

 Research Article - Peer Reviewed Conference Proceeding

ESCAPE 35 - European Symposium on Computer Aided Process Engineering
Ghent, Belgium. 6-9 July 2025

 Jan F.M. Van Impe, Grégoire Léonard, Satyajeet S. Bhonsale,
Monika E. Polańska, Filip Logist (Eds.)

https://doi.org/10.69997/sct.126215 Syst Control Trans 4:1769-1774 (2025) 1769

Application of Artificial Intelligence in process simulation
tool
Nikhil Rajeeva, Suresh Jayaramana*, Prajnan Dasb, Srividya Varadaa
a AVEVA Group Ltd, United States of America
b Cognizant Technology Solutions U.S. Corporation, United States of America
* Corresponding Author: suresh.jayaraman@aveva.com

ABSTRACT
Process engineers in the Chemical and Oil & Gas industries extensively use process simulation for
the design, development, analysis, and optimization of complex systems. This study investigates
the integration of Artificial Intelligence (AI) with AVEVATM Process Simulation (APS), a next-gener-
ation commercial simulation tool. We propose a framework for a custom chatbot application de-
signed to assist engineers in developing and troubleshooting simulations. This chatbot application
utilizes a custom-trained model to transform engineer prompts into standardized queries, facili-
tating access to essential information from APS. The chatbot extracts critical data regarding solv-
ers and thermodynamic models directly from APS to help engineers develop and troubleshoot
process simulations. Furthermore, we compare the performance of our custom model against
OpenAI technology. Our findings indicate that this integration significantly enhances the usability
of process simulation tools, promoting more innovative and cost-effective engineering solutions.

Keywords: Artificial Intelligence, Process Design, Machine Learning, Chatbot

INTRODUCTION
Process simulation is a model-based representation

of chemical, physical, and biological processes to ana-
lyze, optimize, and design. Process simulation tools are
widely used in Chemical, and Oil & Gas industries in vari-
ous phases of a project. Process simulation can enable
the transformation of process engineering as part of the
digital twin, an important building block of digital trans-
formation [1]. Simulation and modeling can help acceler-
ate the design cycle of chemical processes. The rapid
evolution of Artificial intelligence (AI) and Machine Learn-
ing (ML) technologies has significant implications across
various domains including engineering. AI and ML tech-
nologies have been widely used in various applications of
chemical engineering such as process modeling, simula-
tion, control, classification, fault detection and diagnosis
[2]. Recent research has focused on integrating AI with
process simulation tools to enhance design efficiency [3].
Stergiou et al discuss combining ML algorithms with pro-
cess simulation tool to optimize plant design parameters,
resulting in more efficient and cost-effective chemical
production [4]. The application of AI techniques such as

Artificial Neural Networks (ANN) is used to model the op-
eration of hydrogen production system [5].
 A chatbot is a computer-based program that simu-
lates human conversation with an end user, and they are
usually built using AI and Natural Language Processing
(NLP) with the goal of interpreting human questions and
automating customized responses [6]. ChatGPT (Chat
Generative Pre-Trained Transformer) is a recently devel-
oped conversational chatbot created by OpenAI [7], and
it uses Natural Language Processing (NLP) to generate
human-like responses to user input.
 This research paper discusses applications of AI in
a next-generation process simulation tool using both
custom trained model and OpenAI model to answer ques-
tions based on the process simulation. The performance
of these models is quantified and compared using differ-
ent types of similarity scores. This innovative approach
of integrating AI technology with a next generation pro-
cess simulation tool is expected to transform AVEVATM
Process Simulation (APS) by making it more user-friendly
and efficient, leading to novel and cost-effective solu-
tions in process engineering.

https://doi.org/10.69997/sct.126215

Rajeev et al. / LAPSE:2025.0436 Syst Control Trans 4:1769-1774 (2025) 1770

METHODOLOGY
 The architecture of a chatbot encompasses its
foundational structure and design principles. It outlines
how the chatbot interprets and processes text, influ-
enced by various factors including the domain, use case,
type of chatbot, and prompts used [8]. Models in ChatBot
utilize NLP engines to process user input and transform
it into machine-readable formats; however, traditional
NLP engines struggle to fully comprehend human lan-
guage. To address this limitation, large language models
(LLM) were developed to enhance AI's understanding of
natural language, enabling the generation of more realis-
tic and coherent human-like text.

