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ABSTRACT

Global biomanufacturing is projected to expand rapidly in the coming decade due to advance-
ments in DNA sequencing and manipulation. However, the complexity of cellular behaviour intro-
duces difficulty in modelling and optimizing biomanufacturing processes. Phenomenological mod-
els that represent the physics of the system in empirical equations suffer from poor robustness,
while their machine learning (ML) counterparts suffer from poor extrapolative capability. On the
other hand, hybrid models allow us to leverage both physical constraints and the flexibility of ML.
This work describes a new approach for hybrid modeling that integrates the time-variant param-
eter estimation and ML model training into a singular step. We implement this approach on a pro-
posed scheme for the cell-mediated conversion of a lignin derivative into a bioplastic precursor
and show that our integrated hybrid model outperforms the traditional two-step hybrid, phenom-
enological, and ML model counterparts. Lastly, we demonstrate how to execute an interpretability
analysis on the ML component of the integrated hybrid model to reveal new physical insights that

are then used to further improve model performance.
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Motivation & Background

Growing need and sustainability concerns are in-
creasing the strain on the traditional manufacturing pipe-
lines for chemicals, drugs, and materials [1]. This has
prompted increased interest on bio-centric manufactur-
ing, as bioprocesses leverage the capability of microbial,
plant, and animal cells to produce complex commercially
relevant chemicals while enjoying a reduced carbon foot-
print, moderate reactor conditions, and high stereoselec-
tivity [1]. Previously inaccessible renewable feedstocks
can now be converted into bulk chemicals with the aid of
metabolic strain engineering. Of particular interest is the
soil bacterium Pseudomonas putida, which can valorize
lignocellulosic biomass (Figure 1). Studies have demon-
strated that P. putida can convert lignin into cis,cis-mu-
conic acid (MA) [2]. MA can then be utilized to create pol-
ymers like Nylon and PET [2]. While the bacterial conver-
sion of lignin into MA is documented, the kinetics is not
well understood.

Cells are extremely complex systems with numerous
reaction pathways, intermediates and products. Factor-
ing in inter and intra-cellular relationships, it becomes in-
tractable to simulate each cell and track metabolic dy-
namics [2]. This problem is countered using
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phenomenological models based on biological intuition
that neglect information regarding biomass heterogene-
ity and metabolite influences on empirical parameters [3].
On the other hand, purely machine learning (ML) models
have been shown to capture the nonlinear complexity of
bioprocesses but have poor extrapolation and interpret-
ability [3]. Additionally, experimental datasets are often
sparse and noisy, resulting in poor model development
and calibration, especially for ML models.
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Figure 1. Conversion of lignocellulosic biomass into
bioplastics by P. putida.
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Hybrid models have been proposed to leverage the
physical constraints of phenomenological models and the
flexibility of ML ones [3]. This work explores an embed-
ded hybrid model wherein ML models are utilized to cap-
ture the complexity of certain parameters “embedded”
within the overarching ODE structure [4]. The hybrid
modelling approach aids in capturing the complex rela-
tionships between external metabolites and bacteria
physiology. Moreover, the embedded approach lends a
better framework for interpretability.

To test our hybrid model, we outline a ground truth
model that simulates the dynamics of the conversion of
catechol, a lignin derivative, to MA by P. putida. The
ground truth model also includes glucose as the repre-
sentative carbon source for bacterial growth and the cell
toxicity of catechol. A sparse and noisy dataset is then
generated which mimics traditional experimental da-
tasets.

