LAPSE:2023.16117
Published Article
LAPSE:2023.16117
Cost and Emissions Reduction in CO2 Capture Plant Dependent on Heat Exchanger Type and Different Process Configurations: Optimum Temperature Approach Analysis
Solomon Aforkoghene Aromada, Nils Henrik Eldrup, Lars Erik Øi
March 3, 2023
The performance of a plate heat exchanger (PHE), in comparison with the conventional shell and tube types, through a trade-off analysis of energy cost and capital cost resulting from different temperature approaches in the cross-exchanger of a solvent-based CO2 capture process, was evaluated. The aim was to examine the cost reduction and CO2 emission reduction potentials of the different heat exchangers. Each specific heat exchanger type was assumed for the cross-exchanger, the lean amine cooler and the cooler to cool the direct contact cooler’s circulation water. The study was conducted for flue gases from a natural-gas combined-cycle power plant and the Brevik cement plant in Norway. The standard and the lean vapour compression CO2 absorption configurations were used for the study. The PHE outperformed the fixed tube sheet shell and tube heat exchanger (FTS-STHX) and the other STHXs economically and in emissions reduction. The optimal minimum temperature approach for the PHE cases based on CO2 avoided cost were achieved at 4 °C to 7 °C. This is where the energy consumption and indirect emissions are relatively low. The lean vapour compression CO2 capture process with optimum PHE achieved a 16% reduction in CO2 avoided cost in the cement plant process. When the available excess heat for the production of steam for 50% CO2 capture was considered together with the optimum PHE case of the lean vapour compression process, a cost reduction of about 34% was estimated. That is compared to a standard capture process with FTS-STHX without consideration of the excess heat. This highlights the importance of the waste heat at the Norcem cement plant. This study recommends the use of plate heat exchangers for the cross-heat exchanger (at 4−7 °C), lean amine cooler and the DCC unit’s circulation water cooler. To achieve the best possible CO2 capture process economically and in respect of emissions reduction, it is imperative to perform energy cost and capital cost trade-off analysis based on different minimum temperature approaches.
Keywords
Carbon Dioxide Capture, MEA, process simulation, Technoeconomic Analysis, waste heat
Suggested Citation
Aromada SA, Eldrup NH, Øi LE. Cost and Emissions Reduction in CO2 Capture Plant Dependent on Heat Exchanger Type and Different Process Configurations: Optimum Temperature Approach Analysis. (2023). LAPSE:2023.16117
Author Affiliations
Aromada SA: Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Kjølnes Ring 56, 3918 Porsgrunn, Norway
Eldrup NH: SINTEF Tel-Tek, SINTEF Industri, Forskningsparken, Hydrovegen 67, 3936 Porsgrunn, Norway
Øi LE: Department of Process, Energy and Environmental Technology, University of South-Eastern Norway, Kjølnes Ring 56, 3918 Porsgrunn, Norway
Journal Name
Energies
Volume
15
Issue
2
First Page
425
Year
2022
Publication Date
2022-01-07
Published Version
ISSN
1996-1073
Version Comments
Original Submission
Other Meta
PII: en15020425, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2023.16117
This Record
External Link

doi:10.3390/en15020425
Publisher Version
Download
Files
[Download 1v1.pdf] (6.8 MB)
Mar 3, 2023
Main Article
License
CC BY 4.0
Meta
Record Statistics
Record Views
90
Version History
[v1] (Original Submission)
Mar 3, 2023
 
Verified by curator on
Mar 3, 2023
This Version Number
v1
Citations
Most Recent
This Version
URL Here
https://psecommunity.org/LAPSE:2023.16117
 
Original Submitter
Auto Uploader for LAPSE
Links to Related Works
Directly Related to This Work
Publisher Version