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ABSTRACT 
Global biomanufacturing is projected to expand rapidly in the coming decade due to advance-
ments in DNA sequencing and manipulation. However, the complexity of cellular behaviour intro-
duces difficulty in modelling and optimizing biomanufacturing processes. Phenomenological mod-
els that represent the physics of the system in empirical equations suffer from poor robustness, 
while their machine learning (ML) counterparts suffer from poor extrapolative capability. On the 
other hand, hybrid models allow us to leverage both physical constraints and the flexibility of ML. 
This work describes a new approach for hybrid modeling that integrates the time-variant param-
eter estimation and ML model training into a singular step. We implement this approach on a pro-
posed scheme for the cell-mediated conversion of a lignin derivative into a bioplastic precursor 
and show that our integrated hybrid model outperforms the traditional two-step hybrid, phenom-
enological, and ML model counterparts. Lastly, we demonstrate how to execute an interpretability 
analysis on the ML component of the integrated hybrid model to reveal new physical insights that 
are then used to further improve model performance. 
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Motivation & Background 
Growing need and sustainability concerns are in-

creasing the strain on the traditional manufacturing pipe-
lines for chemicals, drugs, and materials [1]. This has 
prompted increased interest on bio-centric manufactur-
ing, as bioprocesses leverage the capability of microbial, 
plant, and animal cells to produce complex commercially 
relevant chemicals while enjoying a reduced carbon foot-
print, moderate reactor conditions, and high stereoselec-
tivity [1]. Previously inaccessible renewable feedstocks 
can now be converted into bulk chemicals with the aid of 
metabolic strain engineering. Of particular interest is the 
soil bacterium Pseudomonas putida, which can valorize 
lignocellulosic biomass (Figure 1). Studies have demon-
strated that P. putida can convert lignin into cis,cis-mu-
conic acid (MA) [2]. MA can then be utilized to create pol-
ymers like Nylon and PET [2]. While the bacterial conver-
sion of lignin into MA is documented, the kinetics is not 
well understood.  

Cells are extremely complex systems with numerous 
reaction pathways, intermediates and products. Factor-
ing in inter and intra-cellular relationships, it becomes in-
tractable to simulate each cell and track metabolic dy-
namics [2]. This problem is countered using 

phenomenological models based on biological intuition 
that neglect information regarding biomass heterogene-
ity and metabolite influences on empirical parameters [3]. 
On the other hand, purely machine learning (ML) models 
have been shown to capture the nonlinear complexity of 
bioprocesses but have poor extrapolation and interpret-
ability [3]. Additionally, experimental datasets are often 
sparse and noisy, resulting in poor model development 
and calibration, especially for ML models. 

 
Figure 1. Conversion of lignocellulosic biomass into 
bioplastics by P. putida. 
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Hybrid models have been proposed to leverage the 
physical constraints of phenomenological models and the 
flexibility of ML ones [3].  This work explores an embed-
ded hybrid model wherein ML models are utilized to cap-
ture the complexity of certain parameters “embedded” 
within the overarching ODE structure [4]. The hybrid 
modelling approach aids in capturing the complex rela-
tionships between external metabolites and bacteria 
physiology. Moreover, the embedded approach lends a 
better framework for interpretability. 

To test our hybrid model, we outline a ground truth 
model that simulates the dynamics of the conversion of 
catechol, a lignin derivative, to MA by P. putida. The 
ground truth model also includes glucose as the repre-
sentative carbon source for bacterial growth and the cell 
toxicity of catechol. A sparse and noisy dataset is then 
generated which mimics traditional experimental da-
tasets. 

This work will explore two scenarios for construct-
ing hybrid models: A sequential method and an inte-
grated method, which differ on how the parameters of 
the models are determined. Furthermore, we compare 
the extrapolative performance of the hybrid model to its 
phenomenological and ML counterparts. Finally, an inter-
pretability study is performed on the ML components of 
the hybrid model to gain physical insight. Utilizing Cap-
tum python package, an Integrated gradients (IG) analy-
sis is performed which gives insight into how changes in 
the input affect changes in output for the ML component 
[5]. 

