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ABSTRACT 
In the present paper, we come up with application of machine learning using data for flow visuali-
zation as a method for predicting unsteady flow patterns in oscillatory baffled reactors (OBRs). 
Application of the proper orthogonal decomposition (POD) is investigated for dynamic analysis of 
spatio-temporal data acquired by particle image velocimetry (PIV) to determine inputs and outputs 
for neural network model. It has demonstrated that three sets of modes and time-varying mode 
coefficients extracted by the POD could be useful for dynamic analysis and prediction of time-
variant flow patterns in OBR. Also it is shown that decomposition of the time-series data for the 
mode coefficients by Fourier series expansion was effective for deriving reduced order model. 
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INTRODUCTION 
An oscillatory baffled reactor (OBR) [1] is a type of 

flow reactor, and is generally structured with equally 
spaced baffles arranged inside a circular tube. In this re-
actor, the fluids in the reactor are mixed by periodically 
oscillating the fluids or the baffles. Tubular reactors and 
continuous stirred tank reactors (CSTRs) have been 
widely used as conventional flow reactors. Tubular reac-
tor is a type of reactor in which the fluids flow continu-
ously in one direction with reaction, and has a simple 
structure. However, it requires a large flow rate to suffi-
ciently promote the mixing of the fluids, which results in 
a problem of consuming a lot of power. In addition, for 
long tube reactors that are applicable to slow reaction, 
there are limitations for implementation in terms of instal-
lation space and cost. On the other hand, CSTRs have the 
advantage that the fluids are sufficiently mixed in each 
stirred tank, but in order to attain a uniform residence 
time distribution, a large number of stirred tanks must be 
connected in series, which causes the system to become 
complicated. 

OBRs are attracting attention for their process in-
tensification effects, such as high mixing performance at 
low flow rates and long residence time due to the vortices 
generated by the interaction between the oscillating flow 

and the baffles. Due to high performances for mixing and 
mass transfer, the OBRs are applied to various process 
systems. For example, for applications of OBRs to gas-
liquid reactions, the reaction efficiency could be en-
hanced by increase in the contact area between the gas 
and liquid that is caused by oscillating flow. For liquid-
liquid reactions, OBRs  could be applied to achieve uni-
form mixing of two phase flow. Also, for application of 
OBRs to solid-liquid reactions, it has been observed that 
oscillating flow between baffles performs well-dispersion 
of solid particles, which leads to intensification of the re-
action process. Due to the above-mentioned process in-
tensification effects, OBRs are being put to practical use 
in various industrial fields, such as fine chemicals, phar-
maceuticals and biodiesel productions [2-3]. 

In design of the oscillatory baffled reactors,  optimal 
reactor performance could be achieved through complex 
interactions among multiple design parameters. The de-
sign parameters for OBR are related to geometry of baffle, 
structure  of reactor and operation for generation of os-
cillating flow, so that they influence flow pattern inside 
reactor. The design of the flow in OBR is evaluated by 
several dimensionless numbers, including the oscillatory 
Reynolds number), the Strouhal number (St), the velocity 
ratio and  so on. 

The oscillatory Reynolds number (Reo) [1] is an 
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index representing the mixing intensity inside the OBR, 
and is expressed by the following formula. 

𝑅𝑅𝑅𝑅𝑜𝑜 = 2𝜋𝜋𝜋𝜋𝑥𝑥0𝜌𝜌𝜌𝜌
𝜇𝜇

                 (1) 

where 𝑓𝑓  is the frequency of oscillation, 𝑥𝑥O  is the ampli-
tude of oscillation, 𝜌𝜌 is the density of the fluid, and 𝜇𝜇 is 
the viscosity of the fluid. When 𝑅𝑅𝑅𝑅𝑂𝑂 ≤ 250, the flow is ax-
ially symmetric and is defined as laminar flow. In a case 
when 250 < 𝑅𝑅𝑅𝑅𝑂𝑂 < 2000 , the flow is in the transition re-
gion, and the flow where  𝑅𝑅𝑅𝑅𝑂𝑂 ≥ 2000 is generally consid-
ered as turbulent. In our previous study for application of 
OBR to three-phase hydrogenation of 3-butyn-2-ol by 
using Pd/Al2O3 catalyst, OBR has demonstrated higher 
reaction performance than the conventional packed bed 
reactor (PBR), and at the same 𝑅𝑅𝑅𝑅𝑂𝑂, OBR with lower am-
plitude attained higher conversion [4].  

