LAPSE:2023.3310
Published Article

LAPSE:2023.3310
A Novel Approach for Optimizing Building Energy Models Using Machine Learning Algorithms
February 22, 2023
Abstract
The current practice with building energy simulation software tools requires the manual entry of a large list of detailed inputs pertaining to the building characteristics, geographical region, schedule of operation, end users, occupancy, control aspects, and more. While these software tools allow the evaluation of the energy consumption of a building with various combinations of building parameters, with the manual information entry and considering the large number of parameters related to building design and operation, global optimization is extremely challenging. In the present paper, a novel approach is developed for the global optimization of building energy models (BEMs) using Python EnergyPlus. A Python-based script is developed to automate the data entry into the building energy modeling tool (EnergyPlus) and numerous possible designs that cover the desired ranges of multiple variables are simulated. The resulting datasets are then used to establish a surrogate BEM using an artificial neural network (ANN) which is optimized through two different approaches, including Bayesian optimization and a genetic algorithm. To demonstrate the proposed approach, a case study is performed for a building on the campus of the Florida Institute of Technology, located in Melbourne, FL, USA. Eight parameters are selected and 200 variations of them are supplied to EnergyPlus, and the produced results from the simulations are used to train an ANN-based surrogate model. The surrogate model achieved a maximum of 90% R2 through hyperparameter tuning. The two optimization approaches, including the genetic algorithm and the Bayesian method, were applied to the surrogate model, and the optimal designs achieved annual energy consumptions of 11.3 MWh and 12.7 MWh, respectively. It was shown that the approach presented bridges between the physics-based building energy models and the strong optimization tools available in Python, which can allow the achievement of global optimization in a computationally efficient fashion.
The current practice with building energy simulation software tools requires the manual entry of a large list of detailed inputs pertaining to the building characteristics, geographical region, schedule of operation, end users, occupancy, control aspects, and more. While these software tools allow the evaluation of the energy consumption of a building with various combinations of building parameters, with the manual information entry and considering the large number of parameters related to building design and operation, global optimization is extremely challenging. In the present paper, a novel approach is developed for the global optimization of building energy models (BEMs) using Python EnergyPlus. A Python-based script is developed to automate the data entry into the building energy modeling tool (EnergyPlus) and numerous possible designs that cover the desired ranges of multiple variables are simulated. The resulting datasets are then used to establish a surrogate BEM using an artificial neural network (ANN) which is optimized through two different approaches, including Bayesian optimization and a genetic algorithm. To demonstrate the proposed approach, a case study is performed for a building on the campus of the Florida Institute of Technology, located in Melbourne, FL, USA. Eight parameters are selected and 200 variations of them are supplied to EnergyPlus, and the produced results from the simulations are used to train an ANN-based surrogate model. The surrogate model achieved a maximum of 90% R2 through hyperparameter tuning. The two optimization approaches, including the genetic algorithm and the Bayesian method, were applied to the surrogate model, and the optimal designs achieved annual energy consumptions of 11.3 MWh and 12.7 MWh, respectively. It was shown that the approach presented bridges between the physics-based building energy models and the strong optimization tools available in Python, which can allow the achievement of global optimization in a computationally efficient fashion.
Record ID
Keywords
building energy model, Energy, Energy Efficiency, genetic algorithms, Optimization, Python, Simulation
Subject
Suggested Citation
Kubwimana B, Najafi H. A Novel Approach for Optimizing Building Energy Models Using Machine Learning Algorithms. (2023). LAPSE:2023.3310
Author Affiliations
Kubwimana B: Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA [ORCID]
Najafi H: Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
Najafi H: Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
Journal Name
Energies
Volume
16
Issue
3
First Page
1033
Year
2023
Publication Date
2023-01-17
ISSN
1996-1073
Version Comments
Original Submission
Other Meta
PII: en16031033, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2023.3310
This Record
External Link

https://doi.org/10.3390/en16031033
Publisher Version
Download
Meta
Record Statistics
Record Views
236
Version History
[v1] (Original Submission)
Feb 22, 2023
Verified by curator on
Feb 22, 2023
This Version Number
v1
Citations
Most Recent
This Version
URL Here
https://psecommunity.org/LAPSE:2023.3310
Record Owner
Auto Uploader for LAPSE
Links to Related Works