Chatbot architecture
 The architecture for implementing the chatbot is il-
lustrated in Figure 1. User input is processed by either a
LLM or NLP, which may be a custom-trained model or a
pre-trained one, such as OpenAI's Generative Pre-
Trained Transformer (GPT) or Google's BERT, LaMDA,
and PaLM [9]. The chatbot leverages the LLM to extract
relevant information from unstructured textual data
through techniques like text classification and entity
recognition.
 Text classification is essential for identifying user in-
tents by categorizing messages into classes such as in-
quiries or requests, which guides the chatbot's response
strategy. Entity recognition enhances this process by ex-
tracting specific information, such as names or dates,
from user inputs. Together, these features enable the
chatbot to engage in more meaningful, context-aware in-
teractions, significantly improving user satisfaction and
overall effectiveness. The unstructured text is then con-
verted into a structured XML format based on user input,
which is utilized to build simulations or troubleshoot ex-
isting ones. The Next generation process simulation soft-
ware, AVEVATM Process Simulation (APS) developed by
AVEVA, is used in this work. APS is designed for model-
ing, simulating, studying thermodynamic behavior and
optimizing process operations in industries such as oil
and gas, chemicals, and manufacturing.

Figure 1. Architecture for ChatBot implementation.

The chatbot framework interfaces with the APS

through the scripting interface of the process simulator
tool, enabling bidirectional communication between the
process simulation and the chatbot application using Ap-
plication Programming Interface (API’s) in Python. These

API’s facilitates tasks such as creating a component slate
with thermodynamic models, building simulations, and
extracting essential solver and thermodynamic infor-
mation from the simulation results to help process engi-
neers design, analyze and optimize chemical processes.

Custom trained model
 SpaCy is a Python-based open-source NLP library
used to develop custom models. It features built-in pre-
trained pipelines and supports tokenization, as well as
neural network models for tagging, parsing, named entity
recognition (NER), and text classification. In our custom
model, text classification and NER are integrated within
the pipeline, sharing a token-to-vector layer between the
two components. The text classification component cat-
egorizes user input into specific types, such as "sim
building," "model query," or "fluid building," based on la-
beled training text. Meanwhile, the NER component iden-
tifies and classifies named entities in the text into prede-
fined categories, including models, component names,
and thermodynamic methods.
 To generate training data for the spaCy model, we
utilize Faker, a Python package that creates fake data.
The training data patterns are designed to mimic various
likely user inputs, and entities are annotated using
spaCy’s rule-based matching as shown in Figure 2.

Figure 2. Preparation of training data.

 The custom training of the spaCy pipeline
components is saved as the best model on disk. A simple
scoring system, applying equal weights (50-50) to text
classification and NER, determines the best model. Once
constructed, the NLP pipeline utilizes the pretrained
components, allowing user input to be fed into the spaCy
pipeline for classification and custom entity identification.
Based on this classification, the appropriate XML
generation occurs, with named entities represented as
XML tags and attributes. From this stage of XML
generation onward, the code is consistent between the
OpenAI-based model and the custom model. The XML
data is then parsed, and the information is sent to the
APS through a scripting interface for feedback. Standard

Rajeev et al. / LAPSE:2025.0436 Syst Control Trans 4:1769-1774 (2025) 1771

XML template used are presented in the supplementary
material.

Figure 3. SpaCy training pipeline components.

Pre-trained model
 The pretrained GPT-3.5-turbo model is utilized as
the base model through the Python API endpoint. Com-
munication with the OpenAI model is facilitated by send-
ing HTTP requests to the API endpoints and receiving
corresponding responses.

RESULTS AND DISCUSSION
 To compare the XML results generated by OpenAI
and the custom model, it is essential to assess both the
structural and content-based similarities. The most ef-
fective approach to evaluating the response is by exam-
ining both the structural and contextual aspects of the
returned XML, such as the similarity of tags and the ac-
curacy of the extracted data. This can be accomplished
by establishing a "golden file," which represents the de-
sired XML response, and then comparing the generated
XML against this reference. Four metrics have been uti-
lized to assess these differences, each focusing on a dis-
tinct aspect of the generated XML file.

