Systems .Control
Transactions

Research Article - Peer Reviewed Conference Proceeding
ESCAPE 35 - European Symposium on Computer Aided Process Engineering

Jan F.M. Van Impe, Grégoire Léonard, Satyajeet S. Bhonsale,

Ghent, Belgium. 6-9 July 2025

PSE

PRESS

Monika E. Polanska, Filip Logist (Eds.)

Leveraging Pilot-Scale Data for Real-Time Analysis of lon

Exchange Chromatography

Saren Villumsen?, Jesper Frandsen?, Jakob Kjgbsted Huusom?, Xiaodong Liang?, Jens Abildskov?

@ Dept. of Chemical and Biochemical Engineering, Technical University of Denmark, Seltofts Plads, Building 228A, 2800 Kgs.

Lyngby, Denmark
* Corresponding Author: soevi@kt.dtu.dk

ABSTRACT

This study evaluates the potential for computer-aided real-time monitoring and decision-making
in pilot-scale ion-exchange chromatography operations using only historical data from the pilot-
scale facility. Historical data of flow and conductivity were utilized from students running pilot-
scale ion exchanges that resemble industrial ion exchange processes. A Lumped Rate Model (LRM)
with a Steric Mass Action (SMA) isotherm was implemented and parameterized to characterize
the fixed-bed column. The Discontinuous Galerkin Spectral Element Method (DGSEM), imple-
mented in CADET-Julia, enabled efficient simulation and parameter estimation. Using DGSEM, the
LRM with SMA was solved in less time than the sensor measurement frequency. This development
allows for the prediction of batch evolution in real time for operators of the ion-exchange column.
Despite challenges related to data preprocessing and manual operation inconsistencies, the re-
sults demonstrate the feasibility of integrating real-time analysis into pilot-scale operations.

Keywords: lon-exchange chromatography, Real-time analysis, Pilot-scale, Computer-aided, Modelling,

DGSEM

1. INTRODUCTION

Chromatography constitutes an important part of
downstream bio-manufacturing, where it is used to sep-
arate valuable products of upstream production. Precise
control over chromatographic processes aids in increas-
ing product yield. Current conservative operational strat-
egies sometimes lead to product loss, which may be re-
mediable with real-time process insights [1].

Batch-to-batch variations in feed composition and
operating conditions further complicate achieving opti-
mal yields [2]. Improved understanding and monitoring of
separation processes could enable operators to account
for batch-to-batch variation, increasing yields without
sacrificing product quality [2].

The complexity of chromatographic processes
arises from their underlying mechanisms, which can be
described using partial differential equations (PDEs) that
model advection, diffusion, mass transfer, and adsorp-
tion. To enable real-time applications involving systems
governed by PDEs, fast discretization methods are es-
sential for solving these equations accurately and effi-
ciently.
https://doi.org/10.69997/sct.151475

This study investigates the potential for real-time
process analysis using a pilot-scale ion exchange column
at the Technical University of Denmark (DTU) pilot facil-
ity. For more details on this facility, see [3]. Here, an ion
exchange fixed-bed column equipped with sensors is
used as a teaching instrument. The column and the exer-
cises run on it resemble operations encountered in indus-
trial ion exchange operations. The system is equipped
with sensors that automatically log measurements every
two seconds.

There exist historical data sets of these sensor
measurements for experiments run by students from
2019 onwards. In this case, students use the data to per-
form calculations relating to upscaling the process. Be-
yond this, the data is not employed for other purposes.
This has some resemblance to industrial process sys-
tems, where sensors are placed on systems for monitor-
ing and quality control purposes, and process optimiza-
tion using historical data is an afterthought. This study
will evaluate whether the fixed-bed column can be char-
acterized solely by historical data and whether such data
provides a sufficient foundation for real-time process ap-
plications.
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Figure 1: (Left) An image of the pilot-scale fixed-bed ion exchange column and (right) P&I diagram for the pilot-
scale ion exchange fixed-bed column [8]. The green, orange, and red sections on both the image and the P&l
diagram represent the in-flow pipes, the fixed-bed column, and the out-flow pipes, respectively.

2. METHODOLOGY
2.1 Scoping

There are two subjects of interest in this study. First
is the ability to simulate operation of the ion-exchange
system based entirely on historical data. The historical
data gathered by students was not intended for applica-
tions such as those suggested in this study but rather as
data to support other investigations. Here, this study in-
vestigates the degree to which this data can be repur-
posed for column characterization and process simula-
tion.

