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ABSTRACT 
Dynamic or Programmable Catalysis is an innovative strategy to improve heterogeneous catalysis 
processes by modulating the binding energies (BE) of adsorbates on a catalytic surface. The tech-
nique enables the periodic favoring of different reaction steps, overcoming limitations imposed by 
the Sabatier Principle and allowing for higher overall reaction rates, otherwise unattainable. Previ-
ously, we implemented a simultaneous simulation approach using the algebraic modeling language 
Pyomo and the solver IPOPT to obtain cyclic steady state results for a unimolecular reactive sys-
tem with up to four-order of magnitude increases in computational performance compared to the 
previously reported sequential approach. The flexibility of the method allowed for the investigation 
of the influence of forcing signal parameters on system behavior and provided a framework for 
waveform design. In this study, we use a hybrid framework that combines the sequential and the 
simultaneous simulation approaches to find the cyclic steady state of a more complex system, of 
ammonia synthesis, comprising 19 reversible elementary reaction steps. The framework allowed 
us to investigate sine wave parameters with approximately 220 times less computational effort 
compared to the sequential approach alone. With the parameters studied, our findings indicate 
that frequencies exceeding 1000 Hz and compressive strains greater than 2% can negatively im-
pact the system performance. Future work will focus on expanding the model to include lateral 
interactions between molecules, using other waveform as forcing signals, and integrating system-
atic mathematical optimization approaches. These advancements pave the way to establishing a 
general framework for identifying optimal waveforms across diverse dynamic catalysis systems.  

Keywords: Simulation, Catalysis, Pyomo, Reaction Engineering, Dynamic Modelling, Dynamic Catalysis, Oscil-
lation, Simultaneous

INTRODUCTION 
  
 In a world facing pressing environmental challenges, 
disruptive and interdisciplinary solutions need to be ex-
plored. To navigate humanity toward sustainable scien-
tific advancements, it is imperative to reinvent catalytic 
processes used to produce chemicals that are essential 
for the modern society. In this context, Dynamic or Pro-
grammable Catalysis [1] is a novel concept that has been 
capturing the attention of scientists in the catalysis field. 

Research in heterogeneous catalysis has tradition-
ally focused on selecting the ideal catalyst for a specific 

reaction, or designing the ideal active site within a cata-
lyst, tied to advances of research in materials science 
and engineering. At its core, heterogeneous catalysis re-
volves around an important property of catalytic metals: 
the adsorption or binding energy (BE). Directly related to 
this property is the concept of the Sabatier Volcano [2, 
3], which states that the ideal catalyst for a specific re-
action is the one that binds the substrates with a “just-
right” energy. Bindings that are too strong or too weak 
lead to prominent rate-controlling steps, reducing the ef-
ficiency of the catalytic process. 

Dynamic Catalysis promotes oscillations of the 
binding energy throughout the duration of a catalytic 
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process. These oscillations would allow for faster chem-
ical reactions, due to the periodic favoring of otherwise 
rate-controlling steps.  
 Figure 1 shows a representation we call the Ex-
tended Sabatier Volcano. The volcano-shaped curve in 
green represents the dependency of the overall reaction 
rate, commonly expressed as the Turnover Frequency 
(TOF), with the binding energy. The peak of this curve 
marks the balance or the compromise between otherwise 
rate-controlling steps, leading to the higher TOF value. 
The main goal of Dynamic Catalysis is to overcome the 
limitations associated to the volcano curve and obtain 
overall reaction rates that would be unachievable with 
conventional, or static, heterogeneous catalysis.  

 
Figure 1. The Extended Sabatier Volcano. This is a 
conceptual figure; axes values are arbitrary and are used 
for illustration. 

