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ABSTRACT 
The 2,3-, 1,4- and 1,3-butanediols (BDOs) are valuable platform chemicals traditionally produced 
through petrochemical routes. Alternatively, there is growing interest in synthesizing these chem-
icals through fermentation processes. However, several drawbacks of the fermentation process 
(e.g. low product concentration, formation of by-products and high-boiling temperatures of BDOs) 
hinder the downstream process and increase overall production costs. This original research pro-
poses an advanced large-scale (processing capacity of 160 ktonne/y) process design for the pu-
rification of different BDOs after fermentation. The initial preconcentration step removes most wa-
ter and light impurities in heat pump-assisted distillation column. The heart of the developed pro-
cess is an integrated dividing-wall column that effectively separates high-purity BDO (>99.4 wt% 
in all cases) from the remaining impurities. Each BDO isomer was purified cost-effectively (0.208 
– 0.243 $/kgBDO) and energy-efficiently (1.854 – 2.176 kWthh/kgBDO) using a single process design, 
offering flexibility in the development of sustainable bioprocesses for BDO production.  

 

Keywords: butanediols, dividing-wall column, downstream processing 

INTRODUCTION 
Uncertainties related to fossil fuel-based production 

pathways are driving interest in developing sustainable 
alternatives. Fermentation emerges as a promising sub-
stitute for the petrochemical production of many chemi-
cals. Among these potential bioproducts, butanediols 
(BDOs) are very important platform chemicals with 
a wide variety of applications (e.g. pharmaceuticals, cos-
metics, softening agents, solvents, plasticizers, fertiliz-
ers, printing inks, polymers, etc.). Significant research ef-
fort has been put into developing genetically engineered 
microorganisms that can produce BDOs from different 
renewable carbon sources. So far, fermentative produc-
tion of 2,3-, 1,4- and 1,3-butanediol resulted in significant 
product titers and may have potential for industrial-scale 
production. Contrarily, titers of 1,2-BDO achieved so far 
are very low and additional improvements in the fermen-
tation are needed before considering scale-up. Despite 
the significant research on developing the upstream pro-
cess, the recovery of BDOs from fermentation broth has 

not been nearly as promptly addressed. Given the draw-
backs of the fermentation process (low product concen-
trations, formation of by-products, high boiling tempera-
tures of BDOs, etc.), the costs of the separation process 
may significantly contribute to the total production costs.  

PROBLEM STATEMENT 
Published studies on BDO recovery after fermenta-

tion mainly focus on 2,3-BDO, with comparatively less re-
search dedicated to the recovery of other BDOs. Due to 
the complex composition of the fermentation broth and 
high boiling point of BDO products, several steps are re-
quired in downstream processing. Consequently, costs 
of the purification process may significantly contribute to 
the total production costs [1]. Different techniques have 
been considered for the separation of BDO from fermen-
tation broth (e.g. solvent extraction, salting-out extrac-
tion, sugaring-out extraction, reactive extraction, per-
vaporation, etc.) [1–5]. Nonetheless, these methods have 
some drawbacks that hinder effective large-scale 
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implementation (low product recovery, large amounts of 
required solvent, subsequent solvent recovery, large 
amounts of salting-out agents, potential solvent toxicity, 
significant waste production, membrane fouling, etc.). 
Moreover, these techniques require additional steps to 
obtain high-purity BDO product. Alternatively, conven-
tional filtration and ion exchange steps can be used to 
remove most of the microorganisms, large organic mole-
cules and salts (see Figure 1, preconcentration and final 
purification (green boxes) are the focus of this research). 
After these initial downstream processing steps, addi-
tional purification is needed to remove the remaining wa-
ter and obtain a high-purity BDO product. Due to the sig-
nificant temperature differences and absence of azeo-
tropes, distillation may be used for both preconcentration 
and final purification. Nonetheless, distillation implies 
evaporating large amounts of water and advanced en-
ergy-saving techniques are required to make the process 
efficient. Several distillation-based configurations have 
been proposed (consecutive distillation, extractive distil-
lation, multi-effect distillation, dividing-wall column distil-
lation) [6–9] with energy requirements of 3.1 – 6.5 
kWthh/kgBDO (~6.2 to recover 90% of 2,3-BDO using divid-
ing-wall column [10]). 

