

Supplementary Digital Material:

Techno-Economic Assessment of Decarbonization Pathways for Methanol and Formaldehyde Production: A Superstructure Optimization Approach

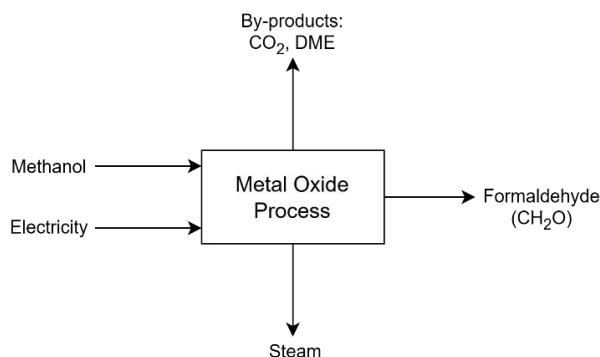
Rafailia Mitraki, Muhammad Salman, Grégoire Léonard

S1. List of abbreviations

Table S1: List of abbreviations.

Abbreviation	Meaning
ASU	Air Separation Unit
CAPEX	Capital Expenditure
CC	CO ₂ Capture
CCS	CO ₂ Capture and Storage
CH ₂ O	Formaldehyde
ETS	Emissions Trading System
IS	Industrial Symbiosis
KPI	Key Performance Indicator
MEA	Monoethanolamine
MeOH	Methanol
MILP	Mixed-Integer Linear Programming
MSW	Municipal Solid Waste
NG	Natural Gas
OPEX	Operational Expenditure
RDF	Refuse-Derived Fuel
STC	Specific Total Cost
T&S	Transport and Storage

Table S2: Configurations for emission mitigation during formaldehyde production.


Abbreviation	Configuration details
NG	Steam methane reforming (SMR)
NG-CC	SMR + MEA-based CC
BG	Biogas tri-reforming
BG-CC	Biogas tri-reforming + MEA-based CC
BM	Biomass gasification
BM-CC	Biomass gasification + MEA-based CC
MSW	MSW gasification
MSW-CC	MSW gasification + MEA-based CC
P2X	Power-to-methanol (direct route)
P2X-CC	Power-to-methanol + MEA-based CC

S2. Process description and data for model development

Formaldehyde production through metal oxide process:

Table S3: Input parameters for the metal oxide process model.

Parameter	Value	Units	Source
Mass & energy balances			
Methanol	1.143	t/t CH ₂ O	From [1]
Electricity	135	kWh/t CH ₂ O	From [1]
Saturated steam (12 barg)	2	t/t CH ₂ O	From [1] and [2]
CO ₂	0.018	t/t CH ₂ O	Average from [1]
DME	0.012	t/t CH ₂ O	Average from [1]
Economics			
Total CAPEX	9,600,000	USD ₂₀₁₂	For 20,000 t CH ₂ O/y [3]
Lifetime	30	Years	
Discount rate	6%	-	

Figure S1: Metal oxide process represented as a black box.

Methanol production routes:

MeOH required for formaldehyde production can be supplied via five different routes.

- 1) **Steam Methane Reforming (SMR):** Steam methane reforming, operated at high temperature (700–1100°C, achieved by natural gas combustion) and pressure (20–30 bar), uses natural gas as feedstock and yields syngas, i.e., a mixture of mainly CO, CO₂, and H₂, via reactions (1) and (2) in presence of steam. Subsequent methanol synthesis occurs at moderate temperature (200–300°C) and high pressure (50–100 bar) in a catalytic reactor, according to reactions (3) and (4). The water-methanol mixture obtained is finally separated via distillation, requiring steam.

2) **Biomass gasification:** Solid biomass (e.g., agricultural or forestry residues, such as wood or straw) is dried and fed to a pressurized steam/oxygen-blown thermal gasifier ($\sim 850^\circ\text{C}$). Oxygen injection partially oxidizes the biomass feed, generating heat for drying, pyrolysis, and gasification reactions. Biomass is converted into bio-syngas, which requires gas cleaning and conditioning to (1) remove tars, ashes, and other impurities, and (2) adjust the H_2/CO ratio via water-gas shift (see reaction (2)). The clean and conditioned syngas is subsequently converted to methanol.