Since its introduction, Dynamic Catalysis has 
sparked significant research interest. On the computa-
tional front, researchers have explored several aspects 
of the concept: using general model reactions to investi-
gate how binding energy (BE) oscillation parameters re-
late to  activity response [1]; introducing conceptual 
ideas, such as supervolcanoes and molecular pumps de-
rived from energy diagrams [4]; examining product se-
lectivity and reaction pathways [5]; studying surface 
modulation through applied electric fields [6]; analyzing 
negative relationships between the BEs of reactants and 
products [7]; and applying BE modulation to loop reac-
tions [8].  

Other computational studies have focused on differ-
ent simulation methodologies and optimization of forcing 
signals, including direct limit cycle solutions [9] and 
Gaussian kernel-based optimization of square wave pa-
rameters [10]. Additionally, rate enhancement and com-
putational analysis of oscillation parameters have been 
applied to more realistic systems, electrocatalytic oxygen 
evolution reaction over metal oxides, incorporating both 

fixed overpotential and an additional arbitrary stimulus 
source [11]; and methane steam reforming under Ru(211) 
subjected to applied charge [12]. 

Experimental implementations of Dynamic Catalysis 
have also demonstrated rate enhancement due to dy-
namic oscillations. One study utilized pulsed light to con-
trol the rate of elementary steps in methanol decomposi-
tion [13], while another employed dynamic electrocata-
lytic modulation for formic acid decomposition [14]. On-
going research efforts are dedicated to developing tech-
niques and devices capable of inducing the necessary 
stimuli on catalytic surfaces to promote energetic fluctu-
ations [15]. An interesting advancement is the “catalytic 
condenser”, a device that applies voltage to the surface, 
resulting in BE shifts of up to 0.2 eV [16–18]. We recog-
nize that further experimental exploration is essential to 
validate the approach. Our goal is to have our computa-
tional frameworks leveraged to support experimentalists 
in developing methodologies for experimenting with real-
life and industrially relevant reactive systems. 

In this context, the present work builds upon our 
previous research on the simulation and of a unimolecular 
(“A-to-B”) dynamic catalytic system and the design of a 
forcing signal waveform [19]. The goal is to extend the 
framework to a more complex, intricate and industrially 
relevant system. Specifically, we draw on the work by 
Wittreich et al [20], who explored dynamic catalysis sim-
ulations for the synthesis of ammonia, one of the most 
important chemicals for modern society.  

We use this broadly complex and detailed system as 
a case study to test and explore frameworks. Ultimately, 
our goal is to develop generalizable frameworks and tools 
for simulating dynamic catalysis processes and optimiz-
ing the waveform of the forcing signal. These frameworks 
would enable the identification of decision variables that 
yield the best outcomes in dynamic catalysis, paving the 
way for more effective catalytic systems. 

The insights gained from results obtained with these 
frameworks are intended to guide experimentalists in de-
veloping techniques and devices for binding energy os-
cillations, as well as determining conditions for conduct-
ing experiments. We see this line of research as a foun-
dational step toward the full application of dynamic ca-
talysis. It lays the groundwork for extensive physical ex-
perimentation, progressing toward research on scaling 
up processes, and ultimately achieving widespread in-
dustrial implementation. 

METHODS 
Reactive System and Microkinetic Model 

The reactive system for ammonia synthesis com-
prises 19 reversible reactions involving 16 chemical spe-
cies. These reactions describe the adsorption and de-
sorption of molecules to the catalytic surface, reactions 
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between adsorbates and their diffusion across the sur-
face. The microkinetic model considers two distinct types 
of active sites on the surface, step and terrace sites. The 
compounds involved include the three gas-phase mole-
cules, nitrogen, hydrogen and ammonia (N2, H2, NH3, re-
spectively), as well as six adsorbates on terrace sites and 
seven adsorbates on step sites. 

In our previous work, we directly investigated the 
wave parameters of binding energy oscillations. In this 
study, the oscillation is of the stimulus source - compres-
sive and tensile strain applied to the catalytic surface. 
The strain is represented by variations in the interatomic 
distances on the surface, which influence the d-band 
center of the atoms, leading to both physical and elec-
tronic rearrangements [21]. 

