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ABSTRACT 
Process optimisation and quality control are crucial in process industries for minimising product 
waste and improving plant economics. Identifying robust operational regions that ensure both 
product quality and performance is particularly valued in industries. However, this task is compli-
cated by operational uncertainties, which can lead to violations of product quality constraints and 
significant batch discards. We propose a novel robust optimisation strategy that integrates ad-
vanced machine learning and process systems engineering to systematically identify optimal op-
erational regions under uncertainty. Our approach begins by using a process model to screen a 
broad operational space across various uncertainty scenarios, pinpointing promising control tra-
jectories to satisfy process constraints and product quality. Machine learning is then employed to 
cluster these trajectories into sub-regions. Finally, a two-layer dynamic optimisation framework is 
employed to determine the optimal control trajectory and corresponding operable space within 
each promising sub-region. To demonstrate the efficiency of our approach, we used a case study 
focusing on the quality control of a dynamic batch process for formulation product manufacturing. 
The resulting operational regions were shown to meet product quality demands and offer a signif-
icant improvement in optimality over the current operation, highlighting the advantage and indus-
trial potential of our strategy. 

Keywords: Operational regions, Machine learning, Optimisation under uncertainty, Process control, Dynamic 
optimisation 

INTRODUCTION 
Product quality control is a critical concern in indus-

tries such as pharmaceuticals, speciality chemicals, and 
formulation processes, where strict regulatory standards 
are enforced to ensure safety, efficacy, and economic vi-
ability [1]. As a result, manufacturers face growing pres-
sure to minimise product waste, a challenge particularly 
pronounced in pharmaceutical production, where batch 
rejections due to variability and quality deviations can re-
sult in significant economic and environmental conse-
quences. To maintain a competitive edge while adhering 
to sustainability goals, there is a strong need for process 
optimisation strategies that enhance efficiency, reduce 
waste, and improve operational flexibility. Traditionally, 
process control has relied on rigid set-point strategies, 
where specific operating conditions are predetermined 
and maintained through fixed state profiles [2]. While 

effective in ensuring stable operations, such approaches 
lack adaptability in the face of uncertainty, making them 
prone to inefficiencies. Furthermore, the rigid nature of 
set-point control often results in excessive energy con-
sumption, as significant resources are required to main-
tain precise operational conditions [3]. Even in cases 
where real-time closed loop feedback control is imple-
mented to account for variability, the reliance on exten-
sive sensor networks and rapid data processing can in-
troduce prohibitive costs and practical limitations. Fur-
thermore, unaccounted uncertainties can lead to devia-
tions in key performance indicators (KPIs), increasing the 
likelihood of batch failures and product inconsistencies.  

To address these challenges, robust optimisation 
techniques have been widely explored in the literature. 
One commonly employed approach is stochastic optimi-
sation, which leverages probability distributions to model 
uncertainties and has been successfully applied in 
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complex, non-linear systems [4]. A particularly effective 
subset of stochastic optimisation is scenario tree optimi-
sation, which transforms probabilistic problems into a 
structured deterministic framework by propagating un-
certainty across different realisations of a process [5]. 

An emerging alternative to traditional set-point-
based control is operational space control, which shifts 
the focus from maintaining rigid state profiles to defining 
feasible operational spaces within which a process can 
be adjusted [6]. This approach has found use in the 
chemical and pharmaceutical sectors, where it is often 
referred to as design space identification. For instance, 
[6] demonstrated the effectiveness of operational space 
methodologies in the temperature control of a fed-batch 
bioreactor under uncertainty, ensuring ethanol produc-
tion constraints were met despite process variability. 
Such methodologies provide greater flexibility and 
adaptability than conventional set-point control, making 
them well-suited for processes characterised by uncer-
tainty and dynamic variability [7]. 