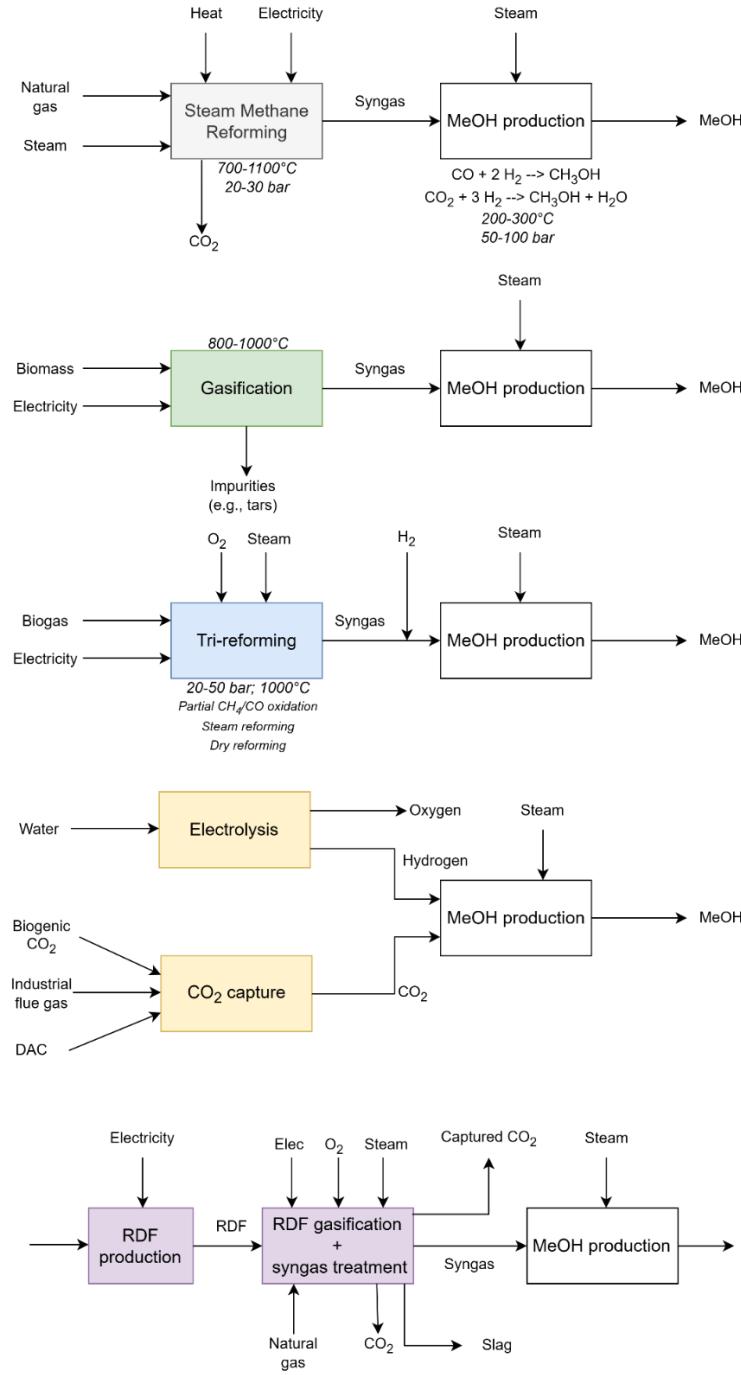
3) **Biogas tri-reforming:** Syngas for methanol production can also be produced from biogas (a mixture of 50–75 vol% CH_4 and 25–50 vol% CO_2). In the present study, biogas is assumed to undergo tri-reforming, combining

- Steam reforming: $\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3 \text{H}_2$
- Dry reforming: $\text{CH}_4 + \text{CO}_2 \rightarrow 2 \text{CO} + 2 \text{H}_2$
- Partial oxidation of CH_4 and CO to generate heat: $\text{CH}_4 + \frac{1}{2}\text{O}_2 \rightarrow \text{CO} + 2 \text{H}_2$ and $2 \text{CO} + \text{O}_2 \rightarrow 2 \text{CO}_2$. The process takes place at high temperature and pressure (1000°C , 20–50 bar) and requires addition of oxygen. Syngas composition can be adapted by external hydrogen addition.

4) **Power-to-Methanol:** CO_2 (captured from biogenic sources, industrial point sources, or Direct Air Capture) is combined with hydrogen (produced by water electrolysis) to produce methanol via direct route (i.e., without reverse water gas shift reaction): $3 \text{H}_2 + \text{CO}_2 \leftrightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O}$.

