Browse
Keywords
Records with Keyword: Wave Energy
26. LAPSE:2023.23137
An Iterative Refining Approach to Design the Control of Wave Energy Converters with Numerical Modeling and Scaled HIL Testing
March 27, 2023 (v1)
Subject: Energy Systems
Keywords: control, HIL testing, power conversion, Wave Energy, wave-to-wire
The aim of this work is to show that a significant increase of the efficiency of a Wave Energy Converter (WEC) can be achieved already at an early design stage, through the choice of a turbine and control regulation, by means of an accurate Wave-to-Wire (W2W) modeling that couples the hydrodynamic response calibrated in a wave flume to a Hardware-In-the-Loop (HIL) test bench with sizes and rates not matching those of the system under development. Information on this procedure is relevant to save time, because the acquisition, the installation, and the setup of a test rig are not quick and easy. Moreover, power electronics and electric machines to emulate turbines and electric generators matching the real systems are not low-cost equipment. The use of HIL is important in the development of WECs also because it allows the carrying out of tests in a controlled environment, and this is again time- and money-saving if compared to tests done on a real system installed at the sea. Furthermore... [more]
27. LAPSE:2023.22830
Fuzzy Control of Waves Generation in a Towing Tank
March 24, 2023 (v1)
Subject: Energy Systems
Keywords: energy transformation, fuzzy control, model tests, towing tank, Wave Energy, wave generation, wave maker
This paper presents the results of research related to the transformation of electrical energy into potential and kinetic energy of waves generated on the water surface. The waves are generated to model the environmental conditions for the needs of the model tests. The model tests are performed on model-scale objects to predict the features of full-scale maritime objects. It is done to improve human safety and the survivability of constructions. Electrical energy is transformed into the energy of the water waves using a wave maker. The wave maker considered is a facility with an electrohydraulic drive and an actuator submerged into the water. The actuator movement results in the waves being mechanically-generated in accordance with the wave maker theory. The study aimed to investigate the advantage of the newly implemented fuzzy-logic controller over the hitherto cascading proportional-integral controllers of the wave maker actuator. The research was focused on experimental investigati... [more]
28. LAPSE:2023.22704
Parametric Study for an Oscillating Water Column Wave Energy Conversion System Installed on a Breakwater
March 24, 2023 (v1)
Subject: Energy Systems
Keywords: caisson breakwater application, OWC, parametric study, Wave Energy, wave power converting system
This study focuses on the analysis of the parameters of an oscillating water column (OWC) wave energy conversion system and wave conditions. Interactions between the dimensions of the OWC chambers and wave conditions are all taken into account to design an alternative OWC converter, called caisson-based OWC type wave energy converting system. A numerical method using an unsteady Navier-Stokes equations theorem in conservation form is used to analyze the proposed analytical model. The objective of this study is to try to apply an OWC wave energy converter to a caisson breakwater, which has been constructed in a harbor. The structure proposed in this study is a series of sets of independent systems, in which each set of converters is composed of three chambers to capture the wave energy, while better ensuring the safety of the caisson breakwater. Responses to be analyzed related to the conversion efficiency of the caisson-based OWC wave energy converting system include the airflow veloci... [more]
29. LAPSE:2023.22628
Hydrodynamic Performance of a Pitching Float Wave Energy Converter
March 24, 2023 (v1)
Subject: Energy Systems
Keywords: ANSYS-AQWA, hydrodynamic performance, pitching float, Wave Energy
This study analyzes the hydrodynamic performance and application of a pitching float-type wave energy conversion device under complex sea conditions in the South China Sea. Potential flow theory and ANSYS-AQWA software are used to establish a method for analyzing hydrodynamic performance in both time and frequency domains, as well as the various factors that influence hydrodynamic performance. The frequency domain characteristics of the conversion device are explored, as well as the time-domain characteristics when exposed to regular and irregular waves. The results show that the frequency domain of hydrodynamic performance conforms to the requirements of an offshore mobile platform. A mooring point that is closer to the center of mass leads to improved stability of the conversion device. The angle arrangement of the anchor-chain mooring method fully conforms to safety requirements. When the wave direction is 45°, the conversion device is highly stressed and its movement is the most st... [more]
30. LAPSE:2023.21811
On the Development of an Offshore Version of the CECO Wave Energy Converter
March 23, 2023 (v1)
Subject: Process Design
Keywords: annual energy production, CECO, mooring system, offshore structure, sloped WEC, spar, tension leg platform, Wave Energy