Methods 

Ground truth model 
A system of ODEs is constructed to model the dy-

namics of P. putida consuming glucose and converting 
catechol to MA in a batch process. The system is con-
structed based on biological principles and previous 
characterization of P. putida [2] The following assump-
tions are made: (i) the growth rate of viable cells (𝑋𝑋𝑣𝑣) fol-
lows a logistic-Monod equations aimed at better recapit-
ulating the lag phase of batch cultures (Eq. 1 and 2); (ii) 
glucose �𝐶𝐶𝑔𝑔� promotes cell division while catechol (𝐶𝐶𝑐𝑐) in-
hibits it (Eq. 2); (iii) the cell death rate is composed of a 
zero-order, catechol-independent component and a cat-
echol-dependent component represented with a Monod-
style rate equations (Eq. 2); (iv) dead cells (𝑋𝑋𝑑𝑑) are not 
degraded and accumulate in the culture and contribute 
to the total biomass (𝑋𝑋𝑡𝑡) (Eq. 4 and 5); (v) glucose is con-
sumed for cell growth and to neutralize the toxic effect 
of catechol (Eq. 6); (vi) the generation of MA (𝐶𝐶𝑚𝑚) from 
catechol has non-growth associated and growth associ-
ated components (Eq. 7); and (vii) all the catechol con-
sumed is directly converted to MA by the viable cells and 
no byproducts are formed (Eq. 8). Note that the following 
equation can be modified for batch and semi-batch by 

changing the spike glucose input �𝐶𝐶𝑔𝑔𝐼𝐼𝐼𝐼�, spike catechol in-
put (𝐶𝐶𝑐𝑐𝐼𝐼𝐼𝐼) and spike time-period (𝜏𝜏). 

𝑑𝑑𝑋𝑋𝑣𝑣
𝑑𝑑𝑑𝑑

=  �𝜇𝜇𝑔𝑔𝑔𝑔 − 𝜇𝜇𝑑𝑑𝑑𝑑�𝑋𝑋𝑣𝑣    (1) 

𝜇𝜇𝑔𝑔𝑔𝑔 =  �1 − 𝑋𝑋𝑣𝑣
𝑌𝑌𝑥𝑥𝑥𝑥𝐶𝐶𝑔𝑔0

� � 𝜇𝜇𝑔𝑔𝐶𝐶𝑔𝑔
𝐶𝐶𝑔𝑔+𝐾𝐾𝑔𝑔

�   (2) 

𝜇𝜇𝑑𝑑𝑑𝑑 =  𝑘𝑘𝑑𝑑 + � 𝜇𝜇𝑐𝑐𝐶𝐶𝑐𝑐
𝐶𝐶𝑐𝑐+𝐾𝐾𝑐𝑐

�    (3) 

𝑑𝑑𝑋𝑋𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝑑𝑑𝑑𝑑𝑋𝑋𝑣𝑣     (4) 

𝑋𝑋𝑡𝑡 =  𝑋𝑋𝑣𝑣 + 𝑋𝑋𝑑𝑑    (5) 

𝑑𝑑𝐶𝐶𝑔𝑔
𝑑𝑑𝑑𝑑

=  −�𝜇𝜇𝑔𝑔𝑔𝑔
Yxg

+ 𝑚𝑚𝑘𝑘𝐶𝐶𝑐𝑐
𝐶𝐶𝑐𝑐+𝑘𝑘𝑐𝑐𝑐𝑐

�𝑋𝑋𝑣𝑣 + 𝐶𝐶𝑔𝑔𝐼𝐼𝐼𝐼𝑓𝑓(𝑡𝑡)  (6) 

𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑌𝑌𝑚𝑚𝑚𝑚�𝜇𝜇𝑔𝑔𝑔𝑔 + 𝛽𝛽�𝑋𝑋𝑣𝑣
𝐶𝐶𝑐𝑐

𝐶𝐶𝑐𝑐+𝑘𝑘_𝑐𝑐𝑐𝑐
    (7) 

𝑑𝑑𝐶𝐶𝑐𝑐
𝑑𝑑𝑑𝑑

= −𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

+ 𝐶𝐶𝑐𝑐𝐼𝐼𝐼𝐼𝑓𝑓(𝑡𝑡)    (8) 

𝑓𝑓(𝑡𝑡) =  ∑ 𝛿𝛿(𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑍𝑍
𝑘𝑘=0    (9) 

Training data is generated by assuming batch operation. 
A 72-hour batch process is simulated with a 10-point dis-
cretization. To better reflect limitations in data acquisition 
commonly experienced in biomanufacturing, only data on 
the total biomass, glucose, catechol and MA concentra-
tions are used for training (Fig. 2). For instance, only total 
biomass is easily measured during culturing (e.g., by 
measuring changes on optical density) while distinguish-
ing viable and dead cells is more challenging. Glucose, 
catechol and MA are generally quantified with either 
chromatographic or biochemistry analyzers, which are 
expensive and time consuming to operate thereby limit-
ing the amount of data collected. 