Jaccard similarity

 Jaccard similarity quantifies the overlap between
two sets. When applied to XML, focusing solely on tags,
it evaluates the similarity of the structures between two
XML documents. This metric is useful for assessing how
closely the structure of a generated XML document
aligns with the desired structure. The process involves
extracting the unique tags from both XML documents,
converting them into sets, and computing the Jaccard
similarity, as defined by [10]:

 𝐽𝐽(𝐴𝐴, 𝐵𝐵) = |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴∪𝐵𝐵|

= |𝐴𝐴∩𝐵𝐵|
|𝐴𝐴|+|𝐵𝐵|−|𝐴𝐴∩𝐵𝐵|

 (1)

By evaluating both the structural elements of the
XML and the data they contain, it enables the assessment
of the correctness of the XML structure as well as the
accuracy of the data.

Cosine Similarity
Cosine similarity is employed to assess the similarity

between two documents by calculating the cosine value
between the term vectors of the documents [11]. This

method transforms documents into vectors within a
multi-dimensional space, enabling effective comparison
of textual data extracted from XML elements. Conse-
quently, cosine similarity is particularly well-suited for
evaluating the semantic similarity of text within tags.

Levenshtein Distance
Levenshtein Distance measures the differences be-

tween two sequences, accounting for variations in both
equal-length and unequal-length sequences [12]. It de-
termines the minimum number of single-character edits
necessary to transform one string into another to identify
even the smallest textual differences between two files.

Case studies
The ChatBot framework is evaluated through a se-

ries of case studies designed to simulate real-time user
prompts typically posed by process engineers in an in-
dustrial setting as presented in supplemented material.
The intent, along with the user prompts and associated
metrics, is presented in the following section.

Case study 1

Intent Build a simulation in APS using user prompts in a
sentence structure with intentional grammatical errors
and typos.

User Prompts
Prompt 1: Add a source, compressor, valve, pump, valve and sink
and connect them. Now update temperature and pressure
conditions of source model to 450 K and 250 psi

Prompt 2: Try connecting source, compressor, valve, pump,
valve and sink. Also update temperature and pressure of source
model to 450 K and 250 psi

Prompt 3: Try connecting source, compressor, valve, pump,
valve and sink. Also update T and P of source model to 450 K
and 250 psi

Prompt 4: Try connecting source, compressor, valve, pump,
valve and sink. Also update temperature and pressure of source
model to 100 C and 250 psi1

Prompt 5: Build a simulation with source, valve and sink. Also
update temperature and pressure of source model to 100 C and
250 psi

Table 1: Metrics for xml generation from user prompts us-
ing pre-trained ChatGPT model

Prom
pt#

Jaccard Similarity Cosine
Similarity

Levenshtein
Distance Tags Data

    
    
    
    
    

Rajeev et al. / LAPSE:2025.0436 Syst Control Trans 4:1769-1774 (2025) 1772

Table 2: Metrics for xml generation from user prompts
using custom trained model

Prom
pt #

Jaccard Similarity Cosine
Similarity

Levenshtein
Distance Tags Data

    
    
    
    
    

Observation
In the analysis of Prompt #1, both OpenAI and the

custom model effectively handled the intentional typo-
graphical error. However, with Prompts #2, #3, and #4,
OpenAI introduced extraneous and irrelevant sections
from the template XML, which negatively impacted both
the Jaccard similarity and Levenshtein distance metrics
as shown in Table 1 & 2. Despite this, the key information
necessary for constructing the simulation in APS was
successfully extracted. In contrast, the SpaCy model,
which was trained on specific data, did not exhibit this
issue and generated a more accurate XML output. For
Prompt #5, OpenAI unexpectedly converted units of
measure, while the SpaCy model did not. These findings
highlight the significant role of sentence structure in the
conversion of prompts into structured XML.

Case study 2

Intent Troubleshoot a built simulation in APS shown in
Figure 4, using user prompts in a sentence structure with
intentional grammatical errors and typos.

Figure 4. Refinery Steam Balance simulation built in APS.

User Prompts
Prompt 1: Find how many sources, sinks, and valves are
present in the simulation

Prompt 2: Find the count the number of sinks, valves and
sources1 in the simulation

Prompt 3: Find all Source where temperature is greater than
200 K

Prompt 4: Find all Valves with DP more than 25 kPa

Prompt 5: Can you tell which valves have a DP is greater than
33 kPa

Table 3: Metrics for xml generation from user prompts
using pre-trained ChatGPT model

Prom
pt #

Jaccard Similarity Cosine
Similarity

Levenshtein
Distance Tags Data

    
    
    
    
    

Table 4: Metrics for xml generation from user prompts
using custom trained model

Prom
pt #

Jaccard Similarity Cosine
Similarity

Levenshtein
Distance Tags Data

    
    
    
    
    

Observation
The OpenAI model successfully extracts the correct

information from the APS simulation for prompts #1, #3,
and #4, as indicated by the metrics in Table 3. However,
for prompt #2, the XML output contains irrelevant infor-
mation, which negatively impacts the cosine similarity
and Levenshtein distance scores as shown in Table 3 &
4. In the case of prompt #5, the OpenAI model generated
incorrect tags, specifically "valve1" and "valve2," along
with duplicate information in an improper XML format.
This error adversely affected the cosine similarity and Le-
venshtein distance values, ultimately leading to a failure
to return a valid response to the user prompt.

