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ABSTRACT 
Process engineers in the Chemical and Oil & Gas industries extensively use process simulation for 
the design, development, analysis, and optimization of complex systems. This study investigates 
the integration of Artificial Intelligence (AI) with AVEVATM Process Simulation (APS), a next-gener-
ation commercial simulation tool. We propose a framework for a custom chatbot application de-
signed to assist engineers in developing and troubleshooting simulations. This chatbot application 
utilizes a custom-trained model to transform engineer prompts into standardized queries, facili-
tating access to essential information from APS. The chatbot extracts critical data regarding solv-
ers and thermodynamic models directly from APS to help engineers develop and troubleshoot 
process simulations. Furthermore, we compare the performance of our custom model against 
OpenAI technology. Our findings indicate that this integration significantly enhances the usability 
of process simulation tools, promoting more innovative and cost-effective engineering solutions. 
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INTRODUCTION 
Process simulation is a model-based representation 

of chemical, physical, and biological processes to ana-
lyze, optimize, and design. Process simulation tools are 
widely used in Chemical, and Oil & Gas industries in vari-
ous phases of a project. Process simulation can enable 
the transformation of process engineering as part of the 
digital twin, an important building block of digital trans-
formation [1]. Simulation and modeling can help acceler-
ate the design cycle of chemical processes. The rapid 
evolution of Artificial intelligence (AI) and Machine Learn-
ing (ML) technologies has significant implications across 
various domains including engineering. AI and ML tech-
nologies have been widely used in various applications of 
chemical engineering such as process modeling, simula-
tion, control, classification, fault detection and diagnosis 
[2]. Recent research has focused on integrating AI with 
process simulation tools to enhance design efficiency [3]. 
Stergiou et al discuss combining ML algorithms with pro-
cess simulation tool to optimize plant design parameters, 
resulting in more efficient and cost-effective chemical 
production [4]. The application of AI techniques such as 

Artificial Neural Networks (ANN) is used to model the op-
eration of hydrogen production system [5].  
 A chatbot is a computer-based program that simu-
lates human conversation with an end user, and they are 
usually built using AI and Natural Language Processing 
(NLP) with the goal of interpreting human questions and 
automating customized responses [6]. ChatGPT (Chat 
Generative Pre-Trained Transformer) is a recently devel-
oped conversational chatbot created by OpenAI [7], and 
it uses Natural Language Processing (NLP) to generate 
human-like responses to user input.  
 This research paper discusses applications of AI in 
a next-generation process simulation tool using both 
custom trained model and OpenAI model to answer ques-
tions based on the process simulation. The performance 
of these models is quantified and compared using differ-
ent types of similarity scores. This innovative approach 
of integrating AI technology with a next generation pro-
cess simulation tool is expected to transform AVEVATM 
Process Simulation (APS) by making it more user-friendly 
and efficient, leading to novel and cost-effective solu-
tions in process engineering. 

https://doi.org/10.69997/sct.126215
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METHODOLOGY 
 The architecture of a chatbot encompasses its 
foundational structure and design principles. It outlines 
how the chatbot interprets and processes text, influ-
enced by various factors including the domain, use case, 
type of chatbot, and prompts used [8]. Models in ChatBot 
utilize NLP engines to process user input and transform 
it into machine-readable formats; however, traditional 
NLP engines struggle to fully comprehend human lan-
guage. To address this limitation, large language models 
(LLM) were developed to enhance AI's understanding of 
natural language, enabling the generation of more realis-
tic and coherent human-like text. 

Chatbot architecture 
 The architecture for implementing the chatbot is il-
lustrated in Figure 1. User input is processed by either a 
LLM or NLP, which may be a custom-trained model or a 
pre-trained one, such as OpenAI's Generative Pre-
Trained Transformer (GPT) or Google's BERT, LaMDA, 
and PaLM [9]. The chatbot leverages the LLM to extract 
relevant information from unstructured textual data 
through techniques like text classification and entity 
recognition.  
 Text classification is essential for identifying user in-
tents by categorizing messages into classes such as in-
quiries or requests, which guides the chatbot's response 
strategy. Entity recognition enhances this process by ex-
tracting specific information, such as names or dates, 
from user inputs. Together, these features enable the 
chatbot to engage in more meaningful, context-aware in-
teractions, significantly improving user satisfaction and 
overall effectiveness. The unstructured text is then con-
verted into a structured XML format based on user input, 
which is utilized to build simulations or troubleshoot ex-
isting ones. The Next generation process simulation soft-
ware, AVEVATM Process Simulation (APS) developed by 
AVEVA, is used in this work. APS is designed for model-
ing, simulating, studying thermodynamic behavior and 
optimizing process operations in industries such as oil 
and gas, chemicals, and manufacturing.  

