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ABSTRACT 
Renewable energy and energy efficiency are increasingly recognised as crucial for creating new 
economic opportunities and mitigating environmental impacts. Anaerobic digestion (AD) trans-
forms organic materials into a clean, renewable energy source. Co-digestion of various organic 
wastes and energy crops addresses the disadvantages of single-substrate digestion, increasing 
production flexibility yet adding process complexity and sensitivity. This study employs a two-
pronged approach to optimise biogas production while considering global warming potential: a 
nonlinear programming (NLP) model for dynamic system economic optimisation with a model pre-
dictive control (MPC) strategy for precise temperature regulation within the digester. The NLP 
model integrates a combined heat and power (CHP) system to leverage dynamic electricity, heat, 
and gas prices, accounting for physical and economic parameters such as biomethane potential, 
chemical oxygen demand, and substrate density. A cardinal temperature and pH model ensures 
accurate depiction of substrate degradation and gas production rates under varying conditions. 
The MPC scheme, formulated as a system of differential-algebraic equations, offers fine-grained 
temperature control, capturing real-world complexities like heating/cooling delays, ambient con-
ditions, and multiple feed components with different optimal digestion temperatures. Results 
demonstrate that this integrated model optimises the interaction between electricity production, 
biogas generation, and CHP operation for real-time multi-objective optimisation of profit, global 
warming potential and temperature control. A case study validates the model’s capability for guid-
ing decision-making in biogas facilities, emphasising strategic feedstock management and precise 
temperature control. Overall, this integrated approach advances the modelling and control of an-
aerobic co-digestion systems, enhancing both efficiency and profitability in biogas production. 
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INTRODUCTION 
In addition to reducing carbon emissions, renewable 

energy sources lessen dependency on fossil fuels[1]. 
Anaerobic digestion (AD) is a well-established and 
reliable method to convert organic feedstocks into clean 
energy. However, single-substrate digestion often limits 
operational flexibility and productivity [2]. Co-digestion—
processing multiple substrates, such as organic waste 

and energy crops, simultaneously can significantly 
enhance biogas yields by leveraging the complementary 
characteristics of diverse feedstocks [3]. Despite these 
advantages, co-digestion introduces greater process 
complexity, increasing sensitivity to variables such as 
substrate composition, retention times, temperature 
control, and microbial balance [4]. These interdependent 
factors influence microbial growth, digestion kinetics, 
and, ultimately, system efficiency. 
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Optimising co-digestion processes therefore 
requires innovative solutions that integrate both the 
physical and economic dimensions of AD systems. A 
range of control strategies has been developed for AD; 
however, few of these strategies are deployed in industry 
due to the variability in waste characteristics and 
operating conditions [5]. Classical PID controllers, fuzzy 
logic expert systems, and neural networks are among the 
most common approaches, targeting controlled variables 
such as methane flow rate, pH, and chemical oxygen 
demand (COD). Moreover, several researchers have 
explored using model predictive control (MPC) in AD[6], 
motivated by its capability to handle multivariable 
processes with constraints. Despite this progress, 
predictive control in AD remains challenging due to the 
nonlinear, and the uncertain nature of the biochemical 
processes, which involve numerous microbial 
populations. These complexities are amplified in co-
digestion systems because of the diverse range of 
substrates being processed simultaneously[7]. 

Recognising temperature as a crucial operational 
factor, particularly for mesophilic AD, this study applies 
MPC to regulate digester temperature, while 
simultaneously considering optimal feeding and gas 
processing strategy. Temperature exerts a direct 
influence on microbial activity and reaction rates, making 
its precise control pivotal for stable and efficient biogas 
production. While earlier work has addressed MPC for 
single-substrate AD, to the best of our knowledge, this is 
the first application of predictive control in an agricultural 
co-digestion context. By addressing both the inherent 
process complexity and the added challenges introduced 
by multiple substrates, MPC offers a promising avenue to 
improve the robustness and performance of AD systems 
under real-world operating conditions. In parallel with the 
challenges of process control, fluctuating energy prices 
underscore the need for strategic operational decisions 
in AD. Currently, studies often focus on isolated 
variables—such as temperature regulation—without 
capturing the interplay between feedstock availability, 
and market conditions. Without predictive insights into 
market trends, operators risk missing opportunities to 
maximise profitability and reduce operational risks [8]. 