Secondly, the study will investigate if, by using com-
putationally fast numerical schemes, the ion-exchange
breakthrough process can be simulated in less time than
the measurement frequency of every two seconds.
Achieving this would support the development of real-
time applications, as the numerical scheme could be
solved uniquely for each data point that is gathered. A
real-time application of interest in this setting would be
the prediction of the breakthrough profile, enabling feed-
back to the operators of the system as they operate the
system.

2.2 Experimental Methods

The data used for this study stems from exercises
performed by chemical engineering students at DTU [8].
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The goal of the exercise is for students to evaluate break-
through curves during the operation and regeneration of
an ion-exchange system, and to determine isotherms and
resin properties for scaling up a pilot plant unit.

Pilot Plant Setup

The experimental setup features a 10 cm diameter,
1 m tall column occupied by a fixed-bed ion exchange
resin. In Figure 1, a piping and instrumentation (P&I) dia-
gram for the system can be seen. The feed solution,
stored in a 100 L tank (T1), is pumped through the col-
umn. The system includes the following instrumentation:

=  Flow-through cell (CI1): Measures conductivity

= Magnetic flow indicator (FI1): Measures flow rate
=  Pt100 sensors (TI1 & TI2): Monitor temperature

= Manometer (PI1): Records pressure

Data for time, flow, conductivity, temperature, and
pressure are logged automatically every 2 seconds. The
resin used is Amberjet 1200 in H-form. The operator must
manually control the system by configuring the pump
spend and configure valve settings.

Experimental Procedure

30 L of 0.1 N NaNO; feed solution is prepared by
dissolving NaNOj3 in water, mixing thoroughly for homog-
enization, and transferring it to the feed tank.
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Next, The feed solution of NaNO; is pumped
through the column at a flow rate of 50-80 L/h. Exit flow
and conductivity were recorded automatically. The pro-
cess continued until an S-shaped curve was observed in
the conductivity.

Finally, 10 L of water is pumped through the system
and column to remove any NaNQs in the mobile phase.

During all operations, the operator must manually
adjust flow rates and the water height inside the column
by adjusting valve V3. This is to ensure the resin is always
submerged, and to limit excess water in the column.

2.3 Modelling

To describe the ion-exchange chromatography pro-
cess, the Lumped Rate Model (LRM) with the Steric Mass
Action (SMA) was used. The LRM and the SMA isotherm
are given for each component i € {1, ..., N¢c} in eq. (1)-(2).

ac; 9%¢; dc; 1-edq;

9%i _p 9%_ 0% 1704 1
at X 972 az e at’ ()
2q; _ v v

P Kicin,i (Keq,i €108 — qicl)- (2)

Here, t is time, ¢; is the mobile phase concentration
of component i, q is the corresponding stationary phase
concentration, z is the spatial coordinate, D,, is the axial
dispersion coefficient, ¢ is the total porosity, k., is the
equilibrium adsorption constant, k;, is a kinetic con-
stant, qp = q — EJI.V” o;q; is the number of free binding sites
where g, is the bound salt concentration and ¢ is the ste-
ric hindrance factor. The bound salt concentration is
given by electroneutrality as g, = A — Ej{vcvjqj where A is
the ionic capacity and v is the characteristic charge. The
boundary conditions are givenin eq. (3)-(4), respectively.

ad i(t,O)
ucp; = uci(t,0) — Dy CT, (3)
aCi(t,L) _

9z 0, (4)

where L is the column length and ¢, is the inlet con-
centration. If assuming isotherm equilibrium, the equa-
tions eq. (1)-(2) must be discretized and solved as a dif-
ferential algebraic equations system, setting eq. (2) equal
to 0. Alternatively, one can set a large ky,, value to ap-
proximate the equilibrium and still discretize and solve
the system as an ordinary differential equation (ODE)
system [4]. To solve the PDEs in eq. (1)-(4), the spatial
domain of eq. (1) was discretized using the Discontinuous
Galerkin Spectral Element Method (DGSEM) derived by
Breuer et al [5]. The resulting system of ODEs was solved
using the QNDF solver which is a stiff backwards differ-
entiation formula solver using DifferentialEquations.jl
[6,71.