Despite its advantages, current operational space 
methodologies still face notable challenges. Existing ap-
proaches often limit the consideration of uncertainty to 
parameter variations alone, overlook optimality in favour 
of robustness, and rely on computationally expensive 
sampling techniques. Moreover, there has been little re-
search into the systematic identification of multiple fea-
sible operational spaces for a given process, despite the 
potential benefits of having multiple viable operating re-
gions. Notably, operational space control has yet to be 
applied in formulation industries, where the need for flex-
ible quality control and real-time process monitoring is 
particularly pronounced. 

In this paper, we address these gaps by proposing 
a novel scenario tree optimisation framework that inte-
grates flexible operational spaces with dynamic optimi-
sation. This framework not only enables the identification 
of multiple optimal and flexible operational regions but 
also enhances product quality control in a manner that is 
useful to real-world manufacturing constraints. Addition-
ally, we present the first case study applying operational 
space methodologies to formulation processes, demon-
strating the practical benefits of this approach in an in-
dustrial setting. 

METHODOLOGY 
Operational spaces can generally be categorised 

into three key classifications. The feasible space repre-
sents the multidimensional range of operating conditions 
that satisfy all process constraints. Within this, the flexi-
ble space forms a subset that is not only feasible but also 
resilient to uncertainties. Lastly, the optimal space is an-
other subset of the feasible space where operating con-
ditions are selected to maximise performance according 

to a predefined objective. In this study, we introduce a 
novel methodology to systematically identify the inter-
section of the flexible and optimal spaces, ensuring that 
the resulting solution space consists exclusively of oper-
ating conditions that are both robust to uncertainty and 
optimal in performance. 

Additionally, as multiple distinct optimal operating 
conditions may exist, we seek to distinguish and charac-
terise separate optimal regions within the identified de-
sign space. Each region is defined by a unique optimal 
state profile—or a set of profiles if multiple state variables 
are involved—along with its corresponding operational 
boundaries. In this work, we utilise an interval-based rep-
resentation, where operating spaces are defined by up-
per and lower limits on the identified optimal state pro-
files. The overall methodology can be summarised into 4 
steps, which are shown in Figure 1. 

 
Figure 1. Schematic showing the general framework 
proposed in this study. 

General Problem Formulation 
We consider a mathematical model that captures 

the dynamics of the process, where state variables are 
categorised into two distinct groups: (i) Flexible state 
variables, denoted as 𝒙̇𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡𝑗𝑗) ∈ ℝ𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, represent 
variables that can be directly adjusted through control in-
puts. Here, 𝑡𝑡𝑗𝑗 indicates a specific time point within the 
operational time horizon. (ii) Dependent state variables, 
represented as 𝒙̇𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡𝑗𝑗) ∈ ℝ𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, are those influenced by 
both control inputs and flexible state variables but cannot 
be directly regulated. The process dynamics are de-
scribed by the following system of differential equations: 

𝒙̇𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = 𝑭𝑭𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡,𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡),𝜽𝜽, 𝝃𝝃,𝒖𝒖(𝑡𝑡))  (1a) 

𝒙̇𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑭𝑭𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡,𝒙𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡),𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡),𝜽𝜽, 𝝃𝝃) (1b) 
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Where 𝒖𝒖(𝑡𝑡𝑗𝑗) ∈ ℝ𝑚𝑚 represents the vector of control 
inputs, 𝜽𝜽 ∈ ℝ𝑝𝑝  is the vector of fixed parameters, and 𝝃𝝃 ∈
ℝ𝑟𝑟 denotes the vector of uncertain parameters. Each 
source of uncertainty, 𝜉𝜉𝑖𝑖 for 𝑖𝑖 = 1⋯𝑟𝑟, is modelled as a 
Gaussian-distributed random variable, with its mean set 
to the nominal parameter value, and its variance reflect-
ing expected variability. Both parameters are assumed to 
be known. 

The goal of this study is to determine a flexible, op-
timal, and practical operational space for 𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑡𝑡𝑗𝑗� en-
suring that key performance indicators (KPIs), such as 
product quality, are consistently met while maximising 
process efficiency despite the presence of uncertainties. 
Herein, the term operational space will be used to refer 
specifically to the identified flexible state space of 
𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑡𝑡𝑗𝑗�. 