Offshore locations present significant amounts of wave energy and free sea space, which could facilitate the deployment of larger numbers of wave energy converters (WECs) in comparison with nearshore regions. The present study aims to find a suitable design for an offshore floating version of CECO, a sloped motion WEC. For this purpose, a new design methodology is proposed in this paper for identifying and assessing possible floating configurations of CECO, which consists of four distinct set-ups obtained by varying the type of main supporting structure and the mooring system. Two options are based on spar designs and the other two on tension leg platform (TLP) designs. Based on outcomes of time-domain numerical calculations, the aforementioned configurations were assessed in terms of annual wave energy conversion and magnitude of mooring loads. Results indicate that a TLP configuration with an innovative mooring solution could increase the annual energy production by 40% with respect... [more]
31. LAPSE:2023.21785
The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain
March 23, 2023 (v1)
Subject: Energy Systems
Keywords: feasibility, floating, IRR, LCOE, marine energy, NPV, Wave Energy, WEC
A technique to analyse the economic viability of offshore farms composed of wave energy converters is proposed. Firstly, the inputs, whose value will be considered afterwards in the economic step, was calculated using geographic information software. Secondly, the energy produced by each wave converter was calculated. Then the economic factors were computed. Finally, the restriction that considers the depth of the region (bathymetry) was put together with the economic outputs, whose value depends on the floating Wave Energy Converter (WEC). The method proposed was applied to the Cantabric and Atlantic coasts in the north of Spain, a region with a good offshore wave energy resource. In addition, three representative WECs were studied: Pelamis, AquaBuoy and Wave Dragon; and five options for electric tariffs were analysed. Results show the Wave Energy Converter that has the best results regarding its LCOE (Levelized Cost of Energy), IRR (Internal Rate of Return) and NPV (Net Present Value... [more]
32. LAPSE:2023.21668
Hydrodynamic Investigation of a Dual-Cylindrical OWC Wave Energy Converter Integrated into a Fixed Caisson Breakwater
March 22, 2023 (v1)
Subject: Process Design
Keywords: air chamber, analytical study, dual cylindrical caisson, oscillating water column, Wave Energy
A fixed dual cylindrical oscillating water column (OWC) acting as a breakwater-type wave energy converter (WEC) is proposed to harvest the wave energy effectively for shallow offshore sites. An analytical model is developed to investigate the hydrodynamic characteristics and the energy capture capacity of the cylindrical OWC device in severe waves. Based on the linear potential flow theory, the analytical solutions of the velocity potential in diffraction mode are solved by matching the Eigen-function expansion technique, and the continuous conditions of the velocity potential and fluid velocity between the computational sub-domains are involved in solving the problem for determining a solution. The proposed model is verified against the published data. The effects of the wave height, the angle of chamber clapboard and the radius of the inner and outer cylindrical column on the energy conversion efficiency are investigated in this paper. To improve the energy conversion performance and... [more]
33. LAPSE:2023.20053
Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects
March 10, 2023 (v1)
Subject: Environment
Keywords: Mediterranean Sea, resource assessment, technology maturity, wave, Wave Energy, WECs
A detailed review of wave energy resource assessment and the state-of-the-art of deployed wave energy converters (WECs) in real environmental conditions in the Mediterranean Sea have been analysed in this study. The installed power of the several deployed WECs in the Mediterranean Sea varies between 3−2500 kW. Ten project cases of deployed WECs in the basin are presented, with their analysis of the essential features. Five different types of WEC have already been tested under real environmental conditions in Italy, Greece, Israel and Gibraltar, with Italy being the Mediterranean country with the most deployed WECs. The main questions of the relevant studies were the ongoing trends, the examination of WECs in combination with other renewable sources, the utilising of WECs for desalination, and the prospects of wave energy in the Mediterranean islands and ports. This paper is the first comprehensive study that overviews the recent significant developments in the wave energy sector in the... [more]
34. LAPSE:2023.18515
Niche Applications and Flexible Devices for Wave Energy Conversion: A Review
March 8, 2023 (v1)
Subject: Process Design
Keywords: flexible wave energy converters, niche applications, Wave Energy