 
Figure 2. Ground truth model of the batch MA production 
bioprocess. 

Phenomenological model construction 
This model reflects the traditional reactor kinetics 

style system of ODEs that are generally constructed to 
capture bioprocess dynamics. The data acquisition limi-
tations highlighted in the previous section along with rel-
evant literature informed the model construction. Com-
bining dynamic observations of (Fig. 2) and literature 
studies [2], the following ODEs for the phenomenological 
model are created: (i) The total biomass growth is tied 
positively to glucose and inhibited by catechol via Monod 
kinetics (Eq.11); (ii) The MA production is observed to 
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occur in both the growth and stationary phases (Eq. 13); 
(iii) The MA concentration increased at the same rate as 
the catechol one decreased (Eq. 14) 

𝑑𝑑𝑋𝑋𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝑔𝑔𝑔𝑔𝑋𝑋𝑡𝑡     (10) 

𝜇𝜇𝑃𝑃𝑃𝑃 =  � 𝜇𝜇𝑔𝑔𝐶𝐶𝑔𝑔
𝐶𝐶𝑔𝑔+𝐾𝐾𝑔𝑔

� −  � 𝜇𝜇𝑐𝑐𝐶𝐶𝑐𝑐
𝐶𝐶𝑐𝑐+𝐾𝐾𝑐𝑐

�   (11) 

𝑑𝑑𝐶𝐶𝑔𝑔
𝑑𝑑𝑑𝑑

=  −�𝜇𝜇𝑔𝑔𝑔𝑔
Yxg
�𝑋𝑋𝑡𝑡  + 𝐶𝐶𝑔𝑔𝐼𝐼𝐼𝐼𝑓𝑓(𝑡𝑡)   (12) 

𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑌𝑌𝑚𝑚𝑚𝑚�𝜇𝜇𝑔𝑔𝑔𝑔 + 𝛽𝛽�𝑋𝑋𝑡𝑡
𝐶𝐶𝑐𝑐

𝐶𝐶𝑐𝑐+𝑘𝑘_𝑐𝑐𝑐𝑐
    (13) 

𝑑𝑑𝐶𝐶𝑐𝑐
𝑑𝑑𝑑𝑑

= −𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

+ 𝐶𝐶𝑐𝑐𝐼𝐼𝐼𝐼𝑓𝑓(𝑡𝑡)    (14) 

𝑓𝑓(𝑡𝑡) =  ∑ 𝛿𝛿(𝑡𝑡 − 𝜏𝜏𝜏𝜏)𝑍𝑍
𝑘𝑘=0    (15) 

The spike input of glucose and catechol are set to zero 
for the training data. Note how the growth of the biomass 
in the phenomenological model closely mirrors the 
ground truth model.   

Hybrid model structure – Sequential vs Integrated 
The construction of the hybrid model entrails the 

following steps: (a) time-variant parameter estimations 
(TVPE), (b) ML model parameter regression and (c) ODE-
ML model integration. The integrated method differs 
from the sequential one as it performs steps (a) and (b) 
together. The equations shown here reflect the hybrid 
construction methodology. The observations outlined in 
the previous section are used to inform the overarching 
ODE structure. An assumption is made that the growth 
rate did not have a straightforward relationship between 
glucose and catechol. An artificial neural network (ANN) 
is used to model the growth rate which used glucose, 
catechol, MA and total biomass as inputs. Equations (16-
19) highlight the hybrid model structure. 

𝑑𝑑𝑋𝑋𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝑀𝑀𝑀𝑀𝑋𝑋𝑡𝑡     (16) 

𝜇𝜇𝑀𝑀𝑀𝑀 =  𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋𝑡𝑡,𝐶𝐶𝑔𝑔,𝐶𝐶𝑐𝑐 ,𝐶𝐶𝑚𝑚)   (17) 

𝑑𝑑𝐶𝐶𝑔𝑔
𝑑𝑑𝑑𝑑

=  −�𝜇𝜇𝑀𝑀𝑀𝑀

Yxg
�𝑋𝑋𝑡𝑡 + 𝐶𝐶𝑔𝑔𝐼𝐼𝐼𝐼𝑓𝑓(𝑡𝑡)   (18) 

𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑌𝑌𝑚𝑚𝑚𝑚(𝜇𝜇𝑀𝑀𝑀𝑀 + 𝛽𝛽)𝑋𝑋𝑡𝑡
𝐶𝐶𝑐𝑐

𝐶𝐶𝑐𝑐+𝑘𝑘_𝑐𝑐𝑐𝑐
    (19) 

Equations 14, 15 are included in the hybrid model to track 
the dynamics of catechol and the spike input frequency. 
The sequential hybrid modelling structure initially calcu-
lates the TVPE and then trains a ML model outside. No-
tice that within the initial optimization framework the 
TVPE is calculated as a discrete value at different time 
steps. A multi-objective optimization problem is formu-
lated with a state space MSE and a smoothing index (sum 
of second derivatives) for the time variant parameters. 
The formulation shown below shows the sequential hy-
brid model’s TVPE.  

𝐦𝐦𝐦𝐦𝐦𝐦
𝜃𝜃𝑇𝑇𝑇𝑇,𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇

 𝑤𝑤𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑤𝑤𝑠𝑠𝑆𝑆𝑆𝑆    (20) 

𝒔𝒔. 𝒕𝒕. 𝑑𝑑𝐶𝐶𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂�𝐶𝐶𝑥𝑥𝑥𝑥 ,𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇 ,𝜃𝜃𝑖𝑖𝑇𝑇𝑇𝑇�,∀ 𝑥𝑥 = [0, 𝑆𝑆]∀ 𝑖𝑖 = [0,𝑁𝑁]
       (21) 

𝑀𝑀𝑀𝑀𝑀𝑀 =   1
𝑁𝑁𝑁𝑁𝑁𝑁

∑ ∑ ∑ �𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −  𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎�

2𝑆𝑆
𝑠𝑠=0

𝑡𝑡
𝑗𝑗=0

𝑁𝑁
𝑖𝑖=1   (22) 

𝑆𝑆𝑆𝑆 = 1
𝑁𝑁𝑁𝑁

 ∑ ∑ �𝜃𝜃𝑖𝑖𝑖𝑖+1𝑇𝑇𝑇𝑇 − 2𝜃𝜃𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇 + 𝜃𝜃𝑖𝑖𝑖𝑖−1𝑇𝑇𝑇𝑇 �𝑡𝑡−2
𝑗𝑗

𝑁𝑁
𝑖𝑖

2  (23) 

𝜃𝜃𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇  , 𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 0    (24) 

𝑁𝑁 represents the number of experimental datasets, 𝑡𝑡 is 
the number of time points in each dataset and 𝑆𝑆 is the 
number of dynamic species. 𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂 represent the hybrid 
system of ODE captured by Eqs (14-19). 𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇 are the time 
invariant parameters in Eqs (14-19) while 𝜃𝜃𝑇𝑇𝑇𝑇 represents 
time variant parameters. The integrated hybrid modelling 
structure simultaneously estimates the growth parameter 
while also training the ANN model to capture the param-
eter behavior. The optimization formulation shown below 
details how the ML model is trained and the TVPE is per-
formed. 

𝐦𝐦𝐦𝐦𝐦𝐦
𝑊𝑊,𝑏𝑏,𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇

  1
𝑁𝑁𝑁𝑁𝑁𝑁

∑ ∑ ∑ �𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −  𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎�

2𝑆𝑆
𝑠𝑠=0

𝑡𝑡
𝑗𝑗=0

𝑁𝑁
𝑖𝑖=1  (25) 

𝒔𝒔. 𝒕𝒕. 𝑑𝑑𝐶𝐶𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝑂𝑂𝑂𝑂𝑂𝑂�𝐶𝐶𝑥𝑥𝑥𝑥 ,𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇 ,𝜃𝜃𝑖𝑖𝑇𝑇𝑇𝑇�,∀ 𝑥𝑥 = [0, 𝑆𝑆]∀ 𝑖𝑖 = [0,𝑁𝑁]
       (26) 

𝜃𝜃𝑖𝑖𝑇𝑇𝑇𝑇 = 𝑓𝑓𝑀𝑀𝑀𝑀(𝑊𝑊,𝑏𝑏,𝐶𝐶𝑥𝑥𝑥𝑥) ∀ 𝑖𝑖 = 0 𝑡𝑡𝑡𝑡 𝑁𝑁  (27) 