Step 1: Sampling Uncertainty 
We utilise scenario tree analysis, as discussed in 

Section 1, to capture the potential range of uncertainties 
encountered during processing. The full scenario tree is 
constructed by sampling each uncertainty source from its 
respective distribution, with a detailed description avail-
able in [8]. It is crucial to ensure that uncertainty is well-
represented to develop a robust control strategy. There-
fore, selecting a sufficient number of uncertainty samples 
is needed. However, this must be balanced against the 
increased computational cost associated with expanding 
the scenario tree. Once the scenario tree is established, 
all optimisation strategies are executed across the entire 
tree, ensuring that any imposed constraints are met un-
der all considered uncertainty scenarios. An important 
note to consider is the computational expense of the 
methodology, which is largely dependent on the system 
under study. For high dimensional and complex systems, 
it should be encouraged to explore parallelisation, high 
performance computing alongside scenario reduction 
methods. 

Step 2: Filling out the Optimal Region 
Since multiple optimal state profiles of 𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) 

can satisfy process constraints while ensuring KPIs re-
main within specification, Step 2 (illustrated in Figure 1) 
focuses on refining the broad process design space. The 
goal is to identify promising operational regions that likely 
contain the majority of optimal state profiles of 𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡). 
When successfully designed, these optimal operational 
regions should consist primarily—if not entirely—of state 
trajectories that adhere to a predefined standard of pro-
cess efficiency while respecting constraints under all un-
certainties represented in the scenario tree. Specifically, 
for each set of optimal state profiles, the objective is to 
minimise a process cost 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎, which is computed as the 
average cost across all scenarios in the scenario tree, 
while ensuring that the calculated KPI remains within the 

specified range and close to its target value as defined in 
the PFD. 

The operational time horizon is discretised into 𝑁𝑁 in-
tervals. To simplify control efforts, we assume that 
𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) remains constant within each interval, meaning 
it follows a piecewise constant representation 
(𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) = 𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, for 𝑡𝑡 𝜖𝜖[𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1) and 𝑘𝑘 = 0⋯𝑁𝑁 − 1), 

where 𝑡𝑡𝑘𝑘 = 𝑘𝑘∆𝑡𝑡 and ∆𝑡𝑡 = 𝑡𝑡𝑓𝑓
𝑁𝑁� . Furthermore, due to phys-

ical constraints on control actions 𝒖𝒖(𝑡𝑡), the flexible state 
variables are also bounded within a predefined range, 
[𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝒙𝒙𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓] for 𝑘𝑘 = 0⋯𝑁𝑁 − 1. The process is also 

subject to constraints, 𝒈𝒈(𝒙𝒙𝑘𝑘,𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) for 𝑠𝑠 = 1⋯𝑆𝑆, 
where 𝑆𝑆 represents the number of uncertain scenarios in 
the scenario tree. Additionally, it is assumed that the ini-
tial state 𝒙𝒙0

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is known. With these considerations, the 
optimisation problem is defined to determine the optimal 
state trajectories of 𝒙𝒙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑘𝑘𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑘𝑘=0,…,𝑁𝑁−1 𝜆𝜆1 ⋅ 𝑜𝑜𝑜𝑜𝑜𝑜1 + 𝜆𝜆2 ⋅ 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎   (2) 
𝑠𝑠. 𝑡𝑡.  

𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 =  0, … ,𝑁𝑁 − 1, 𝑠𝑠 =  1, … , 𝑆𝑆,     

𝑜𝑜𝑜𝑜𝑜𝑜1 = (1/𝑆𝑆)∑ �𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾,𝑠𝑠 − 𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾,𝑇𝑇�
2𝑆𝑆

𝑠𝑠=1     

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 = (1/𝑆𝑆)∑ 𝐶𝐶𝑠𝑠𝑆𝑆
𝑠𝑠=1       

𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾,𝑠𝑠 = ℎ�𝒙𝒙𝑘𝑘,𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�      

𝒙𝒙𝑘𝑘+1,𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝒇𝒇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝛥𝛥𝛥𝛥,𝒙𝒙𝑘𝑘