Accordingly, this study proposes an integrated 
framework that combines dynamic optimisation, precise 
temperature management, and advanced price 
forecasting to enhance co-digestion-based AD systems. 
First, a nonlinear programming (NLP) model is formulated 
to optimise resource allocation and operational decisions, 
considering factors such as feedstock mix, digester 
capacity, and cost constraints. Second, a model 
predictive control (MPC) scheme ensures tight 
temperature management, accounting for real-world 
dynamics and uncertainties. Third, the Facebook Prophet 
model is used to forecast energy prices over time, 

enabling informed, data-driven decisions about biogas 
injection and energy generation. This model was selected 
due to its proven effectiveness in tackling complex 
market-related time-series forecasting challenges [9]. By 
synchronising these components, the framework aims to 
maximise production flexibility, profitability, and 
sustainability, addressing the growing demand for 
efficient, low environmental impact renewable energy 
solutions. 

METHODOLOGY 
This study presents an integrated framework that 

combines dynamic real-time process optimisation, MPC, 
and energy price forecasting to enhance both the sus-
tainability and economic viability of biogas production in 
AD systems. Figure 1 outlines the principal components 
of this approach: feedstock management, AD, energy 
generation, and product utilisation. Feedstock (e.g., 
maize and manure) is collected from harvesting sites and 
farms, where it can either be stored for later use or fed 
directly into the digester. The produced biogas follows 
two possible pathways: (1) injection into the gas grid fol-
lowing CO2 removal, or (2) utilisation as a fuel source for 
CHP units. The residual digestate is employed as an or-
ganic fertilizer, further closing the loop on waste man-
agement. 

 
Figure 1. Superstructure of proposed model 

To optimise resource utilisation and operational ef-
ficiency, an NLP model is formulated with a multi-objec-
tive function: 

𝑀𝑀𝑀𝑀𝑀𝑀[𝑍𝑍] = 𝜔𝜔1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝜔𝜔2𝐺𝐺𝐺𝐺𝐺𝐺 − 𝜔𝜔3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀  ,�𝜔𝜔𝑖𝑖 = 1 (1) 

Here, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 presents total profit of the AD process 
over the prediction horizon including profit of selling bio-
gas and electricity and production costs; 𝐺𝐺𝐺𝐺𝐺𝐺 is the 
overall global warming potential (GWP) of the process 
that is calculated by summation of the greenhouse gas 
emissions from cultivation, transport, CHP operation and, 
biogas leakage [10]; and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀   penalises tempera-
ture deviations from the optimal range. The weighting 
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factors 𝜔𝜔𝑖𝑖 allow for customising the balance between 
maximising biogas output, minimising costs, and main-
taining stable operating conditions. Physical and eco-
nomic constraints, such as biomethane potential, chemi-
cal oxygen demand, and substrate density, ensure robust 
substrate utilisation and system performance. 

A key innovation of this work is the incorporation of 
an advanced MPC scheme to regulate the digester tem-
perature. By predicting future disturbances over a de-
fined time horizon, the MPC dynamically adjusts heating 
(𝑄𝑄ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) and cooling (𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) inputs to maintain optimal 
microbial activity. The thermal balance is captured by the 
following equation, which includes heating, direct thermal 
losses, cooling, and feed-related heat terms without de-
lay for 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓: 

𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 .
𝐶𝐶𝑝𝑝𝑑𝑑𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑      =    𝑄𝑄ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

−𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, ,       (2) 

where 𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and 𝐶𝐶𝑝𝑝 are mass of the digester contents 
and specific heat capacity, respectively. To account for 
realistic response times, the control inputs for heating 
and cooling are represented by delayed states. These 
delays are modeled dynamically using first-order delay 
equations 𝑑𝑑𝑄𝑄

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑄𝑄−𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
. The parameter 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 rep-

resents the characteristic time constant for the delay as-
sociated with each process. Physically, it accounts for 
the lag in system responses due to the time required for 
heating elements, cooling mechanisms, or fluid dynamics 
to affect the digester temperature. By incorporating 
𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, the model ensures that control actions better re-
flect real-world system dynamics, improving the accu-
racy and robustness of the MPC. 

The digester mass balance is expressed as: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜, subject to a capacity constraint 𝑀𝑀 ≤ 𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑. Here 
𝑓𝑓𝑖𝑖𝑖𝑖, 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜, 𝜌𝜌, and 𝑉𝑉𝑑𝑑𝑑𝑑 are the flows of input and output, den-
sity of feedstock and volume of digester, respectively. 
The inflow rate is determined by summing mass contri-
butions of substrate and water content, whereas the out-
flow depends on a smooth step function governed by hy-
draulic retention time. This combination of material and 
energy balance constraints enables the MPC to maintain 
the digester temperature near an ideal setpoint, thus pre-
serving optimal microbial activity and stabilising biogas 
output. 

To accurately model microbial activity and biogas 
production over time, the study incorporates a cardinal 
temperature model (CTM) model [11]. This involves de-
fining constraints for the specific growth rate for sub-
strate j at time t (𝜇𝜇𝑗𝑗,𝑡𝑡

𝑇𝑇 ) and biogas production: 
𝜇𝜇𝑗𝑗,𝑡𝑡
𝑇𝑇 =

𝜇𝜇𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜�𝑇𝑇𝑡𝑡−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗��𝑇𝑇𝑡𝑡−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗�

2

�𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑗𝑗���𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑗𝑗��𝑇𝑇𝑡𝑡−𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗�−�𝑇𝑇𝑡𝑡−𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑗𝑗��𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗+𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑗𝑗−2𝑇𝑇𝑡𝑡��
 (3) 

where 𝜇𝜇𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜 is the optimal growth rate, 𝑇𝑇𝑡𝑡 is the digester 

temperature, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗, and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗 are the minimum, 
maximum, and optimal temperatures for each substrate, 
and 𝜇𝜇𝑗𝑗

𝑜𝑜𝑜𝑜𝑜𝑜is the optimal growth rate.  By using 𝜇𝜇𝑗𝑗,𝑡𝑡
𝑇𝑇 , the su-

perimposed first order model [12] was used to predict the 
maximum biomethane production in time (,𝑃𝑃𝑡𝑡):  

𝐵𝐵𝑃𝑃𝑡𝑡 = �∑ 𝐴𝐴𝑉𝑉𝑡𝑡,𝑗𝑗

∑ 𝐴𝐴𝑉𝑉𝑡𝑡,𝑗𝑗𝑗𝑗
 𝑗𝑗,𝜏𝜏 �𝐵𝐵𝐵𝐵𝑃𝑃𝑗𝑗𝑒𝑒1−𝜇𝜇𝑗𝑗,𝑡𝑡

𝑇𝑇 (𝑡𝑡−𝜏𝜏) ,                             (4) 

where 𝐴𝐴𝑉𝑉𝑡𝑡,𝑗𝑗 is the available substrate for species j at time 
t, and 𝐵𝐵𝐵𝐵𝑃𝑃𝑗𝑗 is the biomethane potential of species j. Here, 
τ is the time when substrate j is added, and (t−τ) is the 
elapsed degradation time since its introduction into the 
digester. In addition to temperature constraints, other 
factors such as the carbon-to-nitrogen (C/N) ratio and 
total solids (TS) content are integrated into the model as 
constraints to maintain feasible operation within industri-
ally relevant bands. These parameters also affect micro-
bial activity and are thus accounted for in calculating 
overall biogas production, ensuring a more comprehen-
sive and accurate representation of the AD process. 

Future energy price forecasting is integral to opti-
mising operational decisions, particularly concerning the 
timing of biogas injection into the grid versus CHP utilisa-
tion for electricity production. In this study, the Prophet 
model is used to predict electricity prices based on his-
torical data, seasonal factors, and longer-term trends. 
Formally, Facebook Prophet can be represented as [13]: 

𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑡𝑡) + 𝑠𝑠(𝑡𝑡) + ℎ(𝑡𝑡) +  𝜖𝜖𝑡𝑡,                                   (3)  
where 𝑔𝑔(𝑡𝑡) captures the piecewise linear or logistic trend, 
𝑠𝑠(𝑡𝑡) represents seasonality, ℎ(𝑡𝑡) accounts for holiday or 
special event effects, and 𝜖𝜖𝑡𝑡 is an error term. To refine 
forecasting accuracy, Bayesian optimisation is con-
ducted over key hyperparameters—such as the change-
point prior scale, seasonality prior scale, and changepoint 
range—using a rolling-window cross-validation ap-
proach. The root mean square error (RMSE) is used to 
evaluate each parameter set; if no improvement is ob-
served after multiple iterations, the search terminates 
early. 

Once the optimal hyperparameters are identified, 
the final Prophet model is retrained on a rolling basis to 
produce accurate forecasts for the upcoming months. 
These forecasts guide strategic decisions, enabling op-
erators to schedule biogas injection or CHP production 
during periods of favourable energy prices. By aligning 
operational activities with real-time market signals, the 
proposed methodology maximises revenues, promotes 
energy self-sufficiency, and supports environmental sus-
tainability within biogas-based systems. 

Case Study 

To demonstrate the performance of the model, we 
selected as case study a farm-scale AD plant with a di-
gester capacity of 7,000 m³, designed to process energy 
crop maize and manures. The feeding rate is constrained 
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by a solid retention time (SRT) of 90 days, with the max-
imum total solids content of the digester feed limited to 
35 %. All specified capacities and feed information are 
adapted from real site data provided by industrial part-
ners with some changes to feed costs. The estimated pa-
rameters in equation (3) is presented in Table 1 [14], [15]:  

Table 2. Cardinal temperature model parameters 

 𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 (C) 𝑻𝑻𝒐𝒐𝒐𝒐𝒐𝒐 (C) 𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 (C) 𝝁𝝁𝒐𝒐𝒐𝒐𝒐𝒐 (𝟏𝟏/𝐝𝐝) 
Maize -    
Manure     

 
In an hourly timestep with a nine-day prediction 

horizon, electricity and gas price data were obtained 
from the Office for National Statistics of the United King-
dom [16], [17]. The results in Figure 2 illustrate that the 
Prophet model captures key price trends for both elec-
tricity and gas, while uncertainty bands (shaded in blue) 
reflect forecast confidence. The forecasted prices (blue 
lines) track the observed values (black dots) reasonably 
well, indicating satisfactory predictive performance. Us-
ing a shorter horizon helps reduce computational com-
plexity while still providing actionable price estimates for 
operational decision-making. 

 
Figure 2. Historical data and forecasting performance for 
(a) gas price and (b) electricity prices. 

RESULTS AND DISCUSSION 
The solutions of the case study were computed by 

implementing the proposed model in Pyomo — 

comprising 6,941 constraints (1,735 nonlinear) and 7,148 
variables — and using the IPOPT solver, which effectively 
handles the non-linearities present in both the digester 
dynamics and the market-driven optimisation. The model 
was solved in 700 CPUs, demonstrating efficient compu-
tational performance given the problem's scale and com-
plexity. 

As depicted in Figure 3, the digester temperature 
tracks the ideal temperature setpoint with a small offset. 
Initially, the system demands a rapid increase in heating 
power (up to a maximum of 9000 W) to bring the digester 
from ambient conditions to near-optimal temperature, 
while significant heat losses occur due to the tempera-
ture gradient between the digester contents and the ex-
ternal environment. Given the higher cost of cooling, the 
maximum cooling power is limited to 900 W. Notably, an 
ambient temperature difference of about 20 °C was used 
to test the model’s robustness under a challenging sce-
nario. Once the system stabilises, the MPC strategy finely 
tunes both heating (𝑄𝑄ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and cooling (𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), en-

suring close setpoint tracking. These observations affirm 
the efficacy of the delayed control action in sustaining 
microbial activity and preventing temperature overshoot. 
However, it is seen that the model does not always prior-
itise temperature control due to its weighting in the ob-
jective function being relatively low, leading to trade-offs 
in how the system balances temperature regulation 
against other operational goals. 

 
Figure 3. Performance of the proposed MPC. 

As Figure 4 shows, electricity generation (blue 
bars) is presented alongside biogas sold to the grid (red 
line). The fluctuations in biogas sales are a result of real-
time optimisation of feed rates and substrate composi-
tions, driven by both technical constraints and market 
opportunities. During periods of higher electricity prices, 
the optimised solution diverts a greater proportion of bi-
ogas to the CHP unit, thereby maximising on-site power 
output for export. Conversely, when injecting gas into the 
grid proves more profitable, surplus biogas is channelled 
away from the CHP, underscoring the value of coupling 
accurate price forecasting with flexible production path-
ways. 
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Figure 4. Optimal energy distribution by the process.  

 Figure 5 displays the co-digestion ratio shifts over 
time, with maize shown in blue and manure in red. By dy-
namically balancing these two substrates, the system ex-
ploits maize’s higher biomethane potential while benefit-
ting from manure’s stabilizing influence on nutrient levels. 
Sudden changes in the substrate ratio frequently corre-
late with fluctuations in biogas yield, highlighting the in-
tricate relationship between feedstock composition, mi-
crobial performance, and shifts in up- and down-stream 
pricing and feed availability. Overall, these results con-
firm that adaptively managing feed composition, temper-
ature control, and energy allocation in response to real-
time conditions can significantly enhance biogas produc-
tion, ensure process stability, and optimise economic re-
turns. 

 
Figure 5. substrate co-digestion ratios in the process 

Figure 6 shows four distinct contributions to GWP: 
substrate cultivation, transportation, CHP operation, and 
biogas leakage. Leakage, assumed to be 2% of biogas 
production[18], emerges as the predominant driver of 
GWP, highlighting the importance of robust sealing and 
monitoring to minimise fugitive methane emissions. The 
other three GWP components remain relatively modest, 
indicating that carefully managed process heating and 
CHP usage do not substantially elevate the plant’s carbon 
footprint. Notably, periods with reduced gas leakage co-
incide with improved gas-tight integrity or targeted op-
erational adjustments. 

 
Figure 6. Global warming potential related to the process.  

CONCLUSION 
This study demonstrates a comprehensive and syn-

ergistic approach to optimising anaerobic co-digestion 
systems by integrating an NLP model, temperature con-
trol via MPC, and advanced energy price forecasting. By 
leveraging the CHP unit and dynamic co-digestion strat-
egies, the framework effectively adapts to varying sub-
strate compositions, operational constraints, and fluctu-
ating market conditions. The proposed delayed control 
scheme ensures tight temperature regulation, sustaining 
microbial activity near optimal levels and minimising the 
risk of thermal shocks. Additionally, the energy price 
forecasting component, based on the Prophet model, al-
lows for strategic decisions on whether to allocate biogas 
to onsite electricity generation or injection into the grid, 
thereby maximising revenue streams. 

Results indicate that co-digestion of maize and ma-
nure significantly enhances biogas yields while maintain-
ing nutrient balance but also underscores the critical 
need to minimise methane leakage—the principal con-
tributor to global warming potential. By identifying and 
mitigating fugitive emissions, operators can substantially 
reduce the environmental footprint of biogas production. 
Despite these advances, there remain avenues for im-
provement. Future work will focus on refining the biogas 
production model to capture higher fidelity microbial and 
kinetic responses with more accurate substrate interac-
tions. In addition, efforts to decrease computational 
time—such as implementing advanced solution tech-
niques or simplifying the problem structure—would make 
this framework more practical for larger-scale or real-
time applications. Finally, exploring methods to remove 
certain nonlinear parameters could strengthen the 
model’s scalability and facilitate adoption in a broader 
range of biogas facilities. By pursuing these improve-
ments, the integrated approach stands to further en-
hance operational efficiency, profitability, and environ-
mental sustainability in anaerobic co-digestion systems. 
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