5) **Waste-to-Methanol:** Refuse-derived fuel (a fraction of municipal solid waste—assumed to contain 60% biogenic carbon [4]—with higher heating value, obtained after sorting and pre-treatment) undergoes oxygen-blown gasification at high temperature, with direct melting of the inert fraction. From the gasifier exit the desired syngas and an inert slag. Process temperatures vary between $600\text{--}800^\circ\text{C}$ in the gasification zone and 1600°C in the melting zone, and heat is assumed to be supplied by natural gas combustion. The obtained syngas is cleaned and conditioned to reach a suitable C/H ratio through water-gas shift and amine-absorption-based CO_2 capture, before subsequent methanol synthesis and purification.

Regarding technology economics, an interest rate of 6% is considered for SMR, while all alternative feedstock options are set at an interest rate of 8%.


Table S4: Input parameters for the models of the methanol production routes.

Parameter	Value	Units	Source
Steam Methane Reforming			
Natural gas (feedstock + heat)	30.4	GJ/t MeOH	From [5]
Water	0.85	t/t MeOH	From [5]
Electricity	74	kWh/t MeOH	From [5]
CO_2 (from combustion)	0.38	t/t MeOH	Computed based on NG demand for heat

CAPEX	31,200,000	USD	For 182 t MeOH/d, from [6]
Biogas reforming			
Biogas	4.10	kWh/kg MeOH	From [7]
Electricity	0.34	kWh/kg MeOH	From [7]
Hydrogen	0.07	kg/kg MeOH	From [7]
Oxygen	0.43	kg/kg MeOH	From [7]
Steam	0.85	kWh/kg MeOH	67% of steam for MeOH distillation, from [7]
CAPEX	2870	€/kW	From [7]
Power-to-MeOH			
<i>Methanol production</i>			
CO ₂	1.4	t/t MeOH	From [7]
H ₂	0.19	t/t MeOH	From [7]
Electricity (excluding electrolysis)	0.1	MWh/t MeOH	From [7]
Steam	0.58	MWh/t MeOH	From [7]
CAPEX	1350	€/kW	From [7]
<i>Alkaline electrolysis</i>			
Electricity	52	kWh/kg H ₂	From [7]
CAPEX	875	€/kW	From [7]
MSW-to-MeOH			
<i>RDF production</i>			
MSW	1.345	MJ/MJ _{RDF}	From [8]
Electricity	0.0245	MJ/MJ _{RDF}	From [8]
<i>RDF gasification</i>			
RDF	8739	kWh/t MeOH	From [9]
Electricity	1594	kWh/t MeOH	From [9]
Oxygen	1.315	t/t MeOH	From [9]
Steam	1469	kWh/t MeOH	From [9]
Natural gas	1061	kWh/t MeOH	From [9]
Slag	0.445	t/t MeOH	From [9]
Captured CO ₂	1.519	t/t MeOH	From [9]
Emitted CO ₂	0.08	t/t MeOH	From [9]
CAPEX	189,000,000	€ ₂₀₁₇	From [10]

CO₂ capture unit:

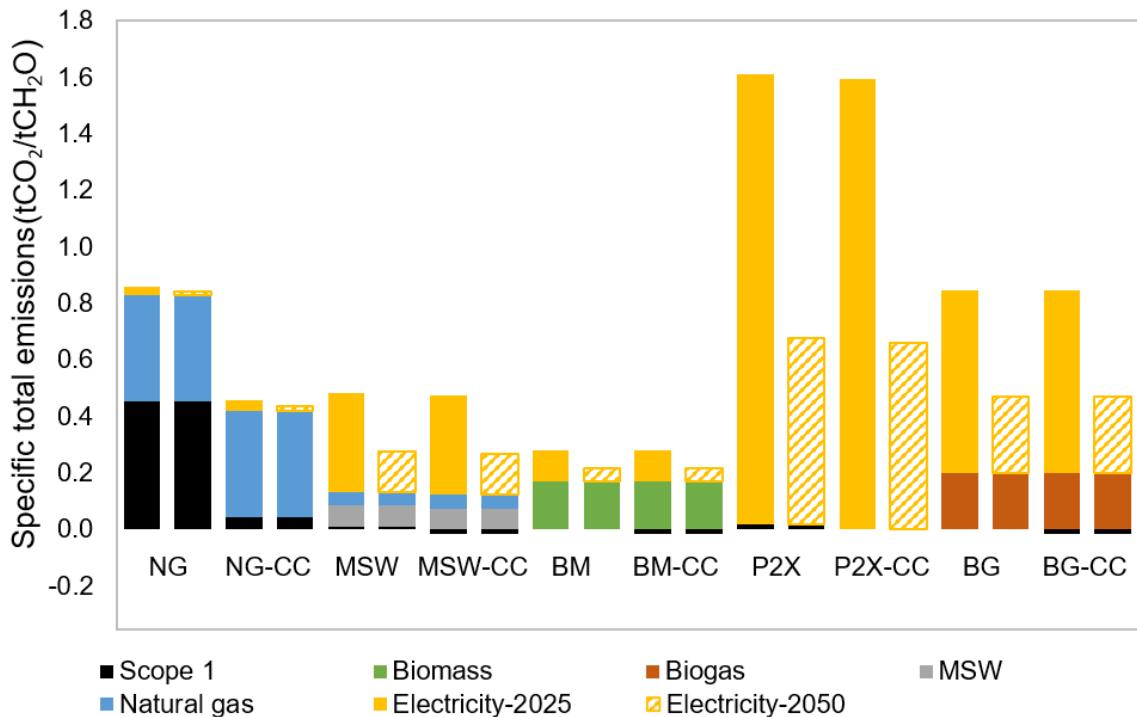
Energy requirements (heating, cooling, electricity) and CAPEX are determined based on correlations developed by Kim et al. [11]. An inlet CO₂ fraction of 4 mol% and flue gas flowrate of 0.81 kmol/s are assumed. Heating is assumed to be provided by an external NG-fired boiler.