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠 ,𝒙𝒙𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ,𝜽𝜽, 𝝃𝝃𝒔𝒔�    

𝒈𝒈�𝒙𝒙𝑘𝑘
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑠𝑠 ,𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� ≤ 0      

𝒙𝒙0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝒙𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(0)      

𝒙𝒙𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ 𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ 𝒙𝒙k
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓le,𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾,𝑠𝑠 ≤ 𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾  

Here, 𝜆𝜆1 and 𝜆𝜆2 are weighting parameters assigned 
to each objective. 𝑜𝑜𝑜𝑜𝑜𝑜1 represents the average sum-of-
squared deviations from the target KPIs across all sce-
narios, while 𝐶𝐶𝑠𝑠 denotes the process cost for each sce-
nario. The function ℎ(∙) describes the transformation be-
tween process states and their corresponding KPIs, 
where  𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾,𝑠𝑠 and 𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾,𝑇𝑇 represent the KPI value for Sce-
nario 𝑠𝑠 and the target KPI value, respectively. The term 
𝒇𝒇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(∙) accounts for the numerical integration of the de-
pendent state variables. 𝒈𝒈(∙) is the process inequality 
constraints. 

To obtain a diverse set of optimal state trajectories 
and explore a broader operational space, the optimisa-
tion of Problem 2 is initially performed. Once this is com-
plete, additional optimal state profiles can be identified 
by re-optimising the problem with an additional penalty 
function, 𝑝𝑝, introduced into the objective function. The 
penalty used may be: 

𝑝𝑝 = 𝜆𝜆3 ⋅ ∑ ∑ ∑ �
�𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗,𝑘𝑘−𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑑𝑑

∗ �
𝛥𝛥𝛥𝛥𝑓̅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗,𝑘𝑘

�𝑁𝑁−1
𝑘𝑘=0

𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑗𝑗=1

𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑=1  (3) 
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Here, 𝝀𝝀𝟑𝟑 serves as the weighting parameter that 
regulates the strength of the penalty function. Higher val-
ues encourage greater variation among solutions, 
thereby facilitating the identification of more distinct op-
timal regions. The term 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 denotes the number of pre-
vious optimisation iterations, which increases as the 
number of iterations does. Within this framework, 
𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗,𝑘𝑘,𝑑𝑑
∗  represents the discretised optimal state value 

from an already identified trajectory, whereas 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗,𝑘𝑘 
corresponds to the state value in the current optimisa-
tion. To ensure comparability across variables with dif-
ferent scales, the term 𝛥𝛥𝛥𝛥𝑓̅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗,𝑘𝑘 represents the maxi-
mum range of 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑗𝑗,𝑘𝑘 across previously identified tra-
jectories. By applying this iterative approach, and with a 
sufficiently large number of iterations 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 , one can sys-
tematically explore the entire design space to uncover a 
broad set of high-quality optimal state profiles that re-
main feasible under uncertainty.  

Step 3: Clustering Optimal Regions 
After completing Step 2, multiple operational spaces 

may emerge. To systematically identify and characterise 
these spaces, clustering algorithms are employed. Given 
that clustering is an unsupervised learning approach, it is 
crucial to validate the results by applying different clus-
tering methods and analysing the resulting cluster char-
acteristics. This ensures a clear distinction between so-
lutions and assists to assess variations in their behav-
iours. In this work, several algorithms were used and 
compared in order to ensure consistent results for the 
recommended number of clusters. These are k-means, 
DBSCAN, and spectral clustering [9]. 

Step 4: Nominal State and Bound Estimation 
Strategy 

In Steps 2 and 3 (as shown in Figure 1), estimations 
for a set of distinct optimal operational regions are made. 
The next step involves refining these regions by deter-
mining the nominal state profiles for each region, as well 
as the upper and lower bounds for each flexible state var-
iable. An optimal operational region for a particular flexi-
ble state variable is characterised by its nominal profile 
and associated bounds, where staying within these 
bounds provides feasibility under the given uncertainties. 