Figure 1. Architecture for ChatBot implementation. 
 
The chatbot framework interfaces with the APS 

through the scripting interface of the process simulator 
tool, enabling bidirectional communication between the 
process simulation and the chatbot application using Ap-
plication Programming Interface (API’s) in Python. These 

API’s facilitates tasks such as creating a component slate 
with thermodynamic models, building simulations, and 
extracting essential solver and thermodynamic infor-
mation from the simulation results to help process engi-
neers design, analyze and optimize chemical processes.  

Custom trained model 
 SpaCy is a Python-based open-source NLP library 
used to develop custom models. It features built-in pre-
trained pipelines and supports tokenization, as well as 
neural network models for tagging, parsing, named entity 
recognition (NER), and text classification. In our custom 
model, text classification and NER are integrated within 
the pipeline, sharing a token-to-vector layer between the 
two components. The text classification component cat-
egorizes user input into specific types, such as "sim 
building," "model query," or "fluid building," based on la-
beled training text. Meanwhile, the NER component iden-
tifies and classifies named entities in the text into prede-
fined categories, including models, component names, 
and thermodynamic methods. 
 To generate training data for the spaCy model, we 
utilize Faker, a Python package that creates fake data. 
The training data patterns are designed to mimic various 
likely user inputs, and entities are annotated using 
spaCy’s rule-based matching as shown in Figure 2.  

 
Figure 2. Preparation of training data. 

 The custom training of the spaCy pipeline 
components is saved as the best model on disk. A simple 
scoring system, applying equal weights (50-50) to text 
classification and NER, determines the best model. Once 
constructed, the NLP pipeline utilizes the pretrained 
components, allowing user input to be fed into the spaCy 
pipeline for classification and custom entity identification. 
Based on this classification, the appropriate XML 
generation occurs, with named entities represented as 
XML tags and attributes. From this stage of XML 
generation onward, the code is consistent between the 
OpenAI-based model and the custom model. The XML 
data is then parsed, and the information is sent to the 
APS through a scripting interface for feedback. Standard 
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XML template used are presented in the supplementary 
material.

Figure 3. SpaCy training pipeline components. 

Pre-trained model 
 The pretrained GPT-3.5-turbo model is utilized as 
the base model through the Python API endpoint. Com-
munication with the OpenAI model is facilitated by send-
ing HTTP requests to the API endpoints and receiving 
corresponding responses.  

RESULTS AND DISCUSSION 
 To compare the XML results generated by OpenAI 
and the custom model, it is essential to assess both the 
structural and content-based similarities. The most ef-
fective approach to evaluating the response is by exam-
ining both the structural and contextual aspects of the 
returned XML, such as the similarity of tags and the ac-
curacy of the extracted data. This can be accomplished 
by establishing a "golden file," which represents the de-
sired XML response, and then comparing the generated 
XML against this reference. Four metrics have been uti-
lized to assess these differences, each focusing on a dis-
tinct aspect of the generated XML file. 

Jaccard similarity 

       Jaccard similarity quantifies the overlap between 
two sets. When applied to XML, focusing solely on tags, 
it evaluates the similarity of the structures between two 
XML documents. This metric is useful for assessing how 
closely the structure of a generated XML document 
aligns with the desired structure. The process involves 
extracting the unique tags from both XML documents, 
converting them into sets, and computing the Jaccard 
similarity, as defined by [10]: 

 𝐽𝐽(𝐴𝐴, 𝐵𝐵) =  |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

=  |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴|+|𝐵𝐵|−|𝐴𝐴∩𝐵𝐵|

  (1) 

By evaluating both the structural elements of the 
XML and the data they contain, it enables the assessment 
of the correctness of the XML structure as well as the 
accuracy of the data. 

Cosine Similarity  
Cosine similarity is employed to assess the similarity 

between two documents by calculating the cosine value 
between the term vectors of the documents [11]. This 

method transforms documents into vectors within a 
multi-dimensional space, enabling effective comparison 
of textual data extracted from XML elements. Conse-
quently, cosine similarity is particularly well-suited for 
evaluating the semantic similarity of text within tags. 

Levenshtein Distance 
Levenshtein Distance measures the differences be-

tween two sequences, accounting for variations in both 
equal-length and unequal-length sequences [12]. It de-
termines the minimum number of single-character edits 
necessary to transform one string into another to identify 
even the smallest textual differences between two files. 

Case studies 
The ChatBot framework is evaluated through a se-

ries of case studies designed to simulate real-time user 
prompts typically posed by process engineers in an in-
dustrial setting as presented in supplemented material. 
The intent, along with the user prompts and associated 
metrics, is presented in the following section. 

Case study 1 

Intent Build a simulation in APS using user prompts in a 
sentence structure with intentional grammatical errors 
and typos. 

User Prompts 
Prompt 1: Add a source, compressor, valve, pump, valve and sink 
and connect them. Now update temperature and pressure 
conditions of source model to 450 K and 250 psi                                                                                    

Prompt 2: Try connecting source, compressor, valve, pump, 
valve and sink. Also update temperature and pressure of source 
model to 450 K and 250 psi 

Prompt 3: Try connecting source, compressor, valve, pump, 
valve and sink. Also update T and P of source model to 450 K 
and 250 psi 

Prompt 4: Try connecting source, compressor, valve, pump, 
valve and sink. Also update temperature and pressure of source 
model to 100 C and 250 psi1 

Prompt 5: Build a simulation with source, valve and sink. Also 
update temperature and pressure of source model to 100 C and 
250 psi 

Table 1: Metrics for xml generation from user prompts us-
ing pre-trained ChatGPT model 

Prom
pt# 

Jaccard   Similarity  Cosine 
Similarity   

Levenshtein 
Distance Tags  Data 

     
     
     
     
     
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Table 2: Metrics for xml generation from user prompts 
using custom trained model 

Prom
pt # 

Jaccard   Similarity  Cosine 
Similarity 

Levenshtein 
Distance Tags  Data 

     
     
     
     
     

Observation 
In the analysis of Prompt #1, both OpenAI and the 

custom model effectively handled the intentional typo-
graphical error. However, with Prompts #2, #3, and #4, 
OpenAI introduced extraneous and irrelevant sections 
from the template XML, which negatively impacted both 
the Jaccard similarity and Levenshtein distance metrics 
as shown in Table 1 & 2. Despite this, the key information 
necessary for constructing the simulation in APS was 
successfully extracted. In contrast, the SpaCy model, 
which was trained on specific data, did not exhibit this 
issue and generated a more accurate XML output. For 
Prompt #5, OpenAI unexpectedly converted units of 
measure, while the SpaCy model did not. These findings 
highlight the significant role of sentence structure in the 
conversion of prompts into structured XML. 

Case study 2 

Intent Troubleshoot a built simulation in APS shown in 
Figure 4, using user prompts in a sentence structure with 
intentional grammatical errors and typos. 

 
Figure 4. Refinery Steam Balance simulation built in APS. 

User Prompts 
Prompt 1: Find how many sources, sinks, and valves are 
present in the simulation 

Prompt 2: Find the count the number of sinks, valves and 
sources1 in the simulation 

Prompt 3: Find all Source where temperature is greater than 
200 K 

Prompt 4: Find all Valves with DP more than 25 kPa 

Prompt 5: Can you tell which valves have a DP is greater than 
33 kPa 

Table 3: Metrics for xml generation from user prompts 
using pre-trained ChatGPT model 

Prom
pt # 

Jaccard   Similarity  Cosine 
Similarity 

Levenshtein 
Distance Tags  Data 

     
     
     
     
     

Table 4: Metrics for xml generation from user prompts 
using custom trained model 

Prom
pt # 

Jaccard   Similarity  Cosine 
Similarity 

Levenshtein 
Distance Tags  Data 

     
     
     
     
     

Observation 
The OpenAI model successfully extracts the correct 

information from the APS simulation for prompts #1, #3, 
and #4, as indicated by the metrics in Table 3. However, 
for prompt #2, the XML output contains irrelevant infor-
mation, which negatively impacts the cosine similarity 
and Levenshtein distance scores as shown in Table 3 & 
4. In the case of prompt #5, the OpenAI model generated 
incorrect tags, specifically "valve1" and "valve2," along 
with duplicate information in an improper XML format. 
This error adversely affected the cosine similarity and Le-
venshtein distance values, ultimately leading to a failure 
to return a valid response to the user prompt. 

The SpaCy model successfully parsed and gener-
ated XML for Prompts #1 and #2 when no conditions were 
included. However, when conditions were introduced, 
the model failed to generate the relevant sections and 
was unable to identify the items for Prompts #3 and #5. 
While the item for Prompt 4 was correctly identified, the 
associated condition was not parsed accurately. Overall, 
the SpaCy model performed better with smaller tem-
plates but struggled to handle the added complexity in-
troduced by diverse section types. 
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Case Study 3 
Intent Create a fluid in APS to calculate mixture proper-
ties and predict vapor liquid equilibrium using descriptive 
user prompts 

User Prompts 
Prompt 1: Get Vapor fraction for a fluid containing Water, 
Ethanol, Acetone, and molar composition of 0.5, 0.4, 0.1 using 
system method NRTL and phase vapor and single liquid 
equilibrium. Show the fluid details along with mixture liquid 
density property data at 400k and 200 psi and binary interaction 
data. Also perform flash calculations at 400 K and 200 psi with 
the given molar composition. 

Prompt 2: Get VF for a fluid with Water, Methanol, Ethanol, 
Acetone, and molar composition of 0.5, 0.2, 0.2, 0.1 using 
system method NRTL and one phase vapor liquid equilibrium. 
Show the fluid details along with mixture density property data 
at 500 K and 1000 kPa and binary interaction data. Also perform 
flash calculation at 500 K and 1000 kPa with the same defined 
composition. 

Prompt 3: Get VF for a fluid with Water and Acetone, and molar 
composition 0.6, 0.4 using method NRTL and phase vapoingle 
and single liquid. Show the fluid details along with mixture liquid 
density and binary interaction data. Perform flash at 450 K and 
1000 kPa 

Prompt 4: Get VF for a fluid with components Methane, Ethane, 
Water, Butane, and molar composition 0.2, 0.2, 0.4, 0.2 using 
method SRK and system phase vapor liquid equilibrium. 

Prompt 5: Get VF for a fluid with components Methane, Ethane, 
Water, Butane, and molar composition 0.2, 0.4, 0.2, 0.2 using 
system method SRK and phase vapor single liquid equilibrium 

  The information extracted from the prompts are 
categorized as follows, 

1. Component Names 

2. System method and Phase 

3. Fluid properties – details, mixture properties, 
interaction parameters 

4. Flash conditions – Temperature and pressure 
(along with unit of measure) 

       Table 5 presents the information extracted by both 
the OpenAI and custom models, with "Y" indicating 
correctly extracted information and "N" representing 
either incorrect or missing information in the XML format. 

 

 

 

 

 

Table 5: Status of information extracted from user 
prompts using Custom and OpenAI model 

Category         

Prompt   
OpenAI Y Y Y Y 

Custom Y Y Y Y 

Prompt   
OpenAI Y N Y Y 

Custom Y Y Y Y 

Prompt   
OpenAI Y Y Y Y 

Custom Y N Y Y 

Prompt   
OpenAI Y Y Y Y 

Custom Y Y N Y 

Prompt   
OpenAI Y Y N Y 

Custom N N N N 

Table 6: Metrics for xml generation from user prompts 
using pre-trained ChatGPT model 

Prom
pt# 

Jaccard   Similarity  Cosine 
Similarity 

Levenshtein 
Distance Tags  Data 

     
     
     
     
     

Table 7: Metrics for xml generation from user prompts 
using custom trained model 

Prom
pt# 

Jaccard   Similarity  Cosine 
Similarity 

Levenshtein 
Distance Tags  Data 

     
     
     
     
     

Observation 
OpenAI successfully extracted the information from 

prompt #1 and generated the XML with the expected unit 
of measure conversion, matching the XML template. 
However, for prompts #2, #3, and #4, the phase was ex-
tracted as VLLE instead of VLE, which could lead to in-
correct results in APS depending on the fluid behavior. 
Additionally, for prompts #4 and #5, fluid properties were 
included in the XML and APS results, despite not being 
requested by the user. It is important to note that while 
the component names, system method, and flash condi-
tions are correctly extracted from the user prompt, the 
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phase is inaccurately determined due to the sentence 
structuring of the prompt. 