We developed our microkinetic model using Python 
and Pyomo based on the model developed by Wittreich 
et al [20] in MATLAB, using the data acquired and pro-
vided by the authors. This dataset includes results from 
energy calculations performed with Density Functional 
Theory (DFT) for a ruthenium-catalyzed system under 
three conditions: no strain, +4% compressive strain, and 
-4% tensile strain. The authors established linear scaling 
relationships with the data, enabling predictions beyond 
the specific parameters of the DFT calculations. A com-
prehensive and detailed description of the methodology 
used to generate the data is available in the Supporting 
Information of their publication [20]. 

The microkinetic model consists of thermodynamic 
and kinetic calculations to obtain a total of 38 rate con-
stant (k) values, corresponding to the forward and re-
verse rates of each elementary step. Each applied strain 
value is linked to specific binding energy values, which in 
turn determine the rate constants. This mechanism ex-
plains the periodic favoring of different elementary steps: 
changes in the applied strain alter the rate constants, 
thereby influencing the rates at which individual steps 
occur. 

 The rate constants are parameters within the cou-
pled system of Ordinary Differential Equations (ODEs) 
that describe the progression of the reaction over time, 
with the concentrations of all 16 compounds as the state 
variables. The complete list of reactions as well as the list 
of ODEs can be found in the Digital Supplementary Mate-
rial. 

Sequential and simultaneous simulation 
workflow 
 By integrating Python and SciPy [22] with 
Pyomo.DAE [23] and the IPOPT solver [24], we devel-
oped a workflow to identify the cyclic steady-state be-
havior of the system under different forcing signal condi-
tions and parameters. The unimolecular reactive system 
used in our previous study was small (four state varia-
bles) and simple enough that its solving process and run 
time were not significantly influenced by the initialization 
of the problem. However, in this ammonia synthesis sys-
tem, we have observed that proper initialization is critical 
to the success of the simulation. 

To address this, we developed a cascading frame-
work consisting of the following steps: (1) performing a 
sequential simulation using Scipy’s integrate.solve_ivp 
function until cyclic steady state; (2) using this solution 
as the initialization for a simultaneous simulation ap-
proach, employing the same forcing signal as in the se-
quential simulation; (3) progressively modifying the input 
conditions, while using the previous solution from the 
simultaneous simulation as the initialization for the sub-
sequent iteration. Figure 2 presents a workflow block di-
agram illustrating the framework.  
 The sequential approach involves a simulation from 
initial conditions until cyclic steady state behavior for all 
the state variables, solving therefore an Initial Value 
Problem (IVP). Successful integration requires low toler-
ances and a small maximum step size, and the use of a 
solver that handles stiff problems, like Radau, LSODA or 

 
 
Figure 2: Workflow block diagram and systematic view of the simulation procedure. 
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BDF. Solving a sequence of simulations with this ap-
proach involves long computational run times.  
 The simultaneous simulation approach, in contrast, 
solves a Boundary Value Problem (BVP), using limit cycle 
or periodic boundary conditions.  These conditions state 
that the initial and final points of a cycle need to have the 
same value, which defines the cycle steady state. The 
ODEs are automatically transcribed into algebraic equa-
tions using Pyomo.DAE and IPOPT then solves the square 
problem for all state variables at all discretized time 
points simultaneously, outputting a single cycle in the cy-
clic steady state for all variables [19].  
 As seen in later figures, the concentrations of the 
molecules in the reaction medium, which are the state 
variables, are generally very small, spanning several or-
ders of magnitude - going from around 10-4 to 10-12 

mol/cm3. These units arise from the many thermody-
namic and kinetic calculations that map data to rate con-
stants. Even if the units were converted, the magnitude 
differences would persist. We explored various manual 
scaling strategies but found they did not significantly re-
duce the dependency on initialization or improve solver 
performance (e.g., reducing memory usage, enabling 
larger step sizes in the line search, or avoiding the need 
for restoration mode). However, we observed that scal-
ing the time span (x-axis) had a noticeable impact on 
solver performance, though it still did not eliminate the 
dependency to a solid initialization. 
 In this paper, we focused on the parameters of a 
sine wave as the forcing signal for the oscillatory system: 
frequency, amplitude, and offset. The frequency dictates 
the number of cycles per second, while the amplitude and 
the offset values define the strain magnitude and its spe-
cific values, respectively. The use of strain values beyond 
those used to obtain the data (+4 and -4%) was done 
considering the linear scaling relationships can be ex-
trapolated. 

RESULTS AND DISCUSSION 
Simulation framework outcomes 
 The simulation workflow, which combines initializa-
tion via sequential integration and a loop through param-
eters using the simultaneous approach, significantly re-
duced computational time compared to running a se-
quence of forward integrations for each parameter set. 
The initial single sequential simulation required 26 
minutes to generate cyclic steady state results. After-
wards, the simulations for the almost 300 runs with the 
simultaneous approach were completed in under 10 
minutes. Therefore, the total time required for our hybrid 
algorithm was of approximately 35 minutes. By compari-
son, if each of these runs had been performed sequen-
tially, with each taking approximately 36 minutes, the to-
tal computational time would have been almost 220 times 

longer. 
 To validate the framework, several conditions were 
also simulated using the sequential approach, and the re-
sults were consistent with those obtained through the 
proposed workflow.  

Analysis of wave parameters and responses 
 The first parameter analyzed was the frequency of 
the forcing signal. The simulations depicted in Figure 3 
were conducted with the default fixed amplitude of 0.04 
and offset of 0, corresponding to a strain variation on the 
catalytic surface from -4% to +4%. From the figure, the 
average turnover frequency (avTOF) peaks around 500 
Hz and declines for higher frequencies. While the abso-
lute changes in values are small, the decrease in avTOF 
suggests that the rapid transitions between the high and 
low levels of the wave may not allow sufficient time for 
an elementary step to be favored in enough extent before 
the next switch occurs [4]. This result highlights the im-
portance of selecting an appropriate forcing frequency, 
as operating at excessively high frequencies can also be 
energy intensive for the process.  

Figure 4 was generated by fixing the frequency at 
1000 Hz and varying the offset in values of 0.01, 0, and -
0.01, individually, while simulating the system across dif-
ferent amplitudes ranging from 0.02 to 0.04. The blue 
points, representing an offset of 0.01, consistently show 
the lowest avTOF values for all amplitudes tested, indi-
cating that applying high compressive strain is not favor-
able. For the default offset of 0, the results reveal an op-
timal amplitude near 0.024, while the default amplitude 
of 0.04 results in the lowest avTOF value within this con-
figuration. 

This result contradicts the intuitive conclusion 
drawn in our previous work: that higher amplitudes would 
lead to higher overall rates by reaching more extreme 
points of the Sabatier Volcano, where steps would theo-
retically be highly favorable. As observed for an offset of 
0.01, the maximum avTOF occurs when the positive 
strain reaches the lowest value of 0.02, suggesting that 
applying excessive compressive strain may be detri-
mental to the efficacy of the system in achieving high re-
action rates. 

For an offset of -0.01, represented by the green 
curve, a maximum avTOF value similar to the one ob-
served with an offset of 0 is achieved, reaching approxi-
mately 0.085 1/s for the amplitude of 0.03. The waveform 
corresponds to a strain oscillation ranging from -0.04 to 
0.02. Once again, the analysis suggests that the maxi-
mum compressive strain should not exceed 2%. To im-
prove the smoothness of this curve, we ran 100 iterations 
for this system, instead of 50, as for the others and low-
ered down the solver’s tolerances.  
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Figure 3: Comparison of avTOF results for different 
frequencies. 