𝜃𝜃𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 0, 𝑊𝑊, 𝑏𝑏 ⊂ [−1, 1]   (28) 

𝑓𝑓𝑀𝑀𝑀𝑀 represents the ANN whose weights and biases (𝑊𝑊 & 
𝑏𝑏) are used to model the physics of the 𝜃𝜃𝑇𝑇𝑇𝑇. The sequen-
tial hybrid modelling structure ignores the second equal-
ity constrain shown in Eq. (27) which captures the rela-
tionship between the time variant parameter and the ML 
model. Note that both the integrated and sequential 
method has hyperparameters which need to be tuned. 
For the phenomenological, integrated and sequential 
scenarios, the IPOPT multistart solver with fifty different 
initializations is used to solve the Pyomo DAE formulation 
[5]. 

Black box model construction 
The black box model is constructed using an ANN 

surrogate. The model inputs are the initial condition and 
time. A preprocessing step is performed where the inputs 
and outputs are scaled using a Z-score normalization. A 
rigours 5-fold cross validation and grid search is per-
formed for tuning the hyperparameters of the system. 
The activation function, the number of hidden layers, the 
number of nodes, and the strength of the L2 regulariza-
tion are all varied. 

�𝑋𝑋𝑡𝑡𝑡𝑡,𝐶𝐶𝑔𝑔𝑡𝑡 ,𝐶𝐶𝑚𝑚𝑡𝑡 ,𝐶𝐶𝑐𝑐𝑡𝑡� =  𝐴𝐴𝐴𝐴𝐴𝐴�𝑋𝑋𝑡𝑡0,𝐶𝐶𝑔𝑔0,𝐶𝐶𝑚𝑚0 ,𝐶𝐶𝑐𝑐0, 𝑡𝑡�  (29) 

Extrapolative performance comparison  
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The initial data is generated by performing a Latin hyper-
cube sampling of three initial conditions in the following 
ranges of initial glucose and catechol concentration: [50 
mM, 70 mM] and [25 mM, 35 mM] with a constant total 
biomass concentration of 0.01 OD600. The performance 
of all models is evaluated utilizing an initial condition ex-
trapolation for a fed-batch bioprocess. Note how in the 
training data the spike inputs are set to zero, however for 
the performance testing the spike inputs are respectively 
set to 10 mM and 3 mM for glucose and catechol with a 
time-period of 25 hrs. In the extrapolative scenarios, the 
glucose and catechol initial concentrations are varied 
from [20 mM, 100 mM] and [5 mM, 55 mM], respectively. 
Heatmaps and distribution curves of 𝑅𝑅2 values are gen-
erated to compare the performance of different models 
and highlight performance in edge-cases.  

Interpretability analysis 
Utilizing the Captum software, the ANN growth rate 

in Eq. 17 is analyzed and some of the model behaviours 
are explained [6]. A primary attribution analysis called In-
tegrated gradients (IG) analysis is performed which tells 
the contribution of each input to the output of the model. 
The higher the attribution scores the more the input con-
tributes to the model output [6]. Positive attribution 
means the output increase with the increase of the input 
and vice versa [6]. The attribution is calculated utilizing 
an integrated gradients technique. 

Improved hybrid model 
Based on some insight from the ML interpretability 

analysis, new physical insights are integrated into the hy-
brid model to improve its overall performance. The phys-
ical insight added to the hybrid model is the Monod-ki-
netics relationship between biomass growth and glucose. 
The following ODE equations shown details the improved 
hybrid model. The improved hybrid model utilizes an ANN 
to model the fraction of viable biomass in the reactor. 
Equations 14, 15 are included in the improved hybrid 
model to track the dynamics of catechol and the spike 
input frequency. 

𝑑𝑑𝑋𝑋𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝜇𝜇𝜇𝜇𝑣𝑣𝑋𝑋𝑡𝑡     (30) 

𝑓𝑓𝑣𝑣 =  𝐴𝐴𝐴𝐴𝐴𝐴(𝑋𝑋𝑡𝑡 ,𝐶𝐶𝑔𝑔,𝐶𝐶𝑐𝑐 ,𝐶𝐶𝑚𝑚)   (31) 

𝜇𝜇 =  � 𝜇𝜇𝑔𝑔𝐶𝐶𝑔𝑔
𝐶𝐶𝑔𝑔+𝑘𝑘𝑔𝑔

�     (32) 