The main goal of our research is to significantly de-
crease the energy requirements of the preconcentration 
and final purification parts of the recovery process. Re-
cently, we have achieved this goal by developing a state-
of-the-art large-scale downstream processing design 
(broth processing capacity of 160 ktonne/y with a pro-
duction capacity of 11 – 15 ktonne/y) that may be easily 
adapted to purify 2,3- (case 2-3), 1,4- (case 1-4) or 1,3-
BDO (case 1-3) after fermentation, and conventional 

filtration and ion-exchange steps [11]. These initial filtra-
tion and ion exchange steps are commonly used in indus-
trial-scale purification processes and were not designed 
in this study. 

METHODS 
Aspen Plus was employed as a computer-aided pro-

cess engineering (CAPE) tool to design BDO purification 
processes, whereby rigorous simulations were per-
formed for all process operations. The compositions of 
the fermentation broths from published literature [7, 12, 
13] were used to obtain feed streams for the recovery 
process (see Figure 3). Generally, concentrations of BDO 
and water are about 7 – 9 wt% and 87 – 91 wt%, while 
some light impurities (ethanol, formic acid, acetic acid, 
etc.) and heavy impurities (lactic acid, succinic acid, glu-
cose, etc.) are present in all cases. Thermodynamic inter-
actions between different components in the broth were 
described using the Non-Random Two Liquid (NRTL) 
property model. Hayden-O’Connell (HOC) extension was 
used to describe vapor phase interactions if polar com-
ponents (e.g. carboxylic acids) are present (cases 2-3 
and 1-3)[14].  

RESULTS AND DISCUSSION 
This section contains the main results related to 

the design of large-scale processes for the recovery of 
BDOs after fermentation. Flowsheets for these cases, 
with the main elements of mass and energy balances, are 
presented in Figure 3. 

 

 
Figure 1. Block flow diagram of the complete BDO production process 
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Preconcentration step 
Following the initial filtration and ion exchange steps 

necessary to remove microorganisms, large organic mol-
ecules and inorganics, the fermentation broth is still very 
dilute. Hence, a preconcentration step is performed in 
distillation column C1 to separate most of the water with 
some light impurities (distillate), from BDO with heavy 
and remaining light impurities (bottom product). Reduced 
pressure operation (top pressure of 0.130 bar) was cho-
sen to avoid high temperatures, facilitate separation and 
decrease energy requirements. Due to the applied vac-
uum, structured packing was assumed for this column’s 
internals. Given the high concentration of water in broth, 
the preconcentration step is very energy intensive (> 12 
MWth). Thus, the implementation of advanced energy-
saving techniques is crucial for the energy efficiency of 
the whole recovery process. Theoretically, all compo-
nents lighter than BDO can be separated as the top prod-
uct of column C1. However, this would limit the applica-
tion of heat pump systems as the temperature difference 
between the top and the bottom of column C1 would be 
very large. On the contrary, the proper choice of operat-
ing parameters (distillate-to-feed ratio) allows the imple-
mentation of a mechanical vapor recompression system 
(MVR) [15]. This heat pump system implies compressing 
vapor from the top of a column and using it as a heating 
utility in a reboiler. The measure of obtained energy sav-
ings by implementing this system is the coefficient of 
performance (COP) – the ratio of exchanged thermal en-
ergy and required compressor power. COP values of the 
MVR systems implemented to column C1 are > 14 in all 
cases. Given that a COP of over 2.5 testifies to the en-
ergy efficiency of heat pump systems, it may be con-
cluded these MVR systems result in significant energy 
savings. Valorisation of by-products from the top aque-
ous stream of column C1 was not considered due to their 
low concentration. Instead, as the worst-case scenario, it 
was assumed that this stream would be sent to 
wastewater treatment and appropriate costs were ac-
counted for. 

The benefits of the proposed multi-stage precon-
centration step in the heat pump-assisted distillation col-
umn are manifold. Firstly, removing most of the water 
drastically reduces equipment size and reboiler duty for 
the final purification step. Secondly, multi-stage precon-
centration in the distillation column allows the separation 
of water and light impurities without losing BDO product. 
Thirdly, the applied MVR system significantly decreases 
energy requirements for the overall recovery process and 
enables complete (green)electrification of this step. To 
our knowledge, a multi-stage preconcentration step that 
removes most of the water and light impurities without 
losing BDO product and that can be powered completely 
by electricity has not been proposed so far. 