The nominal profiles, which represent the optimised 
state variable set-points at various stages of the process, 
are identified through a dynamic optimisation approach, 
as described in Problem 2. At this point, the search space 
is limited to the clustered region defined in Step 3. This 
ensures the solution remains within the appropriate clus-
ter. Consequently, the bounds in Problem 2, 𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 
𝒙𝒙k
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓le, are adjusted to reflect the specific characteris-

tics of the cluster. Once the nominal profiles are deter-
mined, a two-step algorithm is proposed to inde-
pendently find the upper and lower bounds, maximising 

the distance between them while still adhering to process 
constraints. The optimisation strategy for determining 
the lower bound is shown in Equation 4. 

 max
𝒙𝒙𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑙𝑙𝑙𝑙

𝑘𝑘=0⋯𝑁𝑁−1

   min
𝑗𝑗=1

�𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
min
𝑘𝑘=1

(𝑁𝑁−1)
𝑤𝑤𝑗𝑗,𝑘𝑘 ⋅ �𝑥𝑥𝑗𝑗,𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑥𝑥𝑗𝑗,𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑙𝑙𝑙𝑙� 

𝑠𝑠. 𝑡𝑡.           (4) 

𝑤𝑤𝑗𝑗,𝑘𝑘 = 1
𝑥𝑥𝑗𝑗,𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛−𝑥𝑥𝑗𝑗,𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓     

𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾,𝑠𝑠 = ℎ�𝒙𝒙𝑘𝑘,𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�     

𝒙𝒙𝑘𝑘+1,𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝒇𝒇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�Δ𝑡𝑡,𝒙𝒙𝑘𝑘,𝑠𝑠

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ,𝒙𝒙𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑙𝑙𝑙𝑙 ,𝜽𝜽, 𝝃𝝃𝑠𝑠�   

𝒈𝒈�𝒙𝒙𝑘𝑘,𝑠𝑠
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑙𝑙𝑙𝑙� ≤ 0     

𝒙𝒙0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝒙𝒙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(0)      

𝒙𝒙𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ 𝒙𝒙𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑙𝑙𝑙𝑙 ≤ 𝒙𝒙𝑘𝑘
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾,𝑠𝑠 ≤ 𝑦𝑦𝐾𝐾𝐾𝐾𝐾𝐾 

    

Problem 4 is designed to maximise the minimum dis-
tance between the nominal flexible state, 𝑥𝑥𝑗𝑗,𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , 
and the lower bound of the flexible state, 𝑥𝑥𝑗𝑗,𝑘𝑘

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑙𝑙𝑙𝑙, 
across all flexible state variables and time steps. The nor-
malisation parameter, 𝑤𝑤𝑗𝑗,𝑘𝑘, is used to standardise the in-
fluence of different flexible states on the objective func-
tion. By formulating the objective this way, the goal is to 
spread the bounds as evenly as possible across the en-
tire trajectory for each flexible state variable. This re-
duces the need for highly precise set-point control at any 
given time step.  

This optimisation strategy can be repeated for the 
upper bound to provide the full operational region where 
control of the design variables can be relaxed but achieve 
good process performance and required specifications. 
As the two-step algorithm determines the upper and 
lower bounds independently, each bound is ensured to 
meet the constraints on its own. However, this does not 
guarantee that all state profiles sampled within these 
bounds will adhere to the constraints. Therefore, it is cru-
cial to validate these bounds by randomly sampling state 
profiles within them and identifying instances where con-
straints are violated. Once these violating samples are 
recorded, they are reintroduced into the framework by 
incorporating a penalty function into the objective func-
tions of Equations (4) and (5). This penalty function 
serves to narrow the bounds, ensuring that future state 
profiles do not violate the constraints. The penalty func-
tion may take many forms dependant on the study, but 
one must consider its practicality against its conserva-
tiveness. 