Column Characterization

To model the pilot-scale ion exchange fixed-bed
column, CADET-Julia was used [4]. In Table 1, all values
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used for simulating the ion exchange system can be
seen. The system was represented as three serially con-
nected segments: the in-flow pipes, the ion exchange
column itself, and the out-flow pipes. In Figure 1, this seg-
mentation can be seen with respect to the physical sys-
tem. Approximate measurements of pipe length and radii
were used for the in-flow and out-flow sections. For the
simulation, the value of the axial diffusion coefficient in
the pipes, Duy pipes, Was set to 103 m?/s. This value was
heuristically chosen to balance minimizing diffusion in the
pipes while avoiding an excessively stiff system that
would significantly increase the computational time.

For each batch, the median flow rate was calculated
and applied as a constant flow in the simulated runs. The
median flow was chosen to make the data cleaning more
robust towards transmitted values that were deemed
outliers. In some cases, pump start-ups were modelled
by fitting flow profiles with second- or third-order poly-
nomials, before transitioning to a constant flow profile.

The historical data of the washes were used to char-
acterize the axial diffusion coefficient, D,,, and resin po-
rosity, . Parameter estimation was done by fitting a sin-
gle value of D,, and a single value of ¢ across all batches,
ensuring they remain constant. Conductivity was con-
verted to concentration by assuming the initial and final
conductivity corresponded to concentrations of 0.1 and
0 N NaNOg, respectively.

Table 1: Overview of variables used in simulation of the
ion-exchange fixed-bed column using CADET-Julia.

Symbol Description Value Used
Lpipes, in In-flow pipes length 6.74m
Lpipes, out Out-flow pipes length 0.19m
L Fixed-bed column length 0.095m
Tpipes Pipe radius 0.005m
Teolumn Column radius 0.055m
Dy, pipes Axial diffusion coefficient 103m?/s
in the pipes
oy+/ona+  Shielding factor 0/0
vy+/vnat  Characteristic charge 1/1
Kyin Kinetic coefficient 108

Subsequently, historical breakthrough curve data
were used to fit the SMA model parameters: the ionic ca-
pacity, A, and the equilibrium coefficient, k.. Parameter
estimation was done by fitting a single value of A and a
single value of k., across all batches, ensuring they re-
main constant.

The ParticleSwarm algorithm from the Optim.jl pack-
age was utilized to perform global parameter searches,
using the mean absolute error between simulated runs
and historical data as the optimization metric [9].
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Figure 2: The six batch washes used for estimation of the axial diffusion coefficient, D,, and porosity, ¢, alongside
simulated runs using best-fit values. Q denotes the median flow rate of the batch.

3. RESULTS & DISCUSSION

3.1 Parameter Estimation

The batches of wash data were analyzed to esti-
mate the best-fit values for the D,y and &, which were de-
termined to be 7 x 1075 m?/s and 0.6, respectively. Using
these parameter values, Figure 2 illustrates the experi-
mental wash curves alongside their simulated counter-
parts.

Subsequently, the SMA isotherm parameters A and
k., were estimated from breakthrough data, which
yielded values of 4 eq/L and 3, respectively. Figure 3 pre-
sents the experimental breakthrough curves and corre-
sponding simulations.

The LRM with SMA isotherm produces strong fits for
both wash data and the breakthrough data. The simula-
tions predict the timing of the initial break of the curve
well and follow the same evolution as the observed data.

Discussion

In Figure 2 and Figure 3, it can be observed that the
simulations predict a delayed breakthrough when flow
rates (Q) are higher, i.e. Q = 65 L/h, compared to those
Villumsen et al. / LAPSE:2025.0174
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with lower flow rates, i.e. Q = 51 L/h. This indicates there
may be some flow-dependent mechanisms present in the
process not entirely explained by the LRM model.

Discrepancies between the simulated and experi-
mental results may stem from uncertainties in the histor-
ical data and inconsistent execution across batches. Var-
iations in how operators controlled the water height in the
column could have affected the observed conductivity.
Additionally, the exact concentration of the NaNO3 solu-
tion is unknown; the concentration 0.1 N NaNO; is as-
sumed based on the exercise instructions. Furthermore,
measurement uncertainties in the flow meter and con-
ductivity sensors further contribute to discrepancies be-
tween historical data and simulations.

When preprocessing the data, it was observed that
parameter estimation was highly sensitive to the choice
of t = 0, defined as when flow from the feed tank to the
column begins. As t = 0 was not always clearly discerna-
ble, in some batches, it was approximated based on other
batches where it was easier to identify. Horizontal trans-
lations of the wash curves significantly affected the con-
verged values of the parameter estimation process.