This work will explore two scenarios for construct-
ing hybrid models: A sequential method and an inte-
grated method, which differ on how the parameters of
the models are determined. Furthermore, we compare
the extrapolative performance of the hybrid model to its
phenomenological and ML counterparts. Finally, an inter-
pretability study is performed on the ML components of
the hybrid model to gain physical insight. Utilizing Cap-
tum python package, an Integrated gradients (IG) analy-
sis is performed which gives insight into how changes in
the input affect changes in output for the ML component

[5].
Methods

Ground truth model

A system of ODEs is constructed to model the dy-
namics of P. putida consuming glucose and converting
catechol to MA in a batch process. The system is con-
structed based on biological principles and previous
characterization of P. putida [2] The following assump-
tions are made: (i) the growth rate of viable cells (X,,) fol-
lows a logistic-Monod equations aimed at better recapit-
ulating the lag phase of batch cultures (Eq. 1 and 2); (ii)
glucose (C,) promotes cell division while catechol (C.) in-
hibits it (Eqg. 2); (iii) the cell death rate is composed of a
zero-order, catechol-independent component and a cat-
echol-dependent component represented with a Monod-
style rate equations (Eq. 2); (iv) dead cells (X;) are not
degraded and accumulate in the culture and contribute
to the total biomass (X;) (Eqg. 4 and 5); (v) glucose is con-
sumed for cell growth and to neutralize the toxic effect
of catechol (Eqg. 6); (vi) the generation of MA (C,,) from
catechol has non-growth associated and growth associ-
ated components (Eq. 7); and (vii) all the catechol con-
sumed is directly converted to MA by the viable cells and
no byproducts are formed (Eg. 8). Note that the following
equation can be modified for batch and semi-batch by
Laxminarayan et al. / LAPSE:2025.0539
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changing the spike glucose input (C}V), spike catechol in-
put (CIV) and spike time-period (7).

% = (gr — Hat)Xy (1)
= (1-75) () @
Hae = ka + (225) (3)
S = gy (4)
Xe= X, + X4 (5)
Coo (f{ig + %) X, + CIVF () (6)
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Training data is generated by assuming batch operation.
A 72-hour batch process is simulated with a 10-point dis-
cretization. To better reflect limitations in data acquisition
commonly experienced in biomanufacturing, only data on
the total biomass, glucose, catechol and MA concentra-
tions are used for training (Fig. 2). For instance, only total
biomass is easily measured during culturing (e.g., by
measuring changes on optical density) while distinguish-
ing viable and dead cells is more challenging. Glucose,
catechol and MA are generally quantified with either
chromatographic or biochemistry analyzers, which are
expensive and time consuming to operate thereby limit-
ing the amount of data collected.

Xr Colucose Crnuconicaci o Ceatechol

entration (mM)
entration (mM)

0D600
Concentration (mM)

B E) 1] ) D e 3 ] E) b ) &
Time (hr) Time (hr) Time (hr) Time (hr)

Figure 2. Ground truth model of the batch MA production
bioprocess.

Phenomenological model construction

This model reflects the traditional reactor kinetics
style system of ODEs that are generally constructed to
capture bioprocess dynamics. The data acquisition limi-
tations highlighted in the previous section along with rel-
evant literature informed the model construction. Com-
bining dynamic observations of (Fig. 2) and literature
studies [2], the following ODEs for the phenomenological
model are created: (i) The total biomass growth is tied
positively to glucose and inhibited by catechol via Monod
kinetics (Eq.11); (ii) The MA production is observed to
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occur in both the growth and stationary phases (Eqg. 13);
(iii) The MA concentration increased at the same rate as
the catechol one decreased (Eq. 14)

% = tgrXe (10)
Hpm = (cl:,iczfg) o Grey (11)
= (%’;)Xr + G f(1) (12)
T = Yl + )Xo (13)
= T OV (14)
f) = YZ_,6(t —tk) (15)

The spike input of glucose and catechol are set to zero
for the training data. Note how the growth of the biomass
in the phenomenological model closely mirrors the
ground truth model.