CASE STUDY 
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To illustrate the effectiveness of the proposed 
framework, an in-silico case study has been developed 
using a dynamic model designed to simulate a real-world 
industrial formulation process. A simplified schematic of 
the primary mixing unit is presented in Figure 2. This case 
study focuses on the production of a multiphase, non-
Newtonian liquid formulation via a batch mixing process 
where the process flow diagram (PFD) is characterised 
by a sequence of ingredient additions, alongside key pro-
cessing such as temperature and shear rate. Due to the 
complex nature of multiphase mixing mechanisms, the 
product KPI is inherently challenging to control and can-
not be measured in real-time. As a result, defining a ro-
bust operational space that ensures both process flexi-
bility and consistent product quality is essential. Further-
more, it is desired to reduce operational expense and im-
prove the sustainability of the process through reducing 
the batch cycle time (i.e., the process cost). 

 
Figure 2. Diagram of the batch mixing unit for which the 
case study is based on. 

Within this study, both the sequence of ingredient 
additions and the final ingredient ratio and mass are pre-
defined by established protocols. As a result, the selec-
tion of flexible state variables is limited to standard pro-
cessing parameters such as shear rate, pressure, tem-
perature, and flowrate. For this investigation, two pro-
cess parameters are chosen, along with an additional 
variable representing the timing of ingredient additions, 
leading to a total of three distinct types of flexible state 
variables. A mechanistic model exists to describe the dy-
namic mixing process with high accuracy, a full descrip-
tion of which can be found in [10]. In this model, there 
exists a set of 5 key ingredient concentrations (depend-
ent states), determined dynamically through 3 material 
transformation equations, which influence the product 
quality. Furthermore, there are 3 flexible state variables 
used to control the process, and in total, there are 14 
model parameters which were parameterised. The 3 flex-
ible state variables were each discretised into 5 decision 
variables for the purpose of solving the optimal control 
problem (i.e., a total of 15 decision variables). The 3 flex-
ible state variables will henceforth be referred to as Pro-
cess Parameters 1, 2 and 3. 

The primary challenges in this case study stems 

from the difficulty in achieving the desired end-product 
quality, which is influenced by various process uncertain-
ties typically encountered in standard operations. These 
uncertainties were categorised into three sources. The 
first being variations in the input feed composition, which 
are reflected in the estimated model parameters. The 
second source is human error, primarily introduced 
through inconsistencies in precisely following the sched-
uled timing for ingredient additions. The third source is 
system control error, which involves deviations in state 
variables from their set-point values. The uncertainty lev-
els for these variables were assumed to be 10%, 20%, and 
5%, respectively. Additionally, 100 uncertain scenarios 
were considered in the assembly of the scenario tree. 

RESULTS AND DISCUSSION 
The methodology outlined in Section 2 was fully im-

plemented, resulting in the identification of 40 optimal 
set-points during step 2. In Step 3, the analysis revealed 
the presence of two distinct clusters, each associated 
with separate state profiles which were both carried forth 
for Step 4. From application of Step 4, the initial nominal 
state profiles and corresponding bounds for Process Pa-
rameters 1 and 2 in each cluster were determined as 
shown in Figures 3 (initial bounds) and 4 (refined 
bounds). 

 
Figure 3. Normalised state profiles and operational 
region for Process Parameters 1(a) and 2(b) for each of 
the clusters identified before bound refinement 
 

 
Figure 4. Normalised state profiles and operational 
region for Process Parameters 1(a) and 2(b) for each of 
the clusters identified after bound refinement. 

To validate the initial bounds for both clusters, 1000 
state trajectories were randomly sampled from within the 
optimal operational regions, across 100 unseen uncertain 
scenarios (i.e., 105 tests). To compare the performance, 
the batch failure rate is defined: this is the fraction of the 
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test batches that encounter a product quality violation. 
After validation of the initial bounds (Figure 3), the results 
showed that Cluster 1 and 2 had a batch failure rate of 
0.9% and 0.1%, respectively, suggesting that the initial 
bounds are reasonably robust to uncertainties.  

When the bounds were refined (Figure 4), the batch 
failure rates dropped significantly to 0% and 0.009% for 
Clusters 1 and 2, respectively. However, it is immediately 
noticed that the refined operational area of Cluster 2 is 
much greater than that of Cluster 1. Specifically, Cluster 
1’s refined operational areas are 67.1% and 59.2% smaller 
for Process Parameters 1 and 2, respectively. Using these 
results, we can conclude that although it may be possible 
to achieve a 0% batch failure rate, it may be more practi-
cal to permit a small batch failure rate in order to largely 
improve flexibility in the operational area. 