Figure S2: Methanol production routes represented as black boxes.

S3.CO₂ emission factors

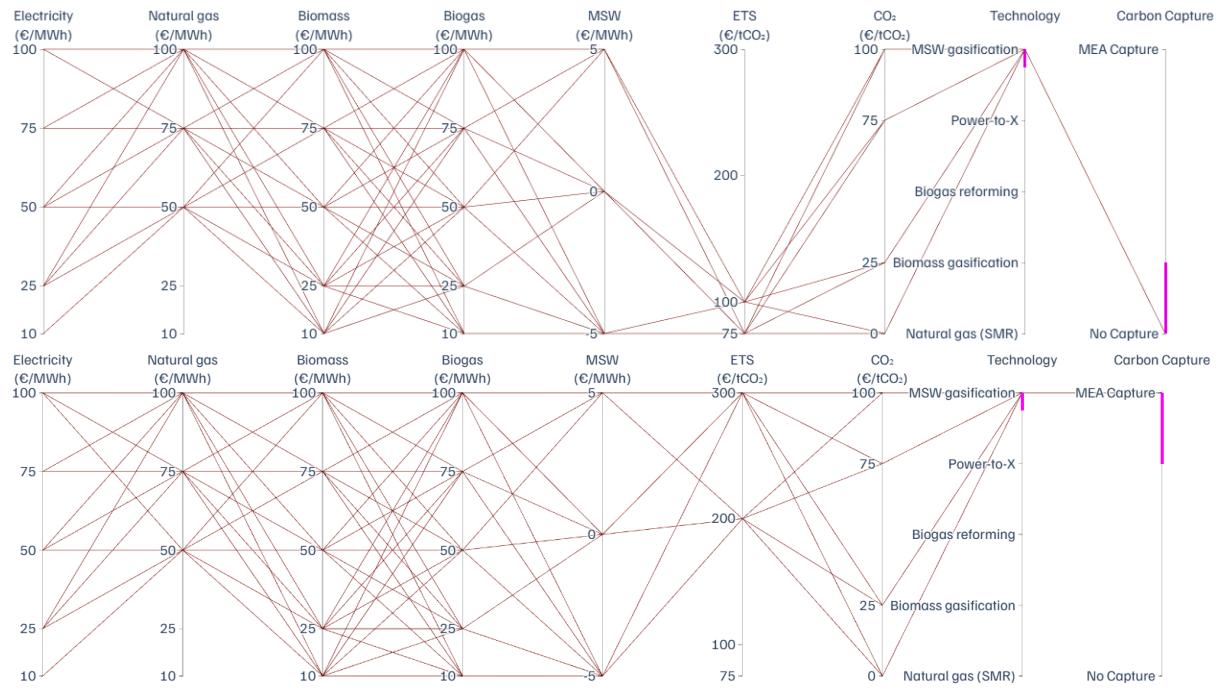
Table S5: Indirect emissions for various energy commodities (in kg CO₂/kWh).