We review wave energy conversion technologies for niche applications, i.e., kilowatt-scale systems that allow for more agile design, faster deployment and easier operation than utility scale systems. The wave energy converters for niche markets analysed in this paper are classified into breakwater-integrated, hybrid, devices for special applications. We show that niche markets are emerging as a very vibrant landscape, with several such technologies having now achieved operational stage, and others undergoing full-scale sea trials. This review also includes flexible devices, which started as niche applications in the 1980s and are now close to commercial maturity. We discuss the strong potential of flexible devices in reducing costs and improving survivability and reliability of wave energy systems. Finally, we show that the use of WECs in niche applications is supporting the development of utility-scale projects by accumulating field experience, demonstrating success stories of grid in... [more]
35. LAPSE:2023.18358
The Prospect of Combining a Point Absorber Wave Energy Converter with a Floating Offshore Wind Turbine
March 8, 2023 (v1)
Subject: Energy Systems
Keywords: offshore floating wind energy, Wave Energy, wave-structure interactions
With recent advances in offshore floating wind and wave energy technology, questions have emerged as to whether the two technologies can be combined to reduce their overall levelised cost of energy. In this paper, the potential for combining a floating offshore wind turbine to a point absorbing wave energy converter is investigated. The focus of the investigation is how much power might be produced by a combined floating wind and wave energy converter system, and the resultant changes in motion of the floating wind platform. A model for the combined wave and wind system is developed which uses the standardised NREL OC3 5 MW spar type wind turbine and a cylindrical buoyant actuator (BA), which is attached to the spar via a generic wave power take-off system (modelled as a spring-damper system). Modelling is conducted in the frequency domain and the tests span a wide range of parameters, such as wave conditions, BA sizes, and power take-off coupling arrangements. It is found that the opt... [more]
36. LAPSE:2023.16743
Bringing Structure to the Wave Energy Innovation Process with the Development of a Techno-Economic Tool
March 3, 2023 (v1)
Subject: Process Design
Keywords: commercial attractiveness, scenario creation, structured innovation, technical achievability, Wave Energy
Current wave energy development initiatives assume that available designs have the potential for success through continuous learning and innovation-based cost reduction. However, this may not be the case, and potential winning technologies may have been overlooked. The scenario creation tool presented in this paper provides a structured method for the earliest stages of design in technology development. The core function of the scenario creation tool is to generate and rank scenarios of potential Wave Energy Converter (WEC) attributes and inform the user on the areas of the parameter space that are most likely to yield commercial success. This techno-economic tool uses a structured innovation approach to identify commercially attractive and technically achievable scenarios, with a scoring system based on their power performance and costs. This is done by leveraging performance and cost data from state-of-the-art wave energy converters and identifying theoretical limits to define thresh... [more]
37. LAPSE:2023.16585
A Constant-Pressure Hydraulic PTO System for a Wave Energy Converter Based on a Hydraulic Transformer and Multi-Chamber Cylinder
March 3, 2023 (v1)
Subject: Process Control
Keywords: fuzzy control, hydraulic transformer, multi-chamber cylinder, PTO, Wave Energy
This paper presents a constant-pressure hydraulic PTO system that can convert stored pressure energy into electrical energy at a stable speed through hydraulic motors and generators. A multi-chamber cylinder can be connected to the main power generation circuit by check valves, and the motor displacement can be controlled by a fuzzy controller to maintain the main power generation circuit under stable pressure. The hydraulic transformer can control the forces applied to the floater. The hydrodynamic parameters of the floater are calculated by AQWA, and the optimal PTO damping of the hydraulic system is analyzed as the target of transformer control. MATLAB/Simulink and AMESim are used to carry out the co-simulation. Three kinds of wave elevation time-series for the specific state are designed for the simulation. In the co-simulation, three approaches are carried out for the simulation including no control strategy, fuzzy control with a fixed transformer ratio, and fuzzy control with a v... [more]
38. LAPSE:2023.16363
Energy from the Waves: Integration of a HESS to a Wave Energy Converter in a DC Bus Electrical Architecture to Enhance Grid Power Quality
March 3, 2023 (v1)
Subject: Energy Systems
Keywords: DC bus, electrical architecture, flywheel, hybrid energy storage system, Li-ion battery, power quality, Wave Energy