 

Further purification 
Following the preconcentration step, additional pro-

cessing is needed to obtain a high-purity final BDO prod-
uct. This may be performed in a sequence of two distilla-
tion columns, whereby the first one removes the remain-
ing water and light impurities, while the second one sep-
arates BDO from heavy impurities. Alternatively, these 
two columns may be integrated into one dividing-wall 
column (DWC) with a divided overhead section and com-
mon bottom section [16]. This highly integrated system 
combines two columns into one shell with two conden-
sers and only one reboiler. In addition to reducing capital 
costs (through the number of columns, heat exchangers, 
and required area for installation), DWC may significantly 
reduce energy requirements for separation. Although 
DWC technology has certain limitations, such as a poten-
tially more complex control strategy, its implementation 
has been successfully proven in multiple large-scale ap-
plications [17, 18]. As no DWC unit is available off-the-
shelf in Aspen Plus, it was simulated as a thermodynam-
ical equivalent sequence of distillation columns (see Fig-
ure 2). The bottom liquid from the left part of the DWC 
(DWCL) is sent to the right part (DWCR). Simultaneously, 
part of vapor rising in DWCR is redirected to DWCL to en-
sure sufficient vapor flow in this part of the column. The 
DWC has 20 stages in total, with the first and the last 
stages being condenser and reboiler by the convention 
of Aspen Plus. The wall is placed in the top 14 stages (13 
excluding the condenser). Due to the large temperature 
difference between the BDO and light impurities (top 
products), thermal insulation will be needed to ensure the 
energy efficiency of the DWC Reduced pressure opera-
tion (top pressure of 0.1 bar) was implemented to avoid 
high temperatures that may lead to decomposition. Due 
to the vacuum operation, structured packing was as-
sumed for the DWC’s internals. Finally, high purity (>99.4 
wt% in all cases) BDO product was recovered as the top 
product from DWCR. The remaining light and heavy impu-
rities are separated as the top product from DWCL and 
the bottom product from DWCR. As a worst-case sce-
nario, and due to the low concentrations, it was assumed 
that water and light impurities would be sent to 
wastewater treatment, while heavy impurities would be 
burnt for energy. Appropriate economic and environmen-
tal metrics are included in the evaluation of the devel-
oped process. 
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Figure 2. DWC (top) and equivalent sequence of 
distillation columns (bottom) 

Analysis of economic and environmental 
impact 

The performance of the developed recovery pro-
cesses was evaluated by analyzing economic indicators 
and sustainability metrics following the published recom-
mendations [19, 20]. A comparison between the three 
processes is presented in Table 1. 

Slightly lower capital costs in case 1-4 are due to 
marginally lower costs of distillation columns and com-
pressor in the MVR system. Similarly, lower operating 

costs (OPEX) in case 1–4 are mainly because of lower 
wastewater treatment and electricity expenses (due to 
lower amount of light impurities and lower required com-
pressor power in the MVR system). Total annual costs 
that include both CAPEX and OPEX with a payback period 
of 10 years are 0.222, 0.208 and 0.243 $/kgBDO in cases 
2-3, 1-4 and 1-3, respectively. Thus, despite a somewhat 
lower initial concentration of 1,4-BDO (6.97 wt%) com-
pared to 2,3-BDO (9.30 wt%) and 1,3-BDO (7.25 wt%), 
process performance is slightly better due to lower 
amounts of light impurities. Nonetheless, given that the 
minimum selling price for 2,3-BDO produced from su-
crose, molasses or glycerol has been estimated to be 3.7 
– 5.7 $/kgBDO [5], the proposed cost-effective recovery 
process may present a major advancement toward com-
petitive fermentative production of BDO. Furthermore, 
there is significant margin compared to the price of pet-
rochemically produced BDOs (about 1.8 $/kg [21]). How-
ever, fermentation costs still need to be accounted for to 
obtain a real picture. 

