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ABSTRACT

In the present paper, we come up with application of machine learning using data for flow visuali-
zation as a method for predicting unsteady flow patterns in oscillatory baffled reactors (OBRs).
Application of the proper orthogonal decomposition (POD) is investigated for dynamic analysis of
spatio-temporal data acquired by particle image velocimetry (PIV) to determine inputs and outputs
for neural network model. It has demonstrated that three sets of modes and time-varying mode
coefficients extracted by the POD could be useful for dynamic analysis and prediction of time-
variant flow patterns in OBR. Also it is shown that decomposition of the time-series data for the
mode coefficients by Fourier series expansion was effective for deriving reduced order model.
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INTRODUCTION

An oscillatory baffled reactor (OBR) [1] is a type of
flow reactor, and is generally structured with equally
spaced baffles arranged inside a circular tube. In this re-
actor, the fluids in the reactor are mixed by periodically
oscillating the fluids or the baffles. Tubular reactors and
continuous stirred tank reactors (CSTRs) have been
widely used as conventional flow reactors. Tubular reac-
tor is a type of reactor in which the fluids flow continu-
ously in one direction with reaction, and has a simple
structure. However, it requires a large flow rate to suffi-
ciently promote the mixing of the fluids, which results in
a problem of consuming a lot of power. In addition, for
long tube reactors that are applicable to slow reaction,
there are limitations for implementation in terms of instal-
lation space and cost. On the other hand, CSTRs have the
advantage that the fluids are sufficiently mixed in each
stirred tank, but in order to attain a uniform residence
time distribution, a large number of stirred tanks must be
connected in series, which causes the system to become
complicated.

OBRs are attracting attention for their process in-
tensification effects, such as high mixing performance at
low flow rates and long residence time due to the vortices
generated by the interaction between the oscillating flow
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and the baffles. Due to high performances for mixing and
mass transfer, the OBRs are applied to various process
systems. For example, for applications of OBRs to gas-
liquid reactions, the reaction efficiency could be en-
hanced by increase in the contact area between the gas
and liquid that is caused by oscillating flow. For liquid-
liquid reactions, OBRs could be applied to achieve uni-
form mixing of two phase flow. Also, for application of
OBRs to solid-liquid reactions, it has been observed that
oscillating flow between baffles performs well-dispersion
of solid particles, which leads to intensification of the re-
action process. Due to the above-mentioned process in-
tensification effects, OBRs are being put to practical use
in various industrial fields, such as fine chemicals, phar-
maceuticals and biodiesel productions [2-3].

In design of the oscillatory baffled reactors, optimal
reactor performance could be achieved through complex
interactions among multiple design parameters. The de-
sign parameters for OBR are related to geometry of baffle,
structure of reactor and operation for generation of os-
cillating flow, so that they influence flow pattern inside
reactor. The design of the flow in OBR is evaluated by
several dimensionless numbers, including the oscillatory
Reynolds number), the Strouhal number (St), the velocity
ratio and so on.

The oscillatory Reynolds number (Reo) [1] is an
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index representing the mixing intensity inside the OBR,
and is expressed by the following formula.

Reo — 2nfxopd (1)

u

where f is the frequency of oscillation, xq is the ampli-
tude of oscillation, p is the density of the fluid, and u is
the viscosity of the fluid. When Re, < 250, the flow is ax-
ially symmetric and is defined as laminar flow. In a case
when 250 < Re, < 2000, the flow is in the transition re-
gion, and the flow where Re, = 2000 is generally consid-
ered as turbulent. In our previous study for application of
OBR to three-phase hydrogenation of 3-butyn-2-ol by
using Pd/Al203 catalyst, OBR has demonstrated higher
reaction performance than the conventional packed bed
reactor (PBR), and at the same Re,, OBR with lower am-
plitude attained higher conversion [4].

As shown Figure 1, it was considered that the differ-
ence in f and xg influenced the flow pattern inside the
reactor and behavior of the reaction process (e.g. con-
version X) for a case when frequency and amplitude dif-
fer with the same Re,. As a result of flow visualization,
since the generation of vortices was remarkably ob-
served in the vicinity of the loaded catalyst when the
amplitude xo was smaller, it was thought that analysis
and prediction of the time-dependent changes in the lo-
cal circulating flow in the region between the baffles
would lead to more efficient design of OBR.

B - plitude me—
e frequency I

Figure 1. Comparison of streamlines that was obtained
by PIV (#3: xg = 15mm, X = 36.4%, #4: xo = 10mm,X =
43.9%,#5: xo = 5mm, X = 52.2%).

Although it is well known that computational fluid
dynamics simulations [5-6] are effective in analysis and
prediction of the flow patterns, there is a problem in that
calculations for unsteady processes require a high com-
putational load. Therefore, we came up with application
of machine learning using data for flow visualization as a
method for predicting unsteady flow patterns. In the pre-
sent paper, we investigated methods for dynamic analy-
sis of spatiotemporal data acquired by Particle Image Ve-
locimetry (PIV) to determine inputs and outputs for neural
network model.
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METHODOLOGIES

Acquisition and analysis of flow visualization
data

Figure 2 shows a schematic diagram of the oscilla-
tory baffled reactor used in the flow visualization experi-
ment using particle image velocimetry (PIV). The reactor
is an acrylic tube type with an inner diameter of 26 mm.
Baffles with a diameter of 25 mm and an opening area of
25% are placed in the reactor at equal intervals of 35 mm.
The center part of the reactor tube with a length of 250
mm is covered by a rectangular vessel that is filled with
water to eliminate distortion due to light refraction.

The flow rate of the steady flow was controlled by a
plunger pump (FLOM, KP-22), and the oscillatory flow
was generated from the bottom of the reactor using a sy-
ringe pump (Hamilton, PSD/6). Polyamide particles KP-
050 (Kato Koken), which have a specific gravity almost
the same as that of water, were used as tracer particles.
The flow was visualized by irradiating the tracer particles
with a green laser sheet formed by a PIV laser G2000
(Kato Koken). The motion of the tracer particles was re-
coded by using a high-speed camera (Kato Koken, k-
8HD), and the obtained image data was analyzed by PIV
software (Kato Koken, Flow Expert).

Table 1 shows operating conditions for acquisition
of flow visualization data. Oscillatory Reynolds number
Rey, the flow rate of the steady flow Q, the amplitude of
oscillation of syringe pump xg, and the frequency of os-
cillation of syringe pump f were changed in the present
experiments.

Liquid OUT

Laser

Liquid IN —
+—  Oscillation

Figure 2. Schematic diagram of flow visualization
experiment systems including OBR.
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Table 1: Operating conditions for flow visualization ex-
periments.

Regy [-] 762,595, 293,142, 40
Q [ml/min] 8.3, 16.6

xo [mm] 5,10, 15

f [Hz] 0.02 - 1.086l

Application of the proper orthogonal
decomposition (POD)

Recently, in the fields of computational fluid dynam-
ics simulation, an approach that integrates the reduced
order modeling (ROM) with machine learning technology
has been investigated [7]. The major ROM techniques in-
clude the principal component analysis (PCA) and the
proper orthogonal decomposition (POD) [8]. Application
of the he ROM techniques can efficiently extract im-
portant information from phenomena by reducing the di-
mensionality of high-dimensional data, enabling accurate
learning and highly accurate modeling of even highly
nonlinear phenomena, enabling advanced prediction and
analysis.

In the present paper, we investigate applicability of
POD to reduced order modeling of spatiotemporal PIV
data for OBRs. As mentioned above, POD is a modal de-
composition method widely used in the field of fluid dy-
namics, which is used to efficiently reduce the dimen-
sionality of huge amounts of data and extract the domi-
nant structures in the flow field. POD is effective for anal-
ysis of unsteady flow, and is known as a method to clarify
the essential characteristics of complex flow phenomena.
POD calculates a spatially accommodating structure
called “mode” based on a given data set, sorts the modes
in order of contribution, and reduces the dimensionality
of the data by selecting the dominant mode from the top.

In POD analysis, flow field data is decomposed
based on the following formula.

4.0 —4(§) = Xj=1 4(H9;() (2)

where q(§,t) is the time- and space-dependent flow field
data, q($) is the time-averaged flow field data, a;(t) is
the time-varying coefficient corresponding to each
mode, ¢;(§) is the spatial eigenmode, and r is the total
number of modes. In this decomposition, the spatial
modes ¢;(§) are obtained by solving the eigenvalue
problem of the covariance matrix.

Rop; = 4ip; (3)

where R is the covariance matrix, and 4; is the eigen-
value indicating the contribution of each mode.
The covariance matrix R is defined as follows:

R =3, x(t)x" () (4)

The time-varying mode coefficients a;(t) represent the
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contribution of each POD mode at a particular time. The
time-varying coefficients are calculated by the following
equation:

() = (q(€, 1) —q(%), ¢; () (5)

On the other hand, singular value decomposition
(SVD) is sometimes used to calculate POD analysis, and
is expressed as follows for a data matrix X:

X =3y’ (6)

where X is the data matrix, ¢ is the left singular vector
representing the spatial mode, Y. is the singular value
representing the contribution, and ¢ is the right singular
vector representing the time-varing coefficient indicat-
ing the temporal change of each mode.

RESULTS AND DISCUSSION

POD analysis of PIV data for OBR

Figure 3 shows time variation of streamlines that
were obtained by PIV analysis when Re, was 762, Q was
8.3 mil/min, and x, was 5 mm. It was observed that the
flow pattern changes in this order: at the moment the os-
cillating flow became a push-out flow, vortices are gen-
erated on both sides of the lower part. The vortices then
disappeared and the vertical flow occurred. At the mo-
ment when the flow became pull-out flow, vortices were
generated on both sides of the upper part, and then the
vertical flow was seen again. For the same oscillatory
Reynolds number (Re, = 762), when x, was 15 mm, it was
seen that the vortices generated at the bottom and top
moved up and down respectively, and the vortices re-
mained. It was also observed that the axial symmetry of
the flow was broken.