The need for environmental protection is pushing to a massive introduction of energy production from renewables. Although wind and solar energy present the most mature technologies for energy generation, wave energy has a huge annual energy potential not exploited yet. Indeed, no leading device for wave energy conversion has already been developed. Hence, the future exploitation of wave energy will be strictly related to a specific infrastructure for power distribution and transmission that has to satisfy high requirements to guarantee grid safety and stability, because of the stochastic nature of this source. To this end, an electrical architecture model, based on a common DC bus topology and including a Hybrid Energy Storage System (HESS) composed by Li-ion battery and flywheel coupled to a wave energy converter, is here presented. In detail, this research work wants to investigate the beneficial effects in terms of voltage and current waveforms frequency and transient behavior at th... [more]
39. LAPSE:2023.15446
Review on Deep Learning Research and Applications in Wind and Wave Energy
March 2, 2023 (v1)
Subject: Modelling and Simulations
Keywords: deep learning, long short-term memory, Wave Energy, wind energy
Wind energy and wave energy are considered to have enormous potential as renewable energy sources in the energy system to make great contributions in transitioning from fossil fuel to renewable energy. However, the uncertain, erratic, and complicated scenarios, as well as the tremendous amount of information and corresponding parameters, associated with wind and wave energy harvesting are difficult to handle. In the field of big data handing and mining, artificial intelligence plays a critical and efficient role in energy system transition, harvesting and related applications. The derivative method of deep learning and its surrounding prolongation structures are expanding more maturely in many fields of applications in the last decade. Even though both wind and wave energy have the characteristics of instability, more and more applications have implemented using these two renewable energy sources with the support of deep learning methods. This paper systematically reviews and summarize... [more]
40. LAPSE:2023.15251
The Shape Optimization and Experimental Research of Heave Plate Applied to the New Wave Energy Converter
March 2, 2023 (v1)
Subject: Modelling and Simulations
Keywords: AQWA simulation, heave plate, model test, Wave Energy
The development and utilization of wave energy is inseparable from the wave energy converter, and its stability is an important condition for operation. Heave is the biggest factor affecting the stable power generation of wave energy converters. The key method to solve this problem is to install a suitable heave plate. Therefore, the design of the heave plate is particularly important. Based on a new type of horizontal rotor wave energy converter, this paper proposes three different shapes of heave plate design schemes and completes the calculation and modeling of the engineering prototype. First, the three types of heave plate devices were numerically simulated using hydrodynamic calculation software to compare their stable performances and verify the feasibility of the scheme. Subsequently, an experimental model was made according to the parameters of the engineering prototype, and a tank experiment was carried out under the same working conditions to further study the influence of t... [more]
41. LAPSE:2023.14976
Deriving Current Cost Requirements from Future Targets: Case Studies for Emerging Offshore Renewable Energy Technologies
March 2, 2023 (v1)
Subject: Energy Systems
Keywords: cost reduction, cost target, floating offshore wind, innovation requirements, LCOE, ocean energy, offshore renewables, tidal stream, Wave Energy
This work investigates potential cost reduction trajectories of three emerging offshore renewable energy technologies (floating offshore wind, tidal stream, and wave) with respect to meeting ambitious cost targets set out in the Strategic Energy Technology Implementation Plans (SET-Plans) for Offshore Wind and Ocean Energy. A methodology is presented which calculates target costs for current early-stage devices, starting from the 2030 SET-Plan levelised cost targets. Component-based experience curves have been applied as part of the methodology, characterised through the comparative maturity level of each technology-specific cost centre. The resultant early-stage target costs are then compared with actual costs for current devices to highlight where further cost reduction is still required. It has been found that innovation and development requirements to reach these targets vary greatly between different technologies, based on their current level of technological maturity. Future fund... [more]
42. LAPSE:2023.14427
Sectoral Analysis of the Fundamental Criteria for the Evaluation of the Viability of Wave Energy Generation Facilities in Ports—Application of the Delphi Methodology
March 1, 2023 (v1)
Subject: Energy Systems
Keywords: clean energy, Renewable and Sustainable Energy, SDG, Wave Energy, wave energy converter
Nearly 40% of the world’s population lives within 100 kilometres of the coast with the risk that this implies in terms of exposure to the effects of climate change. Ocean energy, according to the IPCC (Intergovernmental Panel on Climate Change) in 2019, has been identified as one of the measures for mitigating these effects. In addition, ocean energy can play an essential role in achieving some of the SDGs (Sustainable Development Goals) set at the Paris Climate Summit in 2015, namely SDG 7 (clean and affordable energy) and SDG 13 (climate action) and could have a substantial impact on others such as SDG 1 (poverty eradication), SDG 2 (end hunger), SDG 5 (gender equality), SDG 6 (universal energy access), SDG 8 (promote sustainable economic growth), SDG 9 (build resilient infrastructure), SDG 14 (sustainable conservation of oceans and seas) and SDG 17 (promote sustainable development cooperation). There are several projects under development around the world aimed at extracting energy... [more]