 
Figure 4: Comparison of avTOF results for different 
amplitudes and offsets - determining the range of strain 
oscillation. 

 
 Figure 5: Sine wave forcing signal and turnover 
frequency response over the span of one cycle in cyclic 
steady state.  

 Figure 5 shows the shape of the sine wave and the 
TOF response for the case with higher avTOF for offset 
of -0.01, for one cycle in cyclic steady state. For this 

system, the TOF is calculated based on the concentration 
of reactants and products in the gas phase at each given 
moment. It is possible to see the mild delay in TOF re-
sponse after the changes in direction by the sine wave. 
The first switch, around 0.3 in relative time, is rounder, 
and the next switch seems to stabilize in the higher value 
before going down. The causes for such difference are 
probably intrinsic to the responses of all the other spe-
cies involved. Plots of the shapes for the concentration 
of all adsorbates can be found within the Digital Supple-
mentary Material. 
 For comparison, the TOF of the static system, with 
no strain applied, is of 0.044 s⁻¹. As seen in figures 3 and 
4, for some points the use of the oscillatory stimulus re-
sults in a lower overall rate than for the static case. This 
outcome underscores the importance of identifying the 
ideal wave parameters and carefully designing the forc-
ing signal for dynamic catalysis systems. 

As discussed in our previous work [19], analyzing 
the Extended Sabatier Volcano reveals important consid-
erations for interpreting wave parameters optimality. Ac-
cording to different Sabatier Volcanoes in the literature 
[20, 26], ruthenium, the catalyst used in the working sys-
tem, would be in the Sabatier Peak region, suggesting 
that oscillating symmetrically between either side of the 
volcano should be favorable. However, the shape of the 
volcano, which is highly influenced by the Bronsted-Ev-
ans-Polanyi relationship, must also be considered.  

For instance, in the volcano shown in Figure 1 for the 
system discussed in our previous paper, the shape of the 
volcano led to an optimal range of binding energy values 
that is not symmetrically positioned on either side of the 
volcano. This observation highlights once again the need 
of computational investigations and the development of 
methods for simulating and optimizing input signals. The 
behavior of complex reactive systems is often non-intui-
tive and difficult to predict, emphasizing the importance 
of systematic exploration. 

CONCLUSIONS AND FUTURE WORK 
 
In this work, we expanded on our previous research 

[19] and the contributions of Wittreich et al [20] to estab-
lish a structured and efficient way for simulating ammonia 
synthesis under Dynamic/Programmable Catalysis. Our 
approach combines an initialization strategy, based on 
forward integration results for a default system, with a 
looped simulation using a simultaneous approach to ex-
plore a range of sine wave parameters. The method has 
shown to improve the efficiency into simulating system 
with different parameters for forcing signal. Getting the 
same results solely with the sequential approach would 
take estimated 220 times more time.  

This study represents a foundational step toward 
further modeling the system and refining the framework. 
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The next layer of complexity will involve accounting for 
lateral interactions between adsorbates on the catalytic 
surface. These interactions affect binding energies and 
thereby influence the entire dynamic system. With this 
consideration, the rate constants will depend not only on 
the applied strain but also on the concentrations of mol-
ecules - i.e., the state variables themselves - making the 
governing ODEs more intricate and their solutions more 
computationally demanding. To address this, we need to 
transition the current framework, which integrates Py-
thon and Pyomo, into a fully Pyomo-based framework. 
While this adaptation increases complexity, it will yield a 
more accurate and reliable microkinetic model by incor-
porating these essential interactions, which significantly 
influence the results of the simulations.  

We will also extend this workflow to incorporate 
square wave forcing signals. Square waves, while in-
creasing system stiffness due to their abrupt changes, 
have the potential for further enhancing the overall reac-
tion rates [1, 4, 19]. From these results, we aim to opti-
mize all wave parameters simultaneously to capture the 
interdependencies among them. This will require adapt-
ing the optimization frameworks from our previous work, 
particularly in terms of initialization strategies, to ensure 
convergence.  