Energy commodity	2025	2050	Source
Natural gas	0.039	0.039	[12]
Electricity	0.138	0.057	[13]+ Computed according to eq. (5)
Biogas	0.043	0.043	[14]
Biomass	0.016	0.016	[15]
MSW	0.006	0.006	[4] (transport only)


CO₂ emissions related to electricity production are computed based on (current and future) electricity production mixes [16] and the associated emission factor from the Ecoinvent database [17] [18] [19] [20] [21] [22] [23] [24] [25], according to the equation below.

$$EmF_e = \sum_{t \in \text{type}} s_t \cdot i_t \quad (5)$$

Where s_t and i_t represent, respectively, the share and the specific impact of electricity produced via route t (i.e., wind turbine, solar panels, natural gas, etc.).


Production route t	Share s_t – 2050 scenario	Impact i_t (kgCO ₂ /kWh)
Wind onshore	32%	0.019
Wind offshore	25%	0.015
Solar	33%	0.090
Other RES	2%	0.063
Hydro and pumped storage	4%	0.315
Nuclear	4%	0.006
Methane	0%	0.501

S4. Total CO₂ emissions for different formaldehyde production routes

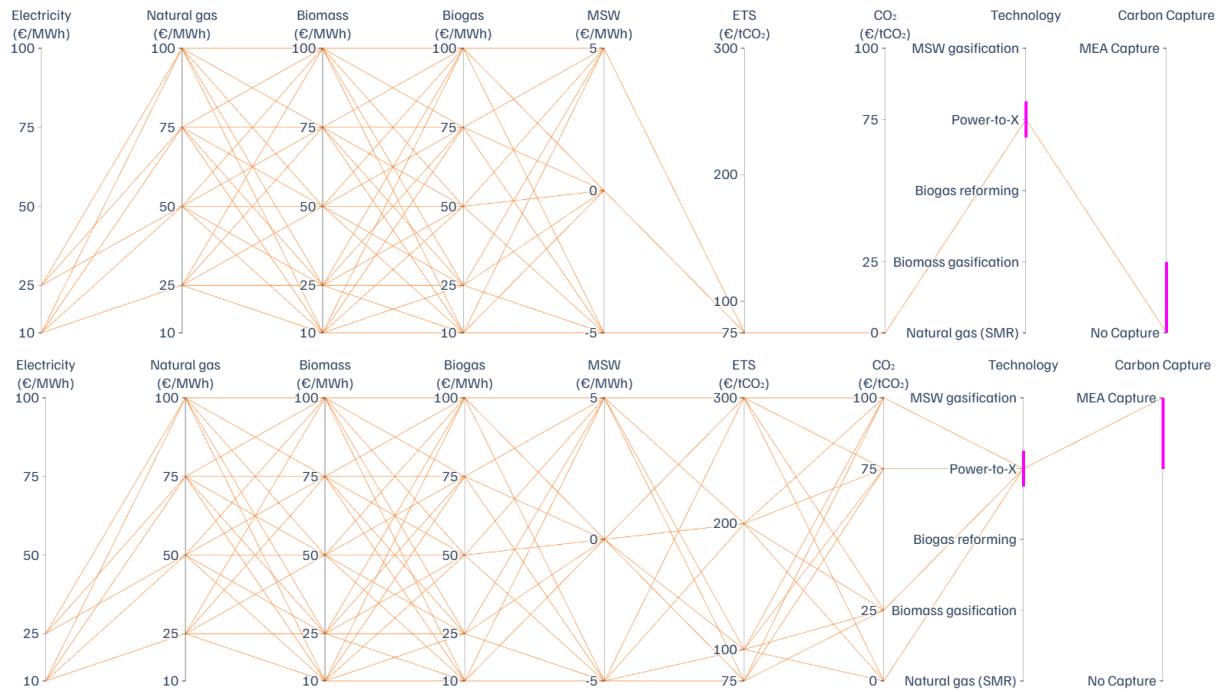
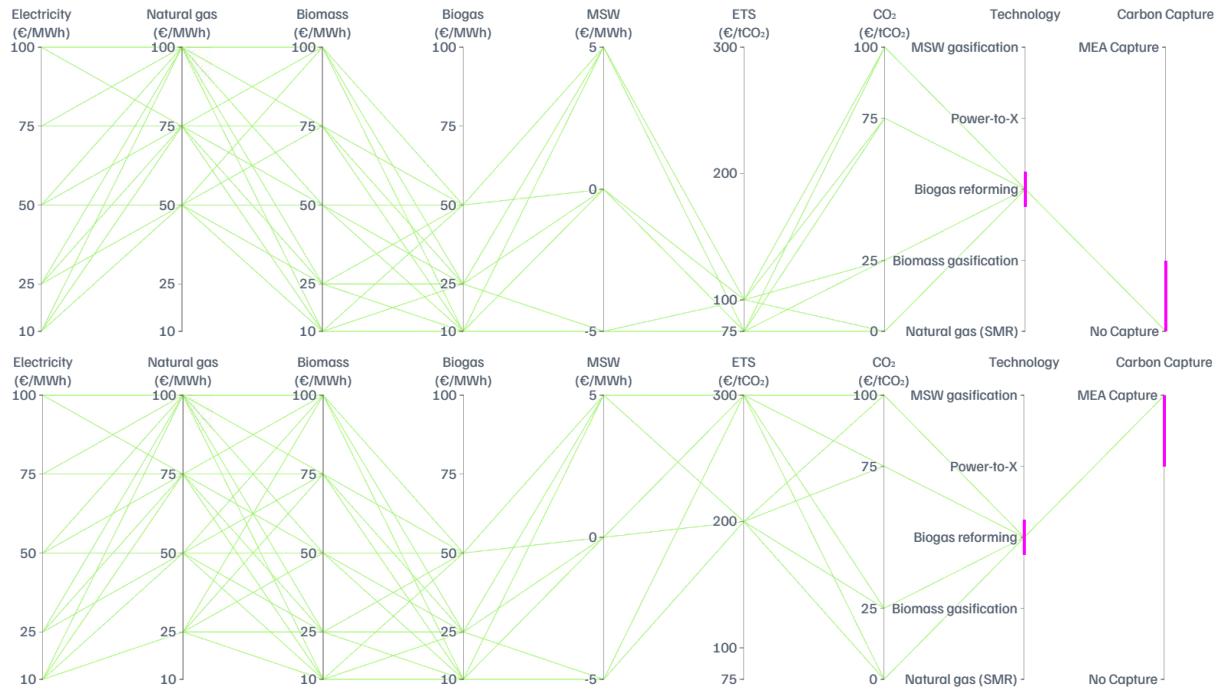
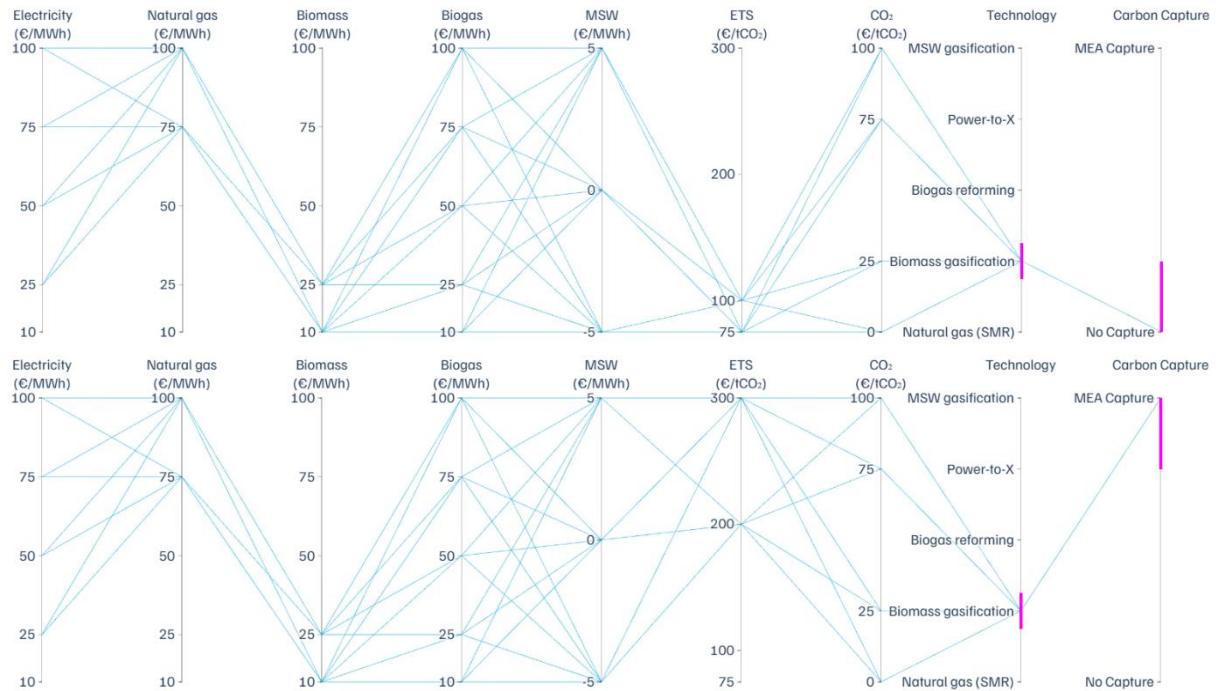


Figure S3: Total CO₂ emissions breakdown by source for different formaldehyde production routes (left bars: electricity is sourced from the current Belgian grid; right bars: electricity is supplied by the 2050 European electricity mix).


S5. Parameter sweep results


Figure S4: Solution space of economic optimality for MSW (top) and MSW-CC (bottom).

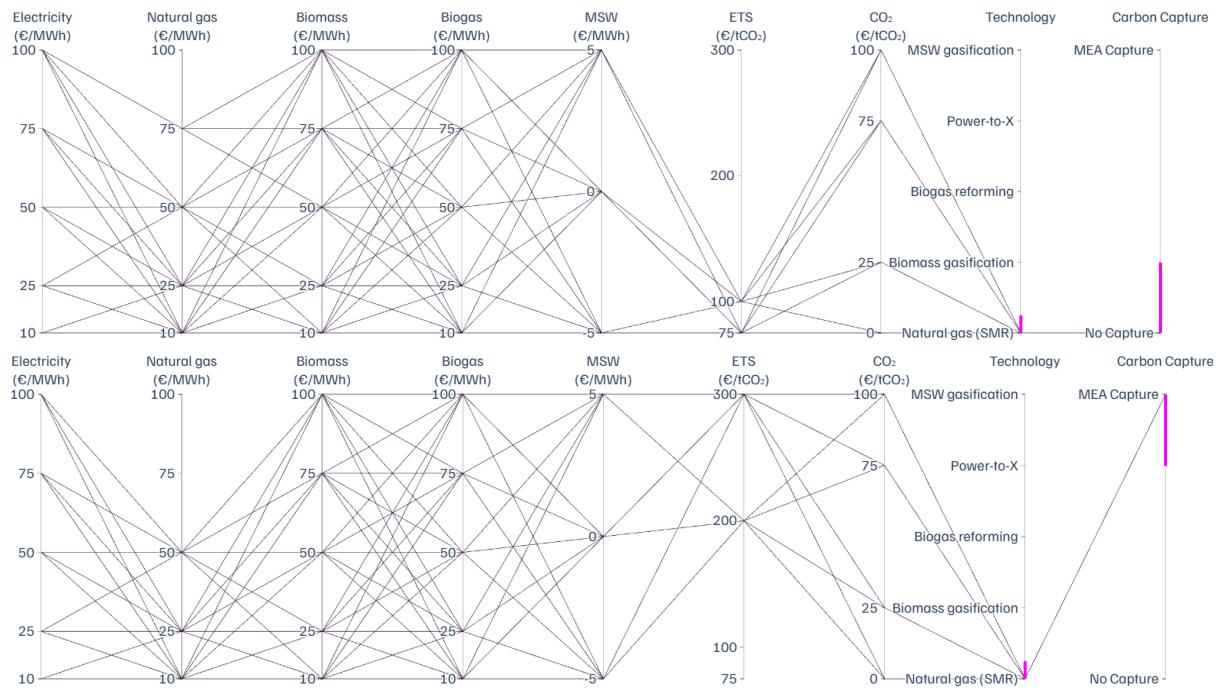

Figure S5: Solution space of economic optimality for P2X (top) and P2X-CC (bottom).

Figure S6: Solution space of economic optimality for BG (top) and BG-CC (bottom).

Figure S7: Solution space of economic optimality for BM (top) and BM-CC (bottom).

Figure S8: Solution space of economic optimality for NG (top) and NG-CC (bottom).