Hybrid model structure — Sequential vs Integrated

The construction of the hybrid model entrails the
following steps: (a) time-variant parameter estimations
(TVPE), (b) ML model parameter regression and (c) ODE-
ML model integration. The integrated method differs
from the sequential one as it performs steps (a) and (b)
together. The equations shown here reflect the hybrid
construction methodology. The observations outlined in
the previous section are used to inform the overarching
ODE structure. An assumption is made that the growth
rate did not have a straightforward relationship between
glucose and catechol. An artificial neural network (ANN)
is used to model the growth rate which used glucose,
catechol, MA and total biomass as inputs. Equations (16-
19) highlight the hybrid model structure.

d
f = U Xe (16)
pm, = ANN(X,, Cg, Cp, Crn) (17)
g _ _ (#me IN

dat (ng)Xt TGO (18)
dCpy c

% = Vr Uy, + B)Xtﬁ (19)

Equations 14, 15 are included in the hybrid model to track
the dynamics of catechol and the spike input frequency.
The sequential hybrid modelling structure initially calcu-
lates the TVPE and then trains a ML model outside. No-
tice that within the initial optimization framework the
TVPE is calculated as a discrete value at different time
steps. A multi-objective optimization problem is formu-
lated with a state space MSE and a smoothing index (sum
of second derivatives) for the time variant parameters.
The formulation shown below shows the sequential hy-
brid model's TVPE.
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N represents the number of experimental datasets, t is
the number of time points in each dataset and S is the
number of dynamic species. fypr represent the hybrid
system of ODE captured by Eqs (14-19). 6, are the time
invariant parameters in Egs (14-19) while 87V represents
time variant parameters. The integrated hybrid modelling
structure simultaneously estimates the growth parameter
while also training the ANN model to capture the param-
eter behavior. The optimization formulation shown below
details how the ML model is trained and the TVPE is per-
formed.

1 oN vt VS pred _ ract)?
Jmin LI T BE (- e (25)
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(26)
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Ory 20, W,b < [-1,1] (28)

fuL represents the ANN whose weights and biases (W &
b) are used to model the physics of the 87". The sequen-
tial hybrid modelling structure ignores the second equal-
ity constrain shown in Eq. (27) which captures the rela-
tionship between the time variant parameter and the ML
model. Note that both the integrated and sequential
method has hyperparameters which need to be tuned.
For the phenomenological, integrated and sequential
scenarios, the IPOPT multistart solver with fifty different
initializations is used to solve the Pyomo DAE formulation

[5].

Black box model construction

The black box model is constructed using an ANN
surrogate. The model inputs are the initial condition and
time. A preprocessing step is performed where the inputs
and outputs are scaled using a Z-score normalization. A
rigours 5-fold cross validation and grid search is per-
formed for tuning the hyperparameters of the system.
The activation function, the number of hidden layers, the
number of nodes, and the strength of the L2 regulariza-
tion are all varied.

(Xt ¢t ch,ct) = ANN(XP,C9,C9,C2,t) (29)
Extrapolative performance comparison
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The initial data is generated by performing a Latin hyper-
cube sampling of three initial conditions in the following
ranges of initial glucose and catechol concentration: [50
mM, 70 mM] and [25 mM, 35 mM] with a constant total
biomass concentration of 0.01 OD600. The performance
of all models is evaluated utilizing an initial condition ex-
trapolation for a fed-batch bioprocess. Note how in the
training data the spike inputs are set to zero, however for
the performance testing the spike inputs are respectively
set to 10 mM and 3 mM for glucose and catechol with a
time-period of 25 hrs. In the extrapolative scenarios, the
glucose and catechol initial concentrations are varied
from [20 mM, 100 mM] and [5 mM, 55 mM], respectively.
Heatmaps and distribution curves of R? values are gen-
erated to compare the performance of different models
and highlight performance in edge-cases.

Interpretability analysis

Utilizing the Captum software, the ANN growth rate
in Eq. 17 is analyzed and some of the model behaviours
are explained [6]. A primary attribution analysis called In-
tegrated gradients (IG) analysis is performed which tells
the contribution of each input to the output of the model.
The higher the attribution scores the more the input con-
tributes to the model output [6]. Positive attribution
means the output increase with the increase of the input
and vice versa [6]. The attribution is calculated utilizing
an integrated gradients technique.