In parallel, we plan to apply this methodology to a 
different system, targeting formic acid decomposition 
(FAD). Like for the ammonia synthesis, the general reac-
tion involves three molecules, but the reaction mecha-
nism is complex and involves many molecules. In the case 
of FAD, it also involves competing reaction pathways, 
leading to undesirable products. Leveraging the insights 
gained from reproducing and adapting the microkinetic 
model of Wittreich et al [20], we will construct a model 
for the FAD system.  An adjacent part of the work will be 
using machine learning potentials, trained within the 
Open Catalyst Project (OCP) [27], to generate input en-
ergy data. Our goal is to develop a comprehensive frame-
work that integrates OCP data, microkinetic modeling, 
simulation, and waveform optimization, not only to en-
hance reaction rates but also to improve selectivity to-
ward the desired products.  

Ultimately, our intention is to develop a general 
framework for optimizing arbitrary waveforms as forcing 
signals for general dynamic catalysis reactions.  We be-
lieve the results from this achievement will provide valu-
able guidance to experimentalists, enabling them to ac-
cess the full potential of the promising technique of dy-
namic catalysis. Such advancements can pave the way 
for widespread implementation and realization of the 
benefits of the approach. 

DIGITAL SUPPLEMENTARY MATERIAL 
 
Please access the GitHub repository for code used 

in this work: https://github.com/ccolomb2/dynamic_ca-
talysis_NH3.git. The repository contains three notebooks 
that generate the figures presented and two csv files with 
data necessary to run the code.  

ACKNOWLEDGEMENTS 
 
 The authors thank Dr. Gerhard Wittreich for sharing 
MATLAB files used in previous work [28] and for relevant 
discussions around the concepts. We also thank Dr. Vic-
tor Alves and Laurens Lueg for insights into the work.  

REFERENCES 
1. Ardagh MA, Abdelrahman OA, Dauenhauer PJ. 

Principles of dynamic heterogeneous catalysis: 
surface resonance and turnover frequency 
response. ACS Catal 9:6929–6937 (2019) 
https://doi.org/10.1021/acscatal.9b01606 

2. Sabatier P. La catalyse en chimie organique. 
Librairie polytechnique, Paris (1920) 

3. Bligaard T, Nørskov J, Dahl S, Matthiesen J, 
Christensen C, Sehested J. The Brønsted–Evans–
Polanyi relation and the volcano curve in 
heterogeneous catalysis. J Catal 224:206–217 
(2004) https://doi.org/10.1016/j.jcat.2004.02.034 

4. Ardagh MA, Birol T, Zhang Q, Abdelrahman OA, 
Dauenhauer PJ. Catalytic resonance theory: 
superVolcanoes, catalytic molecular pumps, and 
oscillatory steady state. Catal Sci Technol 9:5058–
5076 (2019) https://doi.org/10.1039/C9CY01258F 

5. Gathmann SR, Ardagh MA, Dauenhauer PJ. 
Catalytic resonance theory: negative dynamic 
surfaces for programmable catalysts. Chem Catal 
2:140–163 (2022) 
https://doi.org/10.1016/j.checat.2022.01.001 

6. Ardagh MA, Shetty M, Kuznetsov A, Zhang Q, 
Christopher P, Vlachos DG, Abdelrahman OA, 
Dauenhauer PJ. Catalytic resonance theory: 
parallel reaction pathway control. Chem Sci 
11:3501–3510 (2020) 
https://doi.org/10.1039/D0SC00752B 

7. Shetty M, Ardagh MA, Pang Y, Abdelrahman OA, 
Dauenhauer PJ. Electric-field-assisted modulation 
of surface thermochemistry. ACS Catal 10:12867–
12880 (2020) 
https://doi.org/10.1021/acscatal.0c03575 