Furthermore, thermal energy requirements are the 
lowest in case 2-3 (0.506 kWthh/kgBDO) due to the largest 
product flowrate. On the contrary, electrical energy re-
quirements are the lowest in case 1-4 because of the 
lowest compressor power in the MVR system. The total 
primary energy requirements were calculated consider-
ing a conservative electrical-to-thermal conversion fac-
tor of 2.5. This metric ranges from 1.85 kWthh/kgBDO for 
case 2-3 to 2.18 kWthh/kgBDO for case 1-3, which is much 
lower than the 3.1 – 6.5 kWthh/kgBDO, reported in the liter-
ature. Related to energy use are CO2 emissions, which 
are again the lowest in case 2-3. Water consumption (in-
cluding 7 % loss of cooling water and 70 % recovery of 
condensate in the steam cycle) is also the lowest in case 
2-3 due to the lowest thermal energy requirements. Ma-
terial intensity is the lowest in case 1-4 because of the 
lowest amounts of light impurities.  
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Table 1. Key performance indicators 
 Case 2-3 Case 1-4 Case 1-3 
Economic indicators    
CAPEX (k$) 9,402 8,419 9,111 
OPEX ($/kgBDO) 0.159 0.132 0.164 
Total annual costs ($/kgBDO), 10 years payback period 0.222 0.208 0.243 
Sustainability metrics    
Thermal energy requirements (kWthh/kgBDO) 0.506 0.662 0.615 
Electrical energy requirements (kWeh/kgBDO) 0.539 0.502 0.624 
Primary energy requirements (kWthh/kgBDO) 1.854 1.917 2.176 
CO2 emissions, grey / green electricity (kgCO2/kgBDO) 0.319 / 0.073 0.324 / 0.096 0.373 / 0.089 
Water consumption (m3w/kgBDO) 0.145 0.145 0.161 
Wastewater intensity (m3ww/kgBDO) 0.010 0.014 0.013 
Material intensity (kgwaste/kgBDO) 0.037 0.004 0.024 
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CONCLUSION This original paper proposes an eco-efficient large-
scale downstream processing design for the preconcen-
tration and final purification steps in the purification of 

a)   

b)  

c)  

Figure 3. Flowsheet of BDOs’ recovery process: a) 2,3-BDO, b) 1,4-BDO and c) 1,3-BDO 
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different BDOs (2,3-, 1,4- and 1,4-) after fermentation. 
Due to similar fermentation broth compositions and ther-
modynamic properties, a single process design was 
proven to cost-effectively (0.208 – 0.243 $/kgBDO) and 
energy-efficiently (1.85 – 2.18 kWthh/kgBDO) recover over 
99% of BDO from different fermentation processes. Im-
plementation of the advanced process intensification and 
heat integration techniques reduced energy require-
ments by over 33% compared to the existing literature. 
Furthermore, the adaptable purification process offers 
flexibility in developing sustainable business models. 
Lastly, the results of this novel work highlight the im-
portance of using CAPE tools in developing competitive 
bioprocesses by demonstrating that computer-aided 
simulations may play a crucial role in advancing sustain-
able industrial fermentation. 

OUTLOOK 
While this study provides valuable insights into the 

techno-economic and environmental feasibility of the 
proposed processes for the recovery of BDOs after fer-
mentation, there is room for further research to enhance 
its applicability and robustness. Although the developed 
process simulations rely on well-established thermody-
namic models and rigorously validated unit operation 
models in Aspen Plus, experimental validation remains 
essential to ensure successful industrial implementation. 
Computational simulations should serve as a guiding 
framework for experiments, ensuring a more efficient and 
reliable approach to process development. Additionally, 
while the feasibility of DWC has been demonstrated in 
real-world applications, further research is needed to op-
timize equipment design and control strategies for max-
imizing operational efficiency. 

Expanding the process design to include the fer-
mentation reaction would provide a more comprehensive 
evaluation of economic competitiveness and enable a fair 
comparison with existing BDO production methods. 
Moreover, conducting a sensitivity analysis to assess the 
impact of variations in key factors—such as feedstock 
costs, utility prices, wastewater treatment costs, and 
BDO market prices—would offer deeper economic in-
sights. A full life cycle assessment (LCA) would also be 
valuable in obtaining a more comprehensive understand-
ing of the sustainability of the entire process. 

Furthermore, an interesting avenue for future re-
search is the development of a flexible process capable 
of producing multiple BDO isomers based on market de-
mand. Given the fluctuating market dynamics of bio-
based chemicals, designing a process that can adapt to 
varying production needs could enhance economic via-
bility and commercial competitiveness. 
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