Improved hybrid model

Based on some insight from the ML interpretability
analysis, new physical insights are integrated into the hy-
brid model to improve its overall performance. The phys-
ical insight added to the hybrid model is the Monod-ki-
netics relationship between biomass growth and glucose.
The following ODE equations shown details the improved
hybrid model. The improved hybrid model utilizes an ANN
to model the fraction of viable biomass in the reactor.
Equations 14, 15 are included in the improved hybrid
model to track the dynamics of catechol and the spike
input frequency.

dx,

L~ ufX, (30)

fv = ANN(X, Cy, Cc, Cpp) (31)
_ (e

n=(222) (32)

i o L R WA (33)

dt Yyg) VLT

L Yy DK e (34)

Results and Discussion

Sequential vs Integrated hybrid modeling
The hyperparameter tuning for the integrated model
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is a 3-fold cross validation to determine the ANN archi-
tecture. The hyperparameter tuning for the sequential
model consist of two-steps: (i) a 3-fold cross validation
to determine the smoothing weight (wg) and (ii) a 5-fold
cross validation to determine the ANN architecture. To
simplify the hyperparameter search, the MSE weight (w),)
is set to a constant of unity. The performance of the se-
quential model is highest at a smoothing weight of 10.
Following this, a grid search is done to determine the
ANN architecture by varying the activation function,
number of layers and nodes and L2 regularization weight.

The integrated model outperforms the sequential
one across all points of extrapolation despite negligible
computational cost differences (Figure 3). The heatmap
can be divided into three broad regions: () high glucose,
(Il) low-glucose and low-catechol, and (lll) low-glucose
and high-catechol. The integrated models performs bet-
ter than the sequential model in region (1) and (lll) but suf-
fers in region (ll). In fact, the integrated model performs
its best predictive performance in region (l) given the
strong effect of high glucose concentrations on the
growth rate. However, in region (ll) the low glucose com-
pounded with low catechol concentrations decreases the
fraction of viable biomass which decreases growth rate.
The integrated model overestimates the growth rate in
this region. These results agree with our ground truth
model which has a stunted growth rate at low glucose
and low catechol concentrations, thereby negatively af-
fecting the biomass accumulation. The CPU seconds of
the integrated and sequential models showed marginal

differences, 1.53 s and 0.95 s, respectively. Overall,
while the integrated approach has advantages in perfor-
mance, its cost will increase as the size of the ANN in-
creases.
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Figure 3. Extrapolative performance heatmap comparing
the integrated and squential models.
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Hybrid model extrapolative performance

The previous section shows the performance of the
integrated hybrid model to be better than the sequential
hybrid one. Thus, the following sections will exclusively
utilize the integrated hybrid model for comparison with
the phenomenological and black box models.

On average, the hybrid model outperforms both the phe-
nomenological and back box models in extrapolation

2414



(Figure 4). The black box model had extremely poor ex-
trapolative performance; while it captured the intricacies
of the training data, it struggled to extrapolate the behav-
iour. The hybrid model outperforms the phenomeno-log-
ical model in regions (I & lll). However, it is extrapolative
performance suffers slightly in regions (ll) compared to
its phenomenological counterpart, given that the latter
has the physical insight which allows it to anticipate the
contribution of catechol in low glucose environments.
Next, we sought to test versatility of the hybrid
model. The glucose consumption in the ground truth
model (Eq. 6) has two contributing terms: biomass
growth and maintenance. The maintenance is tied to con-
centration of the catechol concentration. The hybrid
model and the phenomenological model are formulated
with the assumption that the maintenance term is not a
huge contributor to glucose consumption. The versatility
of the hybrid modelling structure is tested by increasing
the contribution of the glucose consumption to match the
growth-related glucose consumption. Despite the
change in the physics of the ground truth model, Eqg. 10-
19 are not changed. The hybrid model still outperforms
both the phenomenological and black box model in all the
regions (Figure 5), showing that the versatility of the em-
bedded ANN can capture the intricacies of the growth
rate while also accounting for the additional strain of
maintenance. The hybrid model's performance suffers in
region (lll); however, a trend observed to occur in the
phenomenological model as well. The higher impact of
catechol reduces the fraction of viable cells thereby
overestimating the metabolic activity of the biomass to
convert catechol into MA. This analysis demonstrates the
flexibility of the integrated hybrid modelling structure to
adapt to changes in the underlying physics of the system.
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Figure 4. Extrapolative performance heatmap comparing
the ML, phenomenological and hybrid models
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Figure 5. Extrapolative performance boxplot comparing
the ML, phenomenological and hybrid models for greater
contribution of maintenance coefficient effect on glucose
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Hybrid model interpretability

The hybrid model still has an embedded ANN piece
within its structure and understanding the physics that is
captured by the ANN component could aid in model re-
finement and experimental design. The bar graph shows
the attribution score for the ANN component of the hy-
brid model. Note, the primary contributor to the model's
predictive performance is the glucose and catechol con-
centrations. The glucose has a positive effect while cat-
echol has a negative effect. This aligns with the physics
that is present in the ground truth model. When we fur-
ther analyze the attribution score of glucose as the con-
centration changes, further biophysical insights are
caught. Fig. 6 looks at the glucose attribution score as
the normalized glucose and catechol concentration
changes. An important trend is how the attribution versus
glucose plot mirrors the relationship between growth rate
and substrate for Monod-style growth kinetics. Similarly
note that catechol attribution score increases in magni-
tude as the concentration increases.
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2 5
IG attribution score
o

Attribution Score
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X C [ [ 00 0.2 04 06 08 10
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Figure 6. Primary attribution scores for the ML model in
the hybrid ODE for training data. Model attribution score
for changes in glucose and catechol concentration

The attribution score analysis presented above can
function as first step in constructing more accurate em-
pirical models to capture unexplained phenomenological
behaviour. With the aid of the ML model interpretability,
we could implement a build-train-improve cycle to incor-
porate and improve the physics captured by the hybrid
model. We expect such an approach to be successful
when the physics captured by the ANN is dominated by
a single input. However, ANNs with multiple equally con-
tributing inputs and multiple outputs might present diffi-
culties to the interpretability analysis.

Improved hybrid models with increased physics
embedding

Based on the interpretability analysis, a Monod style
relationship between glucose and growth rate is deter-
mined and incorporated into the improved hybrid model
(Eq. 28-32). The improved hybrid model utilizes the ANN
flexibility to capture the fraction of viable biomass in the
system, which is the only entity metabolizing both glu-
cose and catechol. Consequently, the aim of the
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improved hybrid is capturing this fact even though only
total biomass (viable plus dead cells) is used for training.
As seen on the performance distributions plots below,
the improved hybrid models outperformed the original
hybrid model due to an increased accuracy in low-glu-
cose high-catechol environments. The improved model
performs better in regions where the original hybrid one
struggles. Note the thinner and taller distribution peak of
the improved model in high R2 value range. Since some
burden is alleviated from the ANN component by incor-
porating learned physics insight, the black-box part of
the improved hybrid model has less impact on the gener-
alizability of the overall prediction. This two-step ap-
proach to hybrid modeling highlights how the black-box
components, coupled by quantitative interpretability
analysis could expedite model development. If important
dynamics are not capture neither in the partial physics
nor the data, the analysis might not lead to an improved
hybrid model.
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Figure 7. Extrapolative performance distributions for
original hybrid and improved hybrid models.

Conclusion

Here we outline the implementation of a hybrid
modelling strategy to capture the dynamics of the bio-
conversion of catechol into MA, a bioplastics precursor.
The biomass growth in the hybrid model is captured uti-
lizing an ANN. A new hybrid model construction strategy
is introduced which integrated the TVPE and the ML
model training into a single step. The versatility, extrapo-
lative capability, and sensitivity to initial conditions of the
hybrid model is assessed by increasing the influence of
various physical phenomena in the ground truth model.
Our results show that the integrated hybrid model out-
performs its sequential counterpart as well as commonly
used phenomenological and ML models. An attribution
analysis is performed to lend interpretability to the ANN
piece of the hybrid model, revealing buried ground truth
behaviour, which is then used to guide a model improve-
ment cycle. The ultimate improved hybrid model reduced
the computational load of the ANN by incorporating pre-
viously discovered biophysical insights.

Digital supplementary material
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The GitHub page has the code, data and figures shown
in this paper: Escape35_SL_code.
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