The SpaCy model successfully parsed and gener-
ated XML for Prompts #1 and #2 when no conditions were
included. However, when conditions were introduced,
the model failed to generate the relevant sections and
was unable to identify the items for Prompts #3 and #5.
While the item for Prompt 4 was correctly identified, the
associated condition was not parsed accurately. Overall,
the SpaCy model performed better with smaller tem-
plates but struggled to handle the added complexity in-
troduced by diverse section types.

Rajeev et al. / LAPSE:2025.0436 Syst Control Trans 4:1769-1774 (2025) 1773

Case Study 3
Intent Create a fluid in APS to calculate mixture proper-
ties and predict vapor liquid equilibrium using descriptive
user prompts

User Prompts
Prompt 1: Get Vapor fraction for a fluid containing Water,
Ethanol, Acetone, and molar composition of 0.5, 0.4, 0.1 using
system method NRTL and phase vapor and single liquid
equilibrium. Show the fluid details along with mixture liquid
density property data at 400k and 200 psi and binary interaction
data. Also perform flash calculations at 400 K and 200 psi with
the given molar composition.

Prompt 2: Get VF for a fluid with Water, Methanol, Ethanol,
Acetone, and molar composition of 0.5, 0.2, 0.2, 0.1 using
system method NRTL and one phase vapor liquid equilibrium.
Show the fluid details along with mixture density property data
at 500 K and 1000 kPa and binary interaction data. Also perform
flash calculation at 500 K and 1000 kPa with the same defined
composition.

Prompt 3: Get VF for a fluid with Water and Acetone, and molar
composition 0.6, 0.4 using method NRTL and phase vapoingle
and single liquid. Show the fluid details along with mixture liquid
density and binary interaction data. Perform flash at 450 K and
1000 kPa

Prompt 4: Get VF for a fluid with components Methane, Ethane,
Water, Butane, and molar composition 0.2, 0.2, 0.4, 0.2 using
method SRK and system phase vapor liquid equilibrium.

Prompt 5: Get VF for a fluid with components Methane, Ethane,
Water, Butane, and molar composition 0.2, 0.4, 0.2, 0.2 using
system method SRK and phase vapor single liquid equilibrium

 The information extracted from the prompts are
categorized as follows,

1. Component Names

2. System method and Phase

3. Fluid properties – details, mixture properties,
interaction parameters

4. Flash conditions – Temperature and pressure
(along with unit of measure)

 Table 5 presents the information extracted by both
the OpenAI and custom models, with "Y" indicating
correctly extracted information and "N" representing
either incorrect or missing information in the XML format.

Table 5: Status of information extracted from user
prompts using Custom and OpenAI model

Category    

Prompt 
OpenAI Y Y Y Y

Custom Y Y Y Y

Prompt 
OpenAI Y N Y Y

Custom Y Y Y Y

Prompt 
OpenAI Y Y Y Y

Custom Y N Y Y

Prompt 
OpenAI Y Y Y Y

Custom Y Y N Y

Prompt 
OpenAI Y Y N Y

Custom N N N N

Table 6: Metrics for xml generation from user prompts
using pre-trained ChatGPT model

Prom
pt#

Jaccard Similarity Cosine
Similarity

Levenshtein
Distance Tags Data

    
    
    
    
    

Table 7: Metrics for xml generation from user prompts
using custom trained model

Prom
pt#

Jaccard Similarity Cosine
Similarity

Levenshtein
Distance Tags Data

    
    
    
    
    

Observation
OpenAI successfully extracted the information from

prompt #1 and generated the XML with the expected unit
of measure conversion, matching the XML template.
However, for prompts #2, #3, and #4, the phase was ex-
tracted as VLLE instead of VLE, which could lead to in-
correct results in APS depending on the fluid behavior.
Additionally, for prompts #4 and #5, fluid properties were
included in the XML and APS results, despite not being
requested by the user. It is important to note that while
the component names, system method, and flash condi-
tions are correctly extracted from the user prompt, the

Rajeev et al. / LAPSE:2025.0436 Syst Control Trans 4:1769-1774 (2025) 1774

phase is inaccurately determined due to the sentence
structuring of the prompt.