The custom model successfully predicted the out-
puts for Prompts #1, #2, and #3. However, Prompt #4 
yielded an incorrect result due to an error in parsing the 
MixturePropertyData tag, which led to a failure during 
XML parsing. In contrast, Prompt #5 resulted in a com-
plete failure in XML creation, with entities being misclas-
sified as shown in Table 5. Notably, the prompts in ques-
tion are largely like Prompt #4, differing primarily in sen-
tence structuring and a typo error. 

CONCLUSION 
The conversion of user prompts into a standardized 

XML format provides significant flexibility for modifying 
underlying APIs, facilitating easier updates to the simula-
tor. This process enables the rapid development of new 
XML-to-API generators compatible with various simula-
tion tools. Both the custom and pre-trained models can 
address a variety of challenges when extracting infor-
mation from prompts, including grammatical errors, ty-
pos, repetitive unit operations, abbreviations, and unit of 
measure conversions. These models successfully con-
vert the extracted data into a structured XML format, 
which can subsequently be used to generate simulations 
in APS. However, the quality of the XML output is influ-
enced by factors such as the sentence structure of the 
prompt, the specificity of model variables, and the units 
of measure employed. Based on the case studies, it can 
be observed that the custom model excelled at standard 
queries, while the OpenAI model handled complex 
prompts with intricate sentence structures more effec-
tively, despite occasionally introducing unexpected XML 
changes. 

The pretrained GPT-3.5-turbo OpenAI model is 
readily accessible and easy to use, whereas the SpaCy 
model, being custom-trained, requires significant invest-
ment in terms of labor, cost, and ongoing maintenance as 
the model needs to be retrained with new datasets. 

DIGITAL SUPPLEMENTARY MATERIAL 

         The supplementary material can be found with the    
LAPSE ID: LAPSE:2025.0019 

REFERENCES 
1. Julien B, Cal D. The role of process engineering in 

the digital transformation. Computers & Chemical 
Engineering (2021) 

2. Zeinab H, Shokoufe T, Mohammad HEA. 
Application of AI in Chemical Engineering. 
InTechOpen (2018) 

3. Venkat V. The promise of artificial intelligence in 

chemical engineering: Is it here, finally?. AIChE 
Journal 65:466-478 (2018) 

4. Konstantinos S, Charis N, Paris V, Elias K, Patrik K, 
Serafeim M. Enhancing property prediction and 
process optimization in building materials through 
machine learning: A review. Computational 
Materials Science 220 (2023) 

5. Mohammad A, Bassel S, Mohamed M, Enas S, 
Maryam A, Abrar I, Muaz R, Abdul O. Progress of 
artificial neural networks applications in hydrogen 
production. Chemical Engineering Research and 
Design 182:66-86 (2022) 

6. Haley H, Mohannad N, Xinyan H, John G. The role 
of large language models (AI chatbots) in fire 
engineering: An examination of technical questions 
against domain knowledge. Natural Hazards 
Research (2024) 

7. Chung L. What Is the Impact of ChatGPT on 
Education? A Rapid Review of the Literature. 
Education Sciences 410 (2023) 

8. Mohannad N. Machine Learning for Civil and 
Environmental Engineers: A Practical Approach to 
Data-Driven Analysis, Explainability, and Causality. 
New Jersey: Wiley (2023) 

9. Alipour H, Nick P, Kohinoor R. ChatGPT Alternative 
Solutions: Large Language Models Survey. arXiv 
preprint arXiv (2024) 

10. Dhiah S. Jaccard Coefficients based Clustering of 
XML Web Messages for Network Traffic 
Aggregation. Journal of Al-Qadisiyah for computer 
science and mathematic 11:82-91 (2019) 

11. Faisal R, Teruaki K, Masayoshi A. Semantic cosine 
similarity. 7th international student conference on 
advanced science and technology ICAST 4 (2012) 

12. Seo N, Sangwoo K, Cheonyoung J. A Lightweight 
Program Similarity Detection Model using XML and 
Levenshtein Distance. FECS 3-9 (2006) 

© 2025 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 
 