As shown Figure 1, it was considered that the differ-
ence in 𝑓𝑓  and 𝑥𝑥O influenced the flow pattern inside the 
reactor and behavior of the reaction process (e.g. con-
version 𝑋𝑋) for a case when frequency and amplitude dif-
fer with the same 𝑅𝑅𝑅𝑅𝑂𝑂. As a result of flow visualization, 
since the generation of vortices was remarkably ob-
served  in the vicinity of the loaded catalyst when the 
amplitude 𝑥𝑥O  was smaller, it was thought that analysis 
and prediction of the time-dependent changes in the lo-
cal circulating flow in the region between the baffles 
would lead to more efficient design of OBR. 

 
Figure 1. Comparison of streamlines that was obtained 
by PIV (#3: 𝑥𝑥O = 15𝑚𝑚𝑚𝑚,𝑋𝑋 = 36.4% , #4: 𝑥𝑥O = 10𝑚𝑚𝑚𝑚,𝑋𝑋 =
43.9%,#5: 𝑥𝑥O = 5𝑚𝑚𝑚𝑚,𝑋𝑋 = 52.2%). 

Although it is well known that computational fluid 
dynamics simulations [5-6] are effective in analysis and 
prediction of the flow patterns, there is a problem in that 
calculations for unsteady processes require a high com-
putational load. Therefore, we came up with application 
of machine learning using data for flow visualization as a 
method for predicting unsteady flow patterns. In the pre-
sent paper, we investigated methods for dynamic analy-
sis of spatiotemporal data acquired by Particle Image Ve-
locimetry (PIV) to determine inputs and outputs for neural 
network model. 

METHODOLOGIES 

Acquisition and analysis of flow visualization 
data 

Figure 2 shows a schematic diagram of the oscilla-
tory baffled reactor used in the flow visualization experi-
ment using particle image velocimetry (PIV). The reactor 
is an acrylic tube type with an inner diameter of 26 mm. 
Baffles with a diameter of 25 mm and an opening area of 
25% are placed in the reactor at equal intervals of 35 mm. 
The center part of the reactor tube with a length of 250 
mm is covered by a rectangular vessel that is filled with 
water to eliminate distortion due to light refraction.  

The flow rate of the steady flow was controlled by a 
plunger pump (FLOM, KP-22), and the oscillatory flow 
was generated from the bottom of the reactor using a sy-
ringe pump (Hamilton, PSD/6). Polyamide particles KP-
050 (Kato Koken), which have a specific gravity almost 
the same as that of water, were used as tracer particles. 
The flow was visualized by irradiating the tracer particles 
with a green laser sheet formed by a PIV laser G2000 
(Kato Koken). The motion of the tracer particles was re-
coded by using a high-speed camera (Kato Koken, k-
8HD), and the obtained image data was analyzed by PIV 
software (Kato Koken, Flow Expert). 

Table 1 shows operating conditions for acquisition 
of flow visualization data. Oscillatory Reynolds number 
𝑅𝑅𝑅𝑅𝑂𝑂, the flow rate of the steady flow 𝑄𝑄, the amplitude of 
oscillation of syringe pump 𝑥𝑥O, and the frequency of os-
cillation of syringe pump 𝑓𝑓 were changed in the present 
experiments. 

 
Figure 2. Schematic diagram of flow visualization 
experiment systems including OBR. 
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Table  Operating conditions for flow visualization ex-
periments 
𝑅𝑅𝑅𝑅𝑂𝑂 [-]      
𝑄𝑄 [ml/min]   
𝑥𝑥𝑂𝑂 [mm]    
𝑓𝑓 [Hz]  – l 

 

Application of the proper orthogonal 
decomposition (POD) 

Recently, in the fields of computational fluid dynam-
ics simulation, an approach that integrates the reduced 
order modeling (ROM) with machine learning technology 
has been investigated [7]. The major ROM techniques in-
clude the principal component analysis (PCA) and the 
proper orthogonal decomposition (POD) [8]. Application 
of the he ROM techniques can efficiently extract im-
portant information from phenomena by reducing the di-
mensionality of high-dimensional data, enabling accurate 
learning and highly accurate modeling of even highly 
nonlinear phenomena, enabling advanced prediction and 
analysis. 

In the present paper, we investigate applicability of 
POD to reduced order modeling of spatiotemporal PIV 
data for OBRs. As mentioned above, POD is a modal de-
composition method widely used in the field of fluid dy-
namics, which is used to efficiently reduce the dimen-
sionality of huge amounts of data and extract the domi-
nant structures in the flow field. POD is effective for anal-
ysis of unsteady flow, and is known as a method to clarify 
the essential characteristics of complex flow phenomena. 
POD calculates a spatially accommodating structure 
called “mode” based on a given data set, sorts the modes 
in order of contribution, and reduces the dimensionality 
of the data by selecting the dominant mode from the top. 

In POD analysis, flow field data is decomposed 
based on the following formula. 