8. Murphy MA, Gathmann SR, Bartel CJ, Abdelrahman 
OA, Dauenhauer PJ. Catalytic resonance theory: 
circumfluence of programmable catalytic loops. J 
Catal 430:115343 (2024) 
https://doi.org/10.1016/j.jcat.2023.115343 

9. Foley BL, Razdan NK. Clarifying mechanisms and 
kinetics of programmable catalysis. iScience 
27:109543 (2024) 
https://doi.org/10.1016/j.isci.2024.109543 

https://github.com/ccolomb2/dynamic_catalysis_NH3.git
https://github.com/ccolomb2/dynamic_catalysis_NH3.git
https://doi.org/10.1021/acscatal.9b01606
https://doi.org/10.1016/j.jcat.2004.02.034
https://doi.org/10.1016/j.jcat.2023.115343
https://doi.org/10.1016/j.isci.2024.109543


 

Tedesco et al. / LAPSE:2025.0198 Syst Control Trans 4:294-300 (2025) 300  

10. Psarellis YM, Kavousanakis ME, Dauenhauer PJ, 
Kevrekidis IG. Writing the programs of 
programmable catalysis. ACS Catal 13:7457–7471 
(2023) https://doi.org/10.1021/acscatal.3c00864 

11. Gathmann SR, Bartel CJ, Grabow LC, Abdelrahman 
OA, Frisbie CD, Dauenhauer PJ. Dynamic promotion 
of the oxygen evolution reaction via programmable 
metal oxides. ACS Energy Lett 9:2013–2023 (2024) 
https://doi.org/10.1021/acsenergylett.4c00312 

12. Vempatti VVR, Wang S, Abdelrahman OA, 
Dauenhauer PJ, Grabow LC. Catalytic resonance of 
methane steam reforming by dynamically applied 
charges. ChemRxiv (2024) 
https://doi.org/10.26434/chemrxiv-2024-8sxpx 

13. Qi J, Resasco J, Robatjazi H, Alvarez IB, 
Abdelrahman O, Dauenhauer P, Christopher P. 
Dynamic control of elementary step energetics via 
pulsed illumination enhances photocatalysis on 
metal nanoparticles. ACS Energy Lett 5:3518–3525 
(2020) 
https://doi.org/10.1021/acsenergylett.0c01978 

14. Gopeesingh J, Ardagh MA, Shetty M, Burke ST, 
Dauenhauer PJ, Abdelrahman OA. Resonance-
promoted formic acid oxidation via dynamic 
electrocatalytic modulation. ACS Catal 10:9932–
9942 (2020) 
https://doi.org/10.1021/acscatal.0c02201 

15. Shetty M, Walton A, Gathmann SR, Ardagh MA, 
Gopeesingh J, Resasco J, Birol T, Zhang Q, 
Tsapatsis M, Vlachos DG, et al. The catalytic 
mechanics of dynamic surfaces: stimulating 
methods for promoting catalytic resonance. ACS 
Catal 10:12666–12679 (2020) 
https://doi.org/10.1021/acscatal.0c03589 

16. Onn TM, Gathmann SR, Guo S, Solanki SPS, Walton 
A, Page BJ, Rojas G, Neurock M, Grabow LC, 
Mkhoyan KA, et al. Platinum graphene catalytic 
condenser for millisecond programmable metal 
surfaces. J Am Chem Soc 144:22113–22127 (2022) 
https://doi.org/10.1021/jacs.2c09544 

17. Onn TM, Gathmann SR, Wang Y, Patel R, Guo S, 
Chen H, Soeherman JK, Christopher P, Rojas G, 
Mkhoyan KA, et al. Alumina graphene catalytic 
condenser for programmable solid acids. JACS Au 
2:1123–1133 (2022) 
https://doi.org/10.1021/jacsau.2c00159 