\. _®

Figure 3. Time variation of streamlines that were
obtained by PIV analysis.

As a result of POD analysis of the above-mentioned
PIV data, the cumulative contribution of modes 1 to 3,
which have the largest contribution, was about 80% (Fig-
ure 4 ). Figure 5 shows images of flow vectors that were
reconstructed for three modes with the highest contribu-
tion which were selected from the more than 200 modes,
for a case when Re, was 762, Q was 8.3 mil/min, and x,
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was 5 mm. It was considered that the flow pattern for
mode 1 represents profile of vertical flow and the flow
pattern for mode 2 represents profile of generation of
vortices in the upper and lower parts. Then Figure 6 plots
change in calculated values of the time-varying mode
coefficients a;(t). The trend in the time variation of a;(t)
shows that POD could derive the reduced order model
with characteristics of periodic changes in the flow pat-
tern.
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Figure 4. Variation of the cumulative contribution with
increase in number of modes.
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Figure 5 Images of flows of vector fields that were
reconstructed for principal three modes.
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Figure 6 Time-series plots for time—varying mode
coefficients.

Cases that the profile of vertical flow was extracted
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as mode 1 were seen when the amplitude x, was larger.
Even when the oscillatory Reynolds number Re, was
small and the flow rate of the steady flow Q was large, it
was distinguished that the flows of vector fields for mode
1 showed profile of vertical flow. In addition, we analyzed
the PIV data that were acquired by changing baffles with
the different opening. When the baffle with small opening
(16%) were used, it was experimentally observed position
of generated vortices was upper part than cases of using
the abovementioned baffles with 25% of opening. In ap-
plication of POD analysis, the flows of vector fields with
profile of generation of vortices in the upper and lower
parts were extracted as mode 1, for case when the baf-
fles with smaller opening.

Application of neural network modeling for
prediction of flows of vector fields in OBR

We developed the multi-layered neural network
model with three outputs of mode 1 — 3 that were ex-
tracted above, by using the no-code Al analysis platform
“Multi-Sigma” (AIZOTH Inc.). In the modeling, oscillatory
Reynolds number, amplitude and frequency of oscillation
of syringe pump, velocity ratio for oscillatory flow and lo-
cal velocity vectors were set as inputs. When training was
implemented by changing the number of hidden layers
from 1 to 10 and the number of hidden nodes from 3 to
96. As shown in Figure 7, results with high predictive per-
formance were obtained for the generation, size, and
movement of vortices. On the other hand, poor predictive
performance was observed when Re, was lower.
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Figure 7 Recall of flows of vector fields by using the
trained neural network model.

Next, methods for prediction of time-varying mode
coefficients for the above mentioned three modes were
investigated. In order to reduce dimensionality of data for
the mode coefficients, we investigated application of de-
composition of the time-series data for the mode coeffi-
cients into periodic integrals by Fourier series expansion:

f@) = % + Y1 (ag cos(nt) + by, sin(nt)) (7)
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Parameters (ag,ay, ..., anby, ..., b,) that were calcu-
lated by Egs. (8) and (9) was used as outputs for multi-
layered neural network model for prediction of the time-
varying mode coefficients.

Jy £ () cos(ne) dt 8)

@ =2
nor

by=2 Jy f(© sin(ne) dt (9)

Combination of two types of neural network model
for prediction of three mode (flows of vector fields) and
for prediction of Fourier series expansion parameters re-
lated to the time-varying mode coefficients has demon-
strated to show high predictive performance for time-
varying streamlines in OBR.

While the proposed modeling approach has demon-
strated the potential of black-box modeling for prediction
of flow patterns, it was considered that the reliance on
data-driven modeling without explicit physical insights
may limit its generalizability across different reactor con-
ditions. In future, it is necessary to focus on bridging ma-
chine learning models with first-principles approaches,
ensuring a more interpretable and robust predictive
framework for industrial OBR applications.

CONCLUSIONS

In the present paper, we investigated application of
POD for dynamic analysis of spatio-temporal data ac-
quired by PIV to determine inputs and outputs for neural
network model. It was demonstrated that three sets of
modes and time-varying mode coefficients extracted by
the POD could be useful for dynamic analysis and predic-
tion of time-variant flow patterns in OBR. Also it was
shown that decomposition of the time-series data for the
mode coefficients by Fourier series expansion was effec-
tive for deriving reduced order model.

In future, we will apply this proposed method to ma-
chine learning modeling based on CFD simulation data to
clarify its superiority over CFD simulation. Furthermore,
by clarifying the correlation between the feature quanti-
ties extracted from the CFD simulation data and the
structural parameters of the reactor, it is expected that
the 1/O structure of a machine learning model could en-
sure a more interpretable and robust predictive perfor-
mance for a wider range of reactor conditions.
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