𝒒𝒒(𝝃𝝃, 𝑡𝑡) − 𝒒𝒒�(𝝃𝝃) = ∑ 𝑎𝑎𝑗𝑗(𝑡𝑡)𝝓𝝓𝑗𝑗(𝝃𝝃)𝑟𝑟
𝑗𝑗=1          (2) 

where 𝒒𝒒(𝝃𝝃, 𝑡𝑡) is the time- and space-dependent flow field 
data, 𝒒𝒒�(𝝃𝝃)  is the time-averaged flow field data, 𝑎𝑎𝑗𝑗(𝑡𝑡)  is 
the time-varying coefficient corresponding to each 
mode, 𝝓𝝓𝑗𝑗(𝝃𝝃)  is the spatial eigenmode, and 𝑟𝑟  is the total 
number of modes. In this decomposition, the spatial 
modes  𝝓𝝓𝑗𝑗(𝝃𝝃)  are obtained by solving the eigenvalue 
problem of the covariance matrix. 

𝑹𝑹𝝓𝝓𝑗𝑗 = 𝜆𝜆𝑗𝑗𝝓𝝓𝑗𝑗                                                               (3)  

where 𝑹𝑹   is the covariance matrix, and 𝜆𝜆𝑗𝑗  is the eigen-
value indicating the contribution of each mode. 

The covariance matrix 𝑹𝑹 is defined as follows: 

𝑹𝑹 = ∑ 𝒙𝒙(𝒕𝒕𝑖𝑖)𝑥𝑥𝑇𝑇(𝑡𝑡𝑖𝑖)𝑚𝑚
𝑖𝑖=1                                                         (4)   

The time-varying  mode coefficients 𝑎𝑎𝑗𝑗(𝑡𝑡) represent the 

contribution of each POD mode at a particular time. The 
time-varying coefficients are calculated by the following 
equation: 

𝑎𝑎𝑗𝑗(𝑡𝑡) = 〈𝒒𝒒(𝝃𝝃, 𝑡𝑡) − 𝒒𝒒�(𝝃𝝃),𝝓𝝓𝑗𝑗(𝝃𝝃)〉                                    (5) 

On the other hand, singular value decomposition 
(SVD) is sometimes used to calculate POD analysis, and 
is expressed as follows for a data matrix 𝑿𝑿: 

𝑋𝑋 = 𝝓𝝓∑𝝍𝝍𝑻𝑻                                                                         (6)  

where 𝑿𝑿  is the data matrix, 𝝓𝝓 is the left singular vector 
representing the spatial mode, ∑  is the singular value 
representing the contribution, and 𝝍𝝍  is the right singular 
vector representing the time-varing coefficient indicat-
ing the temporal change of each mode. 

RESULTS AND DISCUSSION 

POD analysis of PIV data for OBR 
Figure 3 shows time variation of streamlines that 

were obtained by PIV analysis when 𝑅𝑅𝑅𝑅𝑂𝑂 was 762, 𝑄𝑄 was 
8.3  mil/min, and 𝑥𝑥𝑂𝑂 was 5 mm. It was observed that the 
flow pattern changes in this order: at the moment the os-
cillating flow became a push-out flow, vortices are gen-
erated on both sides of the lower part. The vortices then 
disappeared and the vertical flow occurred. At the mo-
ment when the flow became pull-out flow, vortices were 
generated on both sides of the upper part, and then the 
vertical flow was seen again. For the same oscillatory 
Reynolds number (𝑅𝑅𝑅𝑅𝑂𝑂 = 762), when 𝑥𝑥𝑂𝑂 was 15 mm, it was 
seen that the vortices generated at the bottom and top 
moved up and down respectively, and the vortices re-
mained. It was also observed that the axial symmetry of 
the flow was broken. 

 
Figure 3. Time variation of streamlines that were 
obtained by PIV analysis. 

As a result of POD analysis of the above-mentioned 
PIV data, the cumulative contribution of modes 1 to 3, 
which have the largest contribution, was about 80% (Fig-
ure 4 ). Figure 5 shows images of flow vectors that were 
reconstructed for three modes with the highest contribu-
tion which were selected from the more than 200 modes, 
for a case when 𝑅𝑅𝑅𝑅𝑂𝑂 was 762, 𝑄𝑄 was 8.3  mil/min, and 𝑥𝑥𝑂𝑂 
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was 5 mm. It was considered that the flow pattern for 
mode 1 represents profile of vertical flow and the flow 
pattern for mode 2 represents profile of generation of 
vortices in the upper and lower parts. Then Figure 6 plots 
change in calculated values of the time-varying  mode 
coefficients 𝑎𝑎𝑗𝑗(𝑡𝑡). The trend in the time variation of 𝑎𝑎𝑗𝑗(𝑡𝑡) 
shows that POD could derive the reduced order model 
with characteristics of periodic changes in the flow pat-
tern. 

 
Figure 4. Variation of the cumulative contribution with 
increase in number of modes. 
 

