Proceedings of ESCAPE 35ISSN: 2818-4734
Volume: 4 (2025)
Table of Contents
LAPSE:2025.0431v1
Published Article
LAPSE:2025.0431v1
A White-Box AI Framework for Interpretable Global Warming Potential Prediction
Jaewook Lee, Ethan Errington, Miao Guo
June 27, 2025
Abstract
Accurate yet interpretable prediction of Global Warming Potential (GWP) is essential for the sustainable design of chemical products and processes. However, existing studies that utilize molecular structure and physicochemical properties for GWP prediction often suffer from low interpretability, relying on black-box models that obscure the underlying relationships between molecular descriptors and environmental impact. To address this limitation, this study employs a Kolmogorov–Arnold Network (KAN) to derive symbolic equations that establish explicit relationships between molecular properties and GWP. By extracting interpretable mathematical expressions, our approach provides a transparent foundation for decision-making in chemical processes and reaction development. Our comparative analysis of machine learning models—including Random Forest, XGBoost, Deep Neural Networks (DNN), and KAN—reveals that Mordred descriptors outperform MACCS keys in GWP prediction, emphasizing the importance of physicochemical properties. The proposed KAN model achieves predictive accuracy comparable to conventional deep learning methods while maintaining interpretability, facilitating data-driven and transparent sustainability assessments in the chemical industry.
Keywords
Environmental Impact Prediction, Explainable Artificial Intelligence XAI, Global Warming Potential GWP, Kolmogorov–Arnold Network KAN, Life Cycle Assessment LCA
Suggested Citation
Lee J, Errington E, Guo M. A White-Box AI Framework for Interpretable Global Warming Potential Prediction. Systems and Control Transactions 4:1737-1743 (2025) https://doi.org/10.69997/sct.177555
Author Affiliations
Lee J: Department of Engineering, King’s College London, London, WC2R 2LS, United Kingdom
Errington E: Department of Engineering, King’s College London, London, WC2R 2LS, United Kingdom
Guo M: Department of Engineering, King’s College London, London, WC2R 2LS, United Kingdom
Journal Name
Systems and Control Transactions
Volume
4
First Page
1737
Last Page
1743
Year
2025
Publication Date
2025-07-01
Version Comments
Original Submission
Other Meta
PII: 1737-1743-1294-SCT-4-2025, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2025.0431v1
This Record
External Link

https://doi.org/10.69997/sct.177555
Article DOI
Download
Files
Jun 27, 2025
Main Article
License
CC BY-SA 4.0
Meta
Record Statistics
Record Views
413
Version History
[v1] (Original Submission)
Jun 27, 2025
 
Verified by curator on
Jun 27, 2025
This Version Number
v1
Citations
Most Recent
This Version
URL Here
https://psecommunity.org/LAPSE:2025.0431v1
 
Record Owner
PSE Press
Links to Related Works
Directly Related to This Work
Article DOI
References Cited
  1. L. Torrente-Murciano, J.B. Dunn, et al., Nat. Chem. Eng., 1 (2024) 18-27 https://doi.org/10.1038/s44286-023-00017-x
  2. M. Peplow, Nature, 603 (2022) 780-783 https://doi.org/10.1038/d41586-022-00807-y
  3. R. Song, A.A. Keller, S. Suh, Environmental science & technology, 51 (2017) 10777-10785 https://doi.org/10.1021/acs.est.7b02862
  4. Y. Sun, X. Wang, N. Ren, Y. Liu, S. You, Environmental Science & Technology, 57 (2022) 3434-3444 https://doi.org/10.1021/acs.est.2c04945
  5. X. Zhu, C.-H. Ho, X. Wang, ACS Sustainable Chemistry & Engineering, 8 (2020) 11141-11151 https://doi.org/10.1021/acssuschemeng.0c02211
  6. S.J. Silva, C.A. Keller, Artificial Intelligence for the Earth Systems, 3 (2024) e230045 https://doi.org/10.1175/AIES-D-23-0045.1
  7. K. Letrache, M. Ramdani, in: 2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA), IEEE, 2023, pp. 1-8 https://doi.org/10.1109/SITA60746.2023.10373722
  8. G.P. Wellawatte, P. Schwaller, arXiv preprint arXiv:2311.04047, (2023)
  9. S. Lundberg, arXiv preprint arXiv:1705.07874, (2017)
  10. Z. Liu, P. Ma, Y. Wang, W. Matusik, M. Tegmark, arXiv preprint arXiv:2408.10205, (2024)
  11. Z.Liu, Y. Wang, et al., arXiv preprint arXiv:2404.19756, (2024)
  12. J.L. Durant, B.A. Leland, et al., J. Chem. Inf. Comput., 42 (2002) 1273-1280 https://doi.org/10.1021/ci010132r
  13. H. Moriwaki, Y.-S. Tian, N. Kawashita, T. Takagi, Journal of cheminformatics, 10 (2018) 1-14 https://doi.org/10.1186/s13321-018-0258-y
  14. L. Breiman, Machine learning, 45 (2001) 5-32 https://doi.org/10.1023/A:1010933404324
  15. T. Chen, C. Guestrin, in: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794 https://doi.org/10.1145/2939672.2939785
  16. D. Svozil, V. Kvasnicka, J. Pospichal, Chemometrics and intelligent laboratory systems, 39 (1997) 43-62 https://doi.org/10.1016/S0169-7439(97)00061-0
  17. F. Pedregosa, G. Varoquaux, et. al., the Journal of machine Learning research, 12 (2011) 2825-2830
  18. A. Paszke, S. Gross, et. al., Advances in neural information processing systems, 32 (2019)
  19. B.C. Koenig, S. Kim, S. Deng, Computer Methods in Applied Mechanics and Engineering, 432 (2024) 117397 https://doi.org/10.1016/j.cma.2024.117397