𝑑𝑑𝐶𝐶𝑔𝑔
𝑑𝑑𝑑𝑑

=  −� 𝜇𝜇
Yxg
�𝑓𝑓𝑣𝑣𝑋𝑋𝑡𝑡 + 𝐶𝐶𝑔𝑔𝐼𝐼𝐼𝐼𝑓𝑓(𝑡𝑡)   (33) 

𝑑𝑑𝐶𝐶𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑌𝑌𝑚𝑚𝑚𝑚(𝜇𝜇 + 𝛽𝛽)𝑓𝑓𝑣𝑣𝑋𝑋𝑡𝑡
𝐶𝐶𝑐𝑐

𝐶𝐶𝑐𝑐+𝑘𝑘_𝑐𝑐𝑐𝑐
    (34) 

Results and Discussion 

Sequential vs Integrated hybrid modeling  
The hyperparameter tuning for the integrated model 

is a 3-fold cross validation to determine the ANN archi-
tecture. The hyperparameter tuning for the sequential 
model consist of two-steps: (i) a 3-fold cross validation 
to determine the smoothing weight (𝑤𝑤𝑠𝑠) and (ii) a 5-fold 
cross validation to determine the ANN architecture. To 
simplify the hyperparameter search, the MSE weight (𝑤𝑤𝑀𝑀) 
is set to a constant of unity. The performance of the se-
quential model is highest at a smoothing weight of 10. 
Following this, a grid search is done to determine the 
ANN architecture by varying the activation function, 
number of layers and nodes and L2 regularization weight.  

The integrated model outperforms the sequential 
one across all points of extrapolation despite negligible 
computational cost differences (Figure 3). The heatmap 
can be divided into three broad regions: (I) high glucose, 
(II) low-glucose and low-catechol, and (III) low-glucose 
and high-catechol. The integrated models performs bet-
ter than the sequential model in region (I) and (III) but suf-
fers in region (II). In fact, the integrated model performs 
its best predictive performance in region (I) given the 
strong effect of high glucose concentrations on the 
growth rate. However, in region (II) the low glucose com-
pounded with low catechol concentrations decreases the 
fraction of viable biomass which decreases growth rate. 
The integrated model overestimates the growth rate in 
this region. These results agree with our ground truth 
model which has a stunted growth rate at low glucose 
and low catechol concentrations, thereby negatively af-
fecting the biomass accumulation. The CPU seconds of 
the integrated and sequential models showed marginal 
differences, 1.53 s and 0.95 s, respectively. Overall, 
while the integrated approach has advantages in perfor-
mance, its cost will increase as the size of the ANN in-
creases. 

 
Figure 3. Extrapolative performance heatmap comparing 
the integrated and squential models. 

Hybrid model extrapolative performance 
The previous section shows the performance of the 

integrated hybrid model to be better than the sequential 
hybrid one. Thus, the following sections will exclusively 
utilize the integrated hybrid model for comparison with 
the phenomenological and black box models.  
On average, the hybrid model outperforms both the phe-
nomenological and back box models in extrapolation 
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(Figure 4). The black box model had extremely poor ex-
trapolative performance; while it captured the intricacies 
of the training data, it struggled to extrapolate the behav-
iour. The hybrid model outperforms the phenomeno-log-
ical model in regions (I & III). However, it is extrapolative 
performance suffers slightly in regions (II) compared to 
its phenomenological counterpart, given that the latter 
has the physical insight which allows it to anticipate the 
contribution of catechol in low glucose environments.  
 Next, we sought to test versatility of the hybrid 
model. The glucose consumption in the ground truth 
model (Eq. 6) has two contributing terms: biomass 
growth and maintenance. The maintenance is tied to con-
centration of the catechol concentration. The hybrid 
model and the phenomenological model are formulated 
with the assumption that the maintenance term is not a 
huge contributor to glucose consumption. The versatility 
of the hybrid modelling structure is tested by increasing 
the contribution of the glucose consumption to match the 
growth-related glucose consumption. Despite the 
change in the physics of the ground truth model, Eq. 10-
19 are not changed. The hybrid model still outperforms 
both the phenomenological and black box model in all the 
regions (Figure 5), showing that the versatility of the em-
bedded ANN can capture the intricacies of the growth 
rate while also accounting for the additional strain of 
maintenance. The hybrid model’s performance suffers in 
region (III); however, a trend observed to occur in the 
phenomenological model as well. The higher impact of 
catechol reduces the fraction of viable cells thereby 
overestimating the metabolic activity of the biomass to 
convert catechol into MA. This analysis demonstrates the 
flexibility of the integrated hybrid modelling structure to 
adapt to changes in the underlying physics of the system. 