43. LAPSE:2023.14370
Wave Energy in the Pacific Island Countries: A New Integrative Conceptual Framework for Potential Challenges in Harnessing Wave Energy
March 1, 2023 (v1)
Subject: Environment
Keywords: framework, island environment, Pacific, PESTEL, SWOT, Wave Energy
The Central and South Pacific have significant wave energy resources distributed through the region that are currently not being explored. Even though the wave energy resource in the Pacific has been studied, there is limited knowledge on the potential obstacles when inserting this new energy source into a unique and unexplored environment. Pacific Island countries (PICs) have distinctive characteristics that can become barriers to this technology, especially considering that local coastal and marine systems are fundamental for subsistence and local development. Thus, the success of a project relies on local acceptance. The current study developed an integrative conceptual framework for the PICs (ICFPICs) that derived from the integration of the elements of a political, economic, social, technological, environmental and legal (PESTEL) structured approach and further combined with a strengths, weaknesses, opportunities and threats (SWOT) approach to create a matrix that included relevan... [more]
44. LAPSE:2023.13800
Harvesting Energy from Ocean: Technologies and Perspectives
March 1, 2023 (v1)
Subject: Energy Systems
Keywords: conversion technology, salinity gradient, tidal current, tidal energy, tidal turbine, Wave Energy
The optimal utilization of renewable energies is a crucial factor toward the realization of sustainability and zero carbon in a future energy system. Tidal currents, waves, and thermal and salinity gradients in the ocean are excellent renewable energy sources. Ocean tidal, osmotic, wave, and thermal energy sources have yearly potentials that exceed the global power demand of 22,848 TWh/y. This paper extensively reviews the technologies related to energy harvesting from waves, tidal, ocean thermals, and the salinity gradient. Moreover, the socio-economic, social, and environmental aspects of the above technologies are also discussed. This paper provides a better picture of where to invest in the future energy market and highlights research gaps and recommendations for future research initiatives. It is expected that a better insight into ocean energy and a deep understanding of various potential devices can lead to a broader adoption of ocean energy. It is also clear that further resear... [more]
45. LAPSE:2023.12216
Development and Wave Tank Demonstration of a Fully Controlled Permanent Magnet Drive for a Heaving Wave Energy Converter
February 28, 2023 (v1)
Subject: Process Control
Keywords: current source converter, direct drive, linear generator, vernier hybrid machine, Wave Energy
One option for converting the energy in sea waves into renewable electricity is the development of floating wave energy converters coupled to electrical generators. For this to work, bespoke slow-speed electrical machines coupled to bidirectional power smoothing power electronic converters are required. This paper reports on the successful design and wave tank validation of an electric machine, power converter and fully controlled direct drive power take-off system coupled to two small scale heaving wave energy converters. The design, development and demonstration of linear generators and power converters is presented including some simulated and laboratory results. Demonstration of wave energy converters with pure electric drives, fully automated control, bidirectional power flow and active force management is almost unique and essential for future wave energy development. The results presented prove that direct-drive power take-off for wave energy devices is technically possible and... [more]
46. LAPSE:2023.11095
Numerical Investigation of Multi-Floater Truss-Type Wave Energy Convertor Platform
February 27, 2023 (v1)
Subject: Modelling and Simulations
Keywords: multi-floater WEC platform, numerical simulation, potential flow theory, Wave Energy
In order to solve the hydrodynamic characteristics of the multi-floater truss-type wave energy convertor (WEC) platform, the mathematical model is established by using the high-order boundary element method based on potential flow theory, in which the floater and the platform are connected by the floating arm based on the lever principle. The mathematical model is applied to study the heave motion response of each floater of the multi-floater truss-type WEC platform, and the effects of the floater number and the floater arrangement on the motion responses of floaters, as well as the power generation of the WEC platform are analyzed. The effect of the hydraulic cylinder on the floater is simulated by linear damping, and then, the work of the hydraulic cylinder is used to generate electricity, so as to achieve the purpose of simulating the multi-floater WEC power generation device. Some useful conclusions are obtained through calculation, which can provide data support for the correspond... [more]
