LAPSE:2024.0205
Published Article
LAPSE:2024.0205
Energy and Exergy Analysis of Hydrogen-Based Fluidized Bed Direct Reduction towards Efficient Fossil-Free Ironmaking
Zhan Du, Wanchao Liu, Feng Pan, Zheng Zou
February 10, 2024
Hydrogen-based fluidized bed direct reduction (H-FBDR) is an important and promising route for fossil-free ironmaking. In this study, to achieve the optimal operation state of energy use and exergy efficiency, the influences of the metallization process and the ratios of H2 injected on the energy and exergy flows in the H-FBDR process are studied. The results show that the thermodynamically designed two-stage reduction process (first: Fe2O3→FeO; second: FeO→Fe) requires a smaller H2 quantity than other metallization processes. According to the mass, energy, and exergy balance analyses, variations in the H2 consumption, exergy destruction, and energy/exergy losses of the overall system, iron ore preheater (F1), fluidized bed reactor system (R), heat exchanger (E), and gas preheater (F2) with different ratios of H2 injected (η) are derived. The total H2 consumption, total exergy destruction, and energy/exergy losses rise with increasing η, and sharp increases are observed from η = 1.3 to η = 1.8. The exergy efficiencies (φ) can be ranked as φR > φE > φF1 ≈ φF2, and the exergy destruction in components F1 and F2 is mainly caused by the combustion reaction, whereas physical exergy destruction dominates for components R and E. The performances of components F1, E, and F2 degrade from η = 1.0 to η = 1.8, and significant degradation arises when η exceeds 1.3. Thus, considering the H2 consumption, thermodynamic efficiency, and energy/exergy losses, the ratio of H2 injected should be set below 1.3. Notably, although the energy loss in the H-FBDR system is 2 GJ/h at η = 1.3, the exergy loss is only 360 MJ/h, in which the recycled gases from component E occupy 320 MJ/h, whereas the total exergy destruction is 900 MJ/h. Therefore, improving the performance of operation units, particularly the components F1 and F2, is as important as recovering the heat loss from component E for optimizing the H-FBDR process.
Keywords
energy and exergy analysis, fluidized bed, fossil-free ironmaking, H2 direct reduction, process design
Suggested Citation
Du Z, Liu W, Pan F, Zou Z. Energy and Exergy Analysis of Hydrogen-Based Fluidized Bed Direct Reduction towards Efficient Fossil-Free Ironmaking. (2024). LAPSE:2024.0205
Author Affiliations
Du Z: Chinalco Environmental Protection and Energy Conservation Group Co., Ltd., Xiong’an 071700, China; State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Liu W: Chinalco Environmental Protection and Energy Conservation Group Co., Ltd., Xiong’an 071700, China
Pan F: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Zou Z: State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Journal Name
Processes
Volume
11
Issue
9
First Page
2748
Year
2023
Publication Date
2023-09-14
Published Version
ISSN
2227-9717
Version Comments
Original Submission
Other Meta
PII: pr11092748, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2024.0205
This Record
External Link

doi:10.3390/pr11092748
Publisher Version
Download
Files
[Download 1v1.pdf] (2.8 MB)
Feb 10, 2024
Main Article
License
CC BY 4.0
Meta
Record Statistics
Record Views
30
Version History
[v1] (Original Submission)
Feb 10, 2024
 
Verified by curator on
Feb 10, 2024
This Version Number
v1
Citations
Most Recent
This Version
URL Here
https://psecommunity.org/LAPSE:2024.0205
 
Original Submitter
Calvin Tsay
Links to Related Works
Directly Related to This Work
Publisher Version