 
Figure 5 Images of flows of vector fields that were 
reconstructed for principal three modes. 
 

 
Figure 6 Time-series plots for time-varying mode 
coefficients. 

 
Cases that the profile of vertical flow was extracted 

as mode 1 were seen when the amplitude 𝑥𝑥𝑂𝑂 was larger. 
Even when the oscillatory Reynolds number 𝑅𝑅𝑅𝑅𝑂𝑂  was 
small and the flow rate of the steady flow 𝑄𝑄 was large, it 
was distinguished that the flows of vector fields for mode 
1 showed profile of vertical flow. In addition, we analyzed 
the PIV data that were acquired by changing baffles with 
the different opening. When the baffle with small opening 
(16%) were used, it was experimentally observed position 
of generated vortices was upper part than cases of using 
the abovementioned baffles with 25% of opening. In ap-
plication of POD analysis, the flows of vector fields with 
profile of generation of vortices in the upper and lower 
parts were extracted as mode 1, for case when the baf-
fles with smaller opening. 

Application of neural network modeling for 
prediction of flows of vector fields in OBR 

We developed the multi-layered neural network 
model with three outputs of mode 1 – 3 that were ex-
tracted above, by using the no-code AI analysis platform 
“Multi-Sigma” (AIZOTH Inc.). In the modeling, oscillatory 
Reynolds number, amplitude and frequency of oscillation 
of syringe pump, velocity ratio for oscillatory flow and lo-
cal velocity vectors were set as inputs. When training was 
implemented by changing the number of hidden layers 
from 1 to 10 and the number of hidden nodes from 3 to 
96. As shown in Figure 7, results with high predictive per-
formance were obtained for the generation, size, and 
movement of vortices. On the other hand, poor predictive 
performance was observed when 𝑅𝑅𝑅𝑅𝑂𝑂 was lower. 

 
Figure 7 Recall of flows of vector fields by using the 
trained neural network model. 

Next, methods for prediction of time-varying mode 
coefficients for the above mentioned three modes were 
investigated. In order to reduce dimensionality of data for 
the mode coefficients, we investigated application of de-
composition of the time-series data for the mode coeffi-
cients into periodic integrals by Fourier series expansion: 

𝑓𝑓(𝑡𝑡) = 𝑎𝑎0
2

+ ∑ (𝑎𝑎0 cos(𝑛𝑛𝑛𝑛) + 𝑏𝑏𝑛𝑛 sin(𝑛𝑛𝑛𝑛))∞
𝑛𝑛=1      (7) 
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Parameters (𝑎𝑎0, 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 ) that were calcu-
lated by Eqs. (8) and (9) was used as outputs for multi-
layered neural network model for prediction of the time-
varying mode coefficients. 

𝑎𝑎𝑛𝑛 = 2
𝑇𝑇 ∫ 𝑓𝑓(𝑡𝑡) cos(𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑𝑇𝑇

0                                             (8) 

𝑏𝑏𝑛𝑛 = 2
𝑇𝑇 ∫ 𝑓𝑓(𝑡𝑡) sin(𝑛𝑛𝑛𝑛)𝑑𝑑𝑑𝑑𝑇𝑇

0                                             (9) 

Combination of two types of neural network model 
for prediction of three mode (flows of vector fields) and 
for prediction of Fourier series expansion parameters re-
lated to the time-varying mode coefficients has demon-
strated to show high predictive performance for time-
varying streamlines in OBR. 

While the proposed modeling approach has demon-
strated the potential of black-box modeling for prediction 
of flow patterns, it was considered that the reliance on 
data-driven modeling without explicit physical insights 
may limit its generalizability across different reactor con-
ditions. In future, it is necessary to focus on bridging ma-
chine learning models with first-principles approaches, 
ensuring a more interpretable and robust predictive 
framework for industrial OBR applications. 

CONCLUSIONS 
In the present paper, we investigated application of 

POD for dynamic analysis of spatio-temporal data ac-
quired by PIV to determine inputs and outputs for neural 
network model. It was demonstrated that three sets of 
modes and time-varying mode coefficients extracted by 
the POD could be useful for dynamic analysis and predic-
tion of time-variant flow patterns in OBR. Also it was 
shown that decomposition of the time-series data for the 
mode coefficients by Fourier series expansion was effec-
tive for deriving reduced order model.  

In future, we will apply this proposed method to ma-
chine learning modeling based on CFD simulation data to 
clarify its superiority over CFD simulation. Furthermore, 
by clarifying the correlation between the feature quanti-
ties extracted from the CFD simulation data and the 
structural parameters of the reactor, it is expected that 
the I/O structure of a machine learning model could en-
sure a more interpretable and robust predictive perfor-
mance for a wider range of reactor conditions. 
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