Overall, this case study demonstrates the frame-
work's capacity to identify multiple distinct optimal re-
gions, each offering operational areas that are practically 
resilient to uncertainties. Additionally, both identified re-
gions led to a significant reduction in batch time com-
pared to the existing set-point control approach used for 
the system, achieving a 38.6% decrease in both cases. 
After a thorough evaluation of each operational region’s 
performance, it is likely that Region 2 would be recom-
mended for execution, given its greater operational flex-
ibility to Region 1. 

CONCLUSION 
In conclusion, operational space design provides an 

innovative approach for integrating uncertainties into the 
development of robust control strategies, ensuring that 
key process constraints are reliably met. By combining 
flexibility with optimality, this approach enables the cre-
ation of control strategies that are both reliable and high-
performing. A significant advantage over traditional set-
point control is the increased operability, which allows 
processes to operate within broader ranges instead of 
being constrained to strict set-point conditions. Addition-
ally, the systematic identification of various operating re-
gions within the entire optimal space offers a major ben-
efit over traditional set-point control, which may overlook 
the existence of such regions. This methodology not only 
aids in designing robust controls but also provides valu-
able insights into how processes can be operated, help-
ing operators identify areas where the process may be 
more stable and easier to control. 

REFERENCES 
1. A. Hicks et al., “A two-step multivariate statistical 

learning approach for batch process soft sensing,” 
Digital Chemical Engineering, vol. 1, p. 100003, 
Dec. 2021. 

2. H. Efheij, A. Albagul, and N. A. Albraiki, 
“Comparison of Model Predictive Control and PID 
Controller in Real Time Process Control System,” 
19th International Conference on Sciences and 
Techniques of Automatic Control and Computer 
Engineering, STA 2019, pp. 64–69, May 2019. 

3. H. S. Asad, R. K. K. Yuen, and G. Huang, 
“Multiplexed real-time optimization of HVAC 
systems with enhanced control stability,” Appl 
Energy, vol. 187, pp. 640–651, Feb. 2017. 

4. Q. P. Zheng, J. Wang, and A. L. Liu, “Stochastic 
Optimization for Unit Commitment - A Review,” 
IEEE Transactions on Power Systems, vol. 30, no. 
4, pp. 1913–1924, Jul. 2015. 

5. J. Silvente, L. G. Papageorgiou, and V. Dua, 
“Scenario tree reduction for optimisation under 
uncertainty using sensitivity analysis,” Comput 
Chem Eng, vol. 125, pp. 449–459, Jun. 2019. 

6. T. Forster, D. Vázquez, I. F. Moreno-Palancas, and 
G. Guillén-Gosálbez, “Algebraic surrogate-based 
flexibility analysis of process units with 
complicating process constraints,” Comput Chem 
Eng, vol. 184, p. 108630, May 2024. 

7. J. Djuris and Z. Djuric, “Modeling in the quality by 
design environment: Regulatory requirements and 
recommendations for design space and control 
strategy appointment,” Int J Pharm, vol. 533, no. 2, 
pp. 346–356, Nov. 2017. 

8. T. Homem-de-Mello and G. Bayraksan, “Monte 
Carlo sampling-based methods for stochastic 
optimization,” Surveys in Operations Research and 
Management Science, vol. 19, no. 1, pp. 56–85, 
Jan. 2014. 

9. N. Murugesan, I. Cho, and C. Tortora, 
“Benchmarking in Cluster Analysis: A Study on 
Spectral Clustering, DBSCAN, and K-Means,” 
Studies in Classification, Data Analysis, and 
Knowledge Organization, vol. 5, pp. 175–185, 2021. 

10. A. W. Rogers et al., “Integrating knowledge-guided 
symbolic regression and model-based design of 
experiments to automate process flow diagram 
development,” May 2024. 

© 2025 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 
 