The quality of the available datasets varied noticea-
bly when evaluating historical data for parameter
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Figure 3: The three batch breakthroughs used for estimation of ionic capacity, A and equilibrium constant, k
alongside simulated runs using best-fit values. Q denotes the median flow rate of the batch.
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estimation. Smooth, undisrupted runs were critical to en-
abling parameter estimation. In this regard, some histori-
cal datasets were not considered for parameter estima-
tion, and those used had to be preprocessed to make
modeling feasible. The datasets most applicable to pa-
rameter estimation were those run by experienced oper-
ators conducting experiments for their research. "Data
gathered by first-time operators often exhibited signs of
process disruption and were rarely as directly usable for
parameter estimation, compared to data produced with
dedication to the purpose.

3.2 Computational Efficiency

In this study, the PDEs described in egs. (1)-(4) were
solved efficiently using DGSEM in CADET-Julia. On an i5-
1345U processor (1.60 GHz), the equations were discre-
tized and solved in under two seconds, below the meas-
urement frequency. This was true for both the wash data,
each consisting of approximately 100 data points, and
the breakthrough data, containing up to 1000 points.

The global parameter searches for all washes and
breakthroughs were completed in less than 10 minutes
each. Notably, accounting for the inherent uncertainties
in the system, adequate parameter values were identified
already within the first 1-2 minutes. Additional search it-
erations refined these values, but the improvements ex-
ceed the level of accuracy achievable given the uncer-
tainties present.

Discussion

The ability to solve the LRM with the SMA isotherm
within the 2-second measurement frequency showcases
the model’'s potential for real-time computer-aided appli-
cations. In its current the state, the model can predict
breakthrough profiles at a speed that enables it to be de-
ployed in real-time. By connecting the model to live data
feeds of the flow in the column, the model can alter its
predicted breakthrough profile for every new data point.
Villumsen et al. / LAPSE:2025.0174
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Currently, the model predicts the entire break-
through profile from t = 0 to the end of the data series,
up to some 30 minutes in the future. The computation
time can be further reduced by optimizing the routine to
avoid redundant calculation on already-past data. The
prediction horizon can also be limited, and more powerful
hardware can be used to perform calculations.

This may bring the computation time below one sec-
ond, and effort could then be spent in reducing the sen-
sor measurement frequency to similarly match that. This
naively ignores any time taken to retrieve data from the
system.

The global parameter search can currently be com-
pleted in 1-10 minutes. To further accelerate this, an ap-
proach could be employing a local search algorithm with
a well-informed initial guess. With tactics like this, the pa-
rameter estimation procedure could be reduced to sub-
minute computation times.

This may enable real-time parameter adjustment, al-
lowing the system to dynamically adapt to batch-to-
batch variations. While it makes little sense for variables
like, D, €, keq, OF A to change between batches, other
parameters could be introduced to explain the effects of
operating conditions and batch-to-batch variation.

3.3 Perspectives

The developed tool can be implemented directly to
approximate breakthrough duration during operation. By
evaluating the model in real-time, operators can see the
impact of adjusting flow on the breakthrough profile.

To enhance the modeling capabilities demonstrated
in this study, additional metadata on the process would
be beneficial. Specifically, this includes:

= Timestamps for t = 0 as the precise point when all
the flow from the T1 feed tank is directed into the
column.
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= Measured concentrations of the NaNO; solution
used for breakthrough.

= Some indication of the operator’s ability to
maintain the water height within the column.

These lacking metadata mirror challenges fre-
quently faced in industrial systems, where incomplete
metadata, missing signals, and absent critical sensors
hinder effective modeling.

The investigation has demonstrated the feasibility
of characterizing pilot-scale equipment from historical
data that mirrors industrial operational data. The meth-
ods employed here can be applied to historical data from
industrial systems. Using fast numerical schemes or
other methods, real-time computer-aided process in-
sights and predictions could be granted to process oper-
ators. Parameter search optimizations can be employed
for real-time determination of factors that vary from
batch to batch.

The approach adopted in this study—leveraging
historical data to identify areas of improvement—pro-
vides a framework for addressing these challenges.
Drawing a clear connection between historical data and
its value in developing real-time applications makes it
possible to prioritize investments in metadata collection,
new sensors, or dsata processing tools. These invest-
ments would provide a return in the improved ability to
conduct real-time decision-making during operation to
increase product yield.

Additional historical data and process understand-
ing could be used to monitor the long-term health and
efficiency of the system. In the case of ion-exchange, it
could be used to quantify resin degradation and better
schedule replacements.

4. CONCLUSION

This study demