ángeles Val del Río, Anuska Mosquera-Corral, José Luis Campos, Ramón Méndez, Rejane H. R. Costa
July 31, 2018 (v1)
Keywords: aeration flowrate, aerobic granules, inoculum, sequencing batch reactor, Wastewater
Aerobic granular sequencing batch reactors (SBRs) are usually inoculated with activated sludge which implies sometimes long start-up periods and high solids concentrations in the effluent due to the initial wash-out of the inoculum. In this work, the use of aerobic mature granules as inoculum in order to improve the start-up period was tested, but no clear differences were observed compared to a reactor inoculated with activated sludge. The effect of the aeration rate on both physical properties of granules and reactor performance was also studied in a stable aerobic granular SBR. The increase of the aeration flow rate caused the decrease of the average diameter of the granules. This fact enhanced the COD and ammonia consumption rates due to the increase of the DO level and the aerobic fraction of the biomass. However, it provoked a loss of the nitrogen removal efficiency due to the worsening of the denitrification capacity as a consequence of a higher aerobic fraction.
Poly(Poly(Ethylene Glycol) Methyl Ether Methacrylate) Grafted Chitosan for Dye Removal from Water
Bryan Tsai, Omar Garcia-Valdez, Pascale Champagne, Michael F. Cunningham
July 31, 2018 (v1)
Subject: Materials
Keywords: chitosan, dye, grafting, nitroxide-mediated polymerization, PEGMA, Wastewater
As the demand for textile products and synthetic dyes increases with the growing global population, textile dye wastewater is becoming one of the most significant water pollution contributors. Azo dyes represent 70% of dyes used worldwide, and are hence a significant contributor to textile waste. In this work, the removal of a reactive azo dye (Reactive Orange 16) from water by adsorption with chitosan grafted poly(poly(ethylene glycol) methyl ether methacrylate) (CTS-GMA-g-PPEGMA) was investigated. The chitosan (CTS) was first functionalized with glycidyl methacrylate and then grafted with poly(poly(ethylene glycol) methyl ether methacrylate) using a nitroxide-mediated polymerization grafting to approach. Equilibrium adsorption experiments were carried out at different initial dye concentrations and were successfully fitted to the Langmuir and Freundlich adsorption isotherm models. Adsorption isotherms showed maximum adsorption capacities of CTS-g-GMA-PPEGMA and chitosan of 200 mg/g a... [more]
Showing records 76 to 87 of 87. [First] Page: 1 2 3 4 Last
[Show All Keywords]