 
Figure 4. Extrapolative performance heatmap comparing 
the ML, phenomenological and hybrid models 

 
Figure 5. Extrapolative performance boxplot comparing 
the ML, phenomenological and hybrid models for greater 
contribution of maintenance coefficient effect on glucose 

Hybrid model interpretability 
The hybrid model still has an embedded ANN piece 

within its structure and understanding the physics that is 
captured by the ANN component could aid in model re-
finement and experimental design. The bar graph shows 
the attribution score for the ANN component of the hy-
brid model. Note, the primary contributor to the model’s 
predictive performance is the glucose and catechol con-
centrations. The glucose has a positive effect while cat-
echol has a negative effect. This aligns with the physics 
that is present in the ground truth model. When we fur-
ther analyze the attribution score of glucose as the con-
centration changes, further biophysical insights are 
caught. Fig. 6 looks at the glucose attribution score as 
the normalized glucose and catechol concentration 
changes. An important trend is how the attribution versus 
glucose plot mirrors the relationship between growth rate 
and substrate for Monod-style growth kinetics. Similarly 
note that catechol attribution score increases in magni-
tude as the concentration increases. 

 
Figure 6. Primary attribution scores for the ML model in 
the hybrid ODE  for training data. Model attribution score 
for changes in glucose and catechol concentration 

The attribution score analysis presented above can 
function as first step in constructing more accurate em-
pirical models to capture unexplained phenomenological 
behaviour. With the aid of the ML model interpretability, 
we could implement a build-train-improve cycle to incor-
porate and improve the physics captured by the hybrid 
model. We expect such an approach to be successful 
when the physics captured by the ANN is dominated by 
a single input. However, ANNs with multiple equally con-
tributing inputs and multiple outputs might present diffi-
culties to the interpretability analysis. 

Improved hybrid models with increased physics 
embedding 

Based on the interpretability analysis, a Monod style 
relationship between glucose and growth rate is deter-
mined and incorporated into the improved hybrid model 
(Eq. 28-32). The improved hybrid model utilizes the ANN 
flexibility to capture the fraction of viable biomass in the 
system, which is the only entity metabolizing both glu-
cose and catechol. Consequently, the aim of the 
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improved hybrid is capturing this fact even though only 
total biomass (viable plus dead cells) is used for training. 
As seen on the performance distributions plots below, 
the improved hybrid models outperformed the original 
hybrid model due to an increased accuracy in low-glu-
cose high-catechol environments. The improved model 
performs better in regions where the original hybrid one 
struggles. Note the thinner and taller distribution peak of 
the improved model in high R2 value range. Since some 
burden is alleviated from the ANN component by incor-
porating learned physics insight, the black-box part of 
the improved hybrid model has less impact on the gener-
alizability of the overall prediction. This two-step ap-
proach to hybrid modeling highlights how the black-box 
components, coupled by quantitative interpretability 
analysis could expedite model development. If important 
dynamics are not capture neither in the partial physics 
nor the data, the analysis might not lead to an improved 
hybrid model. 

 
Figure 7. Extrapolative performance distributions for 
original hybrid and improved hybrid models. 

Conclusion 
Here we outline the implementation of a hybrid 

modelling strategy to capture the dynamics of the bio-
conversion of catechol into MA, a bioplastics precursor. 
The biomass growth in the hybrid model is captured uti-
lizing an ANN. A new hybrid model construction strategy 
is introduced which integrated the TVPE and the ML 
model training into a single step. The versatility, extrapo-
lative capability, and sensitivity to initial conditions of the 
hybrid model is assessed by increasing the influence of 
various physical phenomena in the ground truth model. 
Our results show that the integrated hybrid model out-
performs its sequential counterpart as well as commonly 
used phenomenological and ML models. An attribution 
analysis is performed to lend interpretability to the ANN 
piece of the hybrid model, revealing buried ground truth 
behaviour, which is then used to guide a model improve-
ment cycle. The ultimate improved hybrid model reduced 
the computational load of the ANN by incorporating pre-
viously discovered biophysical insights.  

Digital supplementary material 

The GitHub page has the code, data and figures shown 
in this paper: Escape35_SL_code. 
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