47. LAPSE:2023.10902
Digital Twin for the Prediction of Extreme Loads on a Wave Energy Conversion System
February 27, 2023 (v1)
Subject: Modelling and Simulations
Keywords: Computational Fluid Dynamics, design, digital twin, extreme loads, survivability, Wave Energy
Wave energy is a renewable energy source with the potential to contribute to the global electricity demand, but a remaining challenge is the survivability of the wave energy converters in harsh offshore conditions. To understand the system dynamics and improve the reliability, experimental and numerical studies are usually conducted. However, these processes are costly and time-consuming. A statistical model able to provide equivalent results is a promising approach. In this study, the digital twin of the CFD solution is developed and implemented for the prediction of the force in the mooring system of a point-absorber wave energy converter during extreme wave conditions. The results show that the digital twin can predict the mooring force with 90.36% average accuracy. Moreover, the digital twin needs only a few seconds to provide the solution, while the CFD code requires up to several days. By creating a digital analog of a wave energy converter and showing that it is able to predict... [more]
48. LAPSE:2023.10748
Site Selection of Combined Offshore Wind and Wave Energy Farms: A Systematic Review
February 27, 2023 (v1)
Subject: Environment
Keywords: evaluation criteria, multi-criteria decision-making, offshore wind energy, resource assessment, restrictions, site selection, Wave Energy
Growing energy demand worldwide and onshore limitations have increased interest in offshore renewable energy exploitation. A combination of offshore renewable energy resources such as wind and wave energy can produce stable power output at a lower cost compared to a single energy source. Consequently, identifying the best locations for constructing combined offshore renewable energy farms is crucial. This paper investigates the technical, economic, social, and environmental aspects of Combined Offshore Wind and Wave Energy Farm (COWWEF) site selection. Past literature was evaluated using a systematic review method to synthesize, criticize, and categorize study regions, dataset characteristics, constraints, evaluation criteria, and methods used for the site selection procedure. The results showed that most studied regions belong to European countries, and numerical model outputs were mainly used in the literature as met-ocean data due to the limited coverage and low spatiotemporal resol... [more]
49. LAPSE:2023.10523
Use of Magnetostrictive Actuators for Wave Energy Conversion with Improvised Structures
February 27, 2023 (v1)
Subject: Process Operations
Keywords: deformable structures, magnetostriction, power take-off, short-term operation, Wave Energy
This paper presents work on a wave energy device with an on-board power take-off based on a magnetostrictively actuated deformable structure. Such devices potentially could be used in low-cost, short-term expeditionary operations. The paper discusses an analytical model that describes the heave oscillations of a buoy with two inclined, overhanging beams with magnetostrictive strips affixed to them. This work comprises the first steps toward an analytical model that would enable potential users to obtain quick power estimates at the planning stage. Here, the fully nonlinear magneto-mechanical-electrical constitutive relations are linearized about a desirable operating point, and a coupled dynamic model is derived using a variational formulation that includes buoy heave, flexural oscillations of the two beams, and the voltage response of the magnetostrictive strips. Energy conversion performance in wind-sea-dominated Pierson−Moskowitz spectra is found to be modest. However, present resul... [more]
50. LAPSE:2023.9184
Optimisation of Control Algorithm for Hydraulic Power Take-Off System in Wave Energy Converter
February 27, 2023 (v1)
Subject: Process Control
Keywords: experimental testing, fluid power, hydraulics, numerical simulation, power take-off, Wave Energy, wave power extraction algorithm
Wave energy converters are still a maturing technology and, as such, still face a series of challenges before they can compete with already-established technologies. One of these challenges is optimising the amount of energy extracted from the waves and delivered to the power grid. This study investigates the possibility of increasing the energy output of the existing hydraulic power take-off system of a wave energy converter made by Floating Power Plant during small-scale testing of their hybrid wind and wave energy platform. This system consists of a floater arm that rotates an axle when displaced by the waves. When the axle rotates, two hydraulic cylinders are actuated, displacing oil to run through a hydraulic motor driving an electric generator. The energy extraction is controlled by implementing a control algorithm on a series of on/off valves, which decouples the two hydraulic cylinders driving the hydraulic motor, and by varying the applied torque from the generator to match th... [more]