The custom model successfully predicted the out-
puts for Prompts #1, #2, and #3. However, Prompt #4
yielded an incorrect result due to an error in parsing the
MixturePropertyData tag, which led to a failure during
XML parsing. In contrast, Prompt #5 resulted in a com-
plete failure in XML creation, with entities being misclas-
sified as shown in Table 5. Notably, the prompts in ques-
tion are largely like Prompt #4, differing primarily in sen-
tence structuring and a typo error.

CONCLUSION
The conversion of user prompts into a standardized

XML format provides significant flexibility for modifying
underlying APIs, facilitating easier updates to the simula-
tor. This process enables the rapid development of new
XML-to-API generators compatible with various simula-
tion tools. Both the custom and pre-trained models can
address a variety of challenges when extracting infor-
mation from prompts, including grammatical errors, ty-
pos, repetitive unit operations, abbreviations, and unit of
measure conversions. These models successfully con-
vert the extracted data into a structured XML format,
which can subsequently be used to generate simulations
in APS. However, the quality of the XML output is influ-
enced by factors such as the sentence structure of the
prompt, the specificity of model variables, and the units
of measure employed. Based on the case studies, it can
be observed that the custom model excelled at standard
queries, while the OpenAI model handled complex
prompts with intricate sentence structures more effec-
tively, despite occasionally introducing unexpected XML
changes.

The pretrained GPT-3.5-turbo OpenAI model is
readily accessible and easy to use, whereas the SpaCy
model, being custom-trained, requires significant invest-
ment in terms of labor, cost, and ongoing maintenance as
the model needs to be retrained with new datasets.

DIGITAL SUPPLEMENTARY MATERIAL

 The supplementary material can be found with the
LAPSE ID: LAPSE:2025.0019

REFERENCES
1. Julien B, Cal D. The role of process engineering in

the digital transformation. Computers & Chemical
Engineering (2021)

2. Zeinab H, Shokoufe T, Mohammad HEA.
Application of AI in Chemical Engineering.
InTechOpen (2018)

3. Venkat V. The promise of artificial intelligence in

chemical engineering: Is it here, finally?. AIChE
Journal 65:466-478 (2018)

4. Konstantinos S, Charis N, Paris V, Elias K, Patrik K,
Serafeim M. Enhancing property prediction and
process optimization in building materials through
machine learning: A review. Computational
Materials Science 220 (2023)

5. Mohammad A, Bassel S, Mohamed M, Enas S,
Maryam A, Abrar I, Muaz R, Abdul O. Progress of
artificial neural networks applications in hydrogen
production. Chemical Engineering Research and
Design 182:66-86 (2022)

6. Haley H, Mohannad N, Xinyan H, John G. The role
of large language models (AI chatbots) in fire
engineering: An examination of technical questions
against domain knowledge. Natural Hazards
Research (2024)

7. Chung L. What Is the Impact of ChatGPT on
Education? A Rapid Review of the Literature.
Education Sciences 410 (2023)

8. Mohannad N. Machine Learning for Civil and
Environmental Engineers: A Practical Approach to
Data-Driven Analysis, Explainability, and Causality.
New Jersey: Wiley (2023)

9. Alipour H, Nick P, Kohinoor R. ChatGPT Alternative
Solutions: Large Language Models Survey. arXiv
preprint arXiv (2024)

10. Dhiah S. Jaccard Coefficients based Clustering of
XML Web Messages for Network Traffic
Aggregation. Journal of Al-Qadisiyah for computer
science and mathematic 11:82-91 (2019)

11. Faisal R, Teruaki K, Masayoshi A. Semantic cosine
similarity. 7th international student conference on
advanced science and technology ICAST 4 (2012)

12. Seo N, Sangwoo K, Cheonyoung J. A Lightweight
Program Similarity Detection Model using XML and
Levenshtein Distance. FECS 3-9 (2006)

© 2025 by the authors. Licensed to PSEcommunity.org and PSE
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator
and adaptations must be shared under the same terms. See
https://creativecommons.org/licenses/by-sa/4.0/