References

- [1] H. Falcke, S. Holbrook, I. Clenahan, A. Lopez Carretero, T. Sanalan, T. Brinkmann, J. Roth, B. Zerger, S. Roudier and L. Delgado Sancho, "Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals: Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)," Publications Officice of the European Union, Luxembourg, 2017.
- [2] Johnson Matthey, "Formaldehyde production technology and catalysts," [Online]. Available: <https://matthey.com/products-and-markets/chemicals/process-licensing/formox-formaldehyde-process>. [Accessed October 2025].
- [3] A. W. Franz, H. Kronemayer, D. Pfeiffer, R. D. Pilz, G. Reuss, W. Disteldorf, A. O. Gamer and A. Hilt, "Formaldehyde," in *Ullmann's Encyclopedia of Industrial Chemistry*, John Wiley & Sons, Ltd, 2016, pp. 1-34.
- [4] EcoInvent, "Market group for municipal solid waste," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/17786/impact_assessment. [Accessed November 2025].
- [5] EcoInvent, "Methanol production," [Online]. Available: <https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/9105/documentation>. [Accessed November 2025].

- [6] E. Correa-Quintana, Y. Muñoz-Maldonado and A. Ospino-Castro, "Financial Evaluation of Alternatives for Industrial Methanol Production Using Renewable Energy with Heat Pump Technology," *Energies*, vol. 17, no. 22, 2024.
- [7] Danish Energy Agency, "Renewable fuels: Technology descriptions and projections for long-term energy system planning," Copenhagen, 2025.
- [8] C. Q. Cerqueira, E. E. S. Lora, L. . L. P. de Souza, M. M. V. Leme, R. M. Barros and O. J. Venturini, "Life Cycle Assessment of Methanol Production from Municipal Solid Waste: Environmental Comparison with Landfilling and Incineration," *Resources*, vol. 14, no. 1, 2025.
- [9] A. Borgogna, A. Salladini, L. Spadacini, A. Pitrelli, M. Annesini and G. Iaquaniello, "Methanol production from Refuse Derived Fuel: Influence of feedstock composition on process yield through gasification analysis," *Journal of Cleaner Production*, vol. 235, pp. 1080-1089, 2019.
- [10] G. Iaquaniello, G. Centi, A. Salladini, E. Palo, S. Perathoner and L. Spadaccini, "Waste-to-methanol: Process and economics assessment," *Bioresource Technology*, vol. 243, pp. 611-619, 2017.
- [11] S.-M. Kim and G. Léonard, "CO2 Capture Technologies and Shortcut Cost Correlations for Different Inlet CO2 Concentrations and Flow Rates. Part 1: Chemical Absorption," *International Journal of Greenhouse Gas Control*, vol. 145, 2025.
- [12] "Market for natural gas, low pressure (BE)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/26247/impact_assessment. [Accessed August 2025].
- [13] Statista, "Carbon intensity of the power sector in Belgium from 2000 to 2023," [Online]. Available: <https://www.statista.com/statistics/1290132/carbon-intensity-power-sector-belgium/?srsltid=AfmBOoqfuubJrNMT6vsmnAsPTypbdz6XdMnVDmhe7Ar5FNLxiLcDoYk7>. [Accessed January 2026].
- [14] Ecoinvent, "Market for biogas," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/18482/impact_assessment. [Accessed August 2025].
- [15] "Market for bundle, energy wood, measured as dry mass (RoW)," [Online]. Available: <https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/23171/documentation>. [Accessed August 2025].
- [16] ENTSO-E & ENTSOG, "TYNDP 2024: Scenarios Report - Final Version," January 2025.
- [17] "Electricity production, wind, 1-3MW turbine, onshore (BE)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/534/impact_assessment. [Accessed August 2025].

- [18] "Electricity production, wind, >3MW turbine, onshore (BE)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/4409/impact_assessment. [Accessed August 2025].
- [19] "Electricity production, wind, 1-3MW turbine, offshore (BE)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/2945/impact_assessment. [Accessed August 2025].
- [20] "Electricity production, photovoltaic, 3kWp slanted-roof installation, multi-Si, panel, mounted (BE)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/6696/impact_assessment. [Accessed August 2025].
- [21] "Electricity production, photovoltaic, 3kWp slanted-roof installation, single-Si, panel, mounted (BE)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/8058/impact_assessment. [Accessed August 2025].
- [22] "Electricity production, photovoltaic, 570kWp open ground installation, multi-Si (BE)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/16924/impact_assessment. [Accessed August 2025].
- [23] "Electricity production, deep geothermal (FR)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/16345/impact_assessment. [Accessed August 2025].
- [24] "Electricity production, hydro, pumped storage (BE)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/1553/impact_assessment. [Accessed August 2025].
- [25] "Electricity production, nuclear, pressure water reactor (BE)," [Online]. Available: https://ecoquery.ecoinvent.org/3.9.1/cutoff/dataset/8228/impact_assessment. [Accessed August 2025].