LAPSE:2023.1297
Published Article

LAPSE:2023.1297
Neural Network Model for Permeability Prediction from Reservoir Well Logs
February 21, 2023
Abstract
The estimation of the formation permeability is considered a vital process in assessing reservoir deliverability. The prediction of such a rock property with the use of the minimum number of inputs is mandatory. In general, porosity and permeability are independent rock petrophysical properties. Despite these observations, theoretical relationships have been proposed, such as that by the Kozeny−Carmen theory. This theory, however, treats a highly complex porous medium in a very simple manner. Hence, this study proposes a comprehensive ANN model based on the back propagation learning algorithm using the FORTRAN language to predict the formation permeability from available well logs. The proposed ANN model uses a weight visualization curve technique to optimize the number of hidden neurons and layers. Approximately 500 core data points were collected to generate the model. These data, including gamma ray, sonic travel time, and bulk density, were collected from numerous wells drilled in the Western Desert and Gulf areas of Egypt. The results show that in order to predict the permeability accurately, the data set must be divided into 60% for training, 20% for testing, and 20% for validation with 25 neurons. The results yielded a correlation coefficient (R2) of 98% for the training and 96.5% for the testing, with an average absolute percent relative error (AAPRE) of 2.4%. To validate the ANN model, two published correlations (i.e., the dual water and Timur’s models) for calculating permeability were used to achieve the target. In addition, the results show that the ANN model had the lowest mean square error (MSE) of 0.035 and AAPRE of 0.024, while the dual water model yielded the highest MSE of 0.84 and APPRE of 0.645 compared to the core data. These results indicate that the proposed ANN model is robust and has strong capability of predicting the rock permeability using the minimum number of wireline log data.
The estimation of the formation permeability is considered a vital process in assessing reservoir deliverability. The prediction of such a rock property with the use of the minimum number of inputs is mandatory. In general, porosity and permeability are independent rock petrophysical properties. Despite these observations, theoretical relationships have been proposed, such as that by the Kozeny−Carmen theory. This theory, however, treats a highly complex porous medium in a very simple manner. Hence, this study proposes a comprehensive ANN model based on the back propagation learning algorithm using the FORTRAN language to predict the formation permeability from available well logs. The proposed ANN model uses a weight visualization curve technique to optimize the number of hidden neurons and layers. Approximately 500 core data points were collected to generate the model. These data, including gamma ray, sonic travel time, and bulk density, were collected from numerous wells drilled in the Western Desert and Gulf areas of Egypt. The results show that in order to predict the permeability accurately, the data set must be divided into 60% for training, 20% for testing, and 20% for validation with 25 neurons. The results yielded a correlation coefficient (R2) of 98% for the training and 96.5% for the testing, with an average absolute percent relative error (AAPRE) of 2.4%. To validate the ANN model, two published correlations (i.e., the dual water and Timur’s models) for calculating permeability were used to achieve the target. In addition, the results show that the ANN model had the lowest mean square error (MSE) of 0.035 and AAPRE of 0.024, while the dual water model yielded the highest MSE of 0.84 and APPRE of 0.645 compared to the core data. These results indicate that the proposed ANN model is robust and has strong capability of predicting the rock permeability using the minimum number of wireline log data.
Record ID
Keywords
dual water, Machine Learning, neural network, permeability, weight curves, well logging
Suggested Citation
Abdel Azim R, Aljehani A. Neural Network Model for Permeability Prediction from Reservoir Well Logs. (2023). LAPSE:2023.1297
Author Affiliations
Journal Name
Processes
Volume
10
Issue
12
First Page
2587
Year
2022
Publication Date
2022-12-04
ISSN
2227-9717
Version Comments
Original Submission
Other Meta
PII: pr10122587, Publication Type: Journal Article
Record Map
Published Article

LAPSE:2023.1297
This Record
External Link

https://doi.org/10.3390/pr10122587
Publisher Version
Download
Meta
Record Statistics
Record Views
233
Version History
[v1] (Original Submission)
Feb 21, 2023
Verified by curator on
Feb 21, 2023
This Version Number
v1
Citations
Most Recent
This Version
URL Here
https://psecommunity.org/LAPSE:2023.1297
Record Owner
Auto Uploader for LAPSE
Links to Related Works