18. Oh K-R, Onn TM, Walton A, Odlyzko ML, Frisbie CD, 
Dauenhauer PJ. Fabrication of large-area metal-
on-carbon catalytic condensers for programmable 
catalysis. ACS Appl Mater Interfaces 16:684–694 
(2023) https://doi.org/10.1021/acsami.3c14623 

19. Colombo Tedesco C, Kitchin JR, Laird CD. Cyclic 
steady-state simulation and waveform design for 
dynamic/programmable catalysis. J Phys Chem C 
128:8993–9002 (2024) 

https://doi.org/10.1021/acs.jpcc.4c01543 
20. Wittreich GR, Liu S, Dauenhauer PJ, Vlachos DG. 

Catalytic resonance of ammonia synthesis by 
simulated dynamic ruthenium crystal strain. Sci Adv 
8:eabl6576 (2022) 
https://doi.org/10.1126/sciadv.abl6576 

21. Mavrikakis M, Hammer B, Nørskov JK. Effect of 
strain on the reactivity of metal surfaces. Phys Rev 
Lett 81:2819–2822 (1998) 

22. Virtanen P, Gommers R, Oliphant TE, Haberland M, 
Reddy T, Cournapeau D, Burovski E, Peterson P, 
Weckesser W, Bright J. SciPy 1.0: fundamental 
algorithms for scientific computing in Python. Nat 
Methods 17:261–272 (2020) 
https://doi.org/10.1038/s41592-019-0686-2 

23. Nicholson B, Siirola JD, Watson JP, Zavala VM, 
Biegler LT. pyomo.dae: a modeling and automatic 
discretization framework for optimization with 
differential and algebraic equations. Math Program 
Comput 10:187–223 (2018) 
https://doi.org/10.1007/s12532-017-0127-0 

24. Wächter A, Biegler LT. On the implementation of an 
interior-point filter line-search algorithm for large-
scale nonlinear programming. Math Program 
106:25–57 (2006) https://doi.org/10.1007/s10107-
004-0559-y 

25. Ardagh MA, Birol T, Zhang Q, Abdelrahman OA, 
Dauenhauer PJ. Catalytic resonance theory: 
superVolcanoes, catalytic molecular pumps, and 
oscillatory steady state. Catal Sci Technol 9:5058–
5076 (2019) https://doi.org/10.1039/C9CY01543D 

26. Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, 
Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, 
Nørskov JK. From the Sabatier principle to a 
predictive theory of transition-metal 
heterogeneous catalysis. J Catal 328:36–42 (2015) 
https://doi.org/10.1016/j.jcat.2014.12.033 

27. Tran R, Lan J, Shuaibi M, Wood BM, Goyal S, Das A, 
Heras-Domingo J, Kolluru A, Rizvi A, Shoghi N, 
Sriram A, Therrien F, Abed J, Voznyy O, Sargent 
EH, Ulissi Z, Zitnick CL. The Open Catalyst 2022 
(OC22) Dataset and Challenges for Oxide 
Electrocatalysts. ACS Catal 13:7457–7471 (2023) 
https://doi.org/10.1021/acscatal.2c05456 

28. Wittreich, G., Vlachos, D. 
https://github.com/VlachosGroup/NH3-Dynamic-
MKM/tree/main 

© 2025 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 

https://doi.org/10.1021/acscatal.3c00864
https://doi.org/10.1021/acsenergylett.0c01978
https://doi.org/10.1021/acscatal.0c02201
https://doi.org/10.1021/acsami.3c14623
https://doi.org/10.1021/acs.jpcc.4c01543
https://doi.org/10.1126/sciadv.abl6576
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s12532-017-0127-0
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1039/C9CY01543D
https://doi.org/10.1016/j.jcat.2014.12.033
https://doi.org/10.1021/acscatal.2c05456
https://github.com/VlachosGroup/NH3-Dynamic-MKM/tree/main
https://github.com/VlachosGroup/NH3-Dynamic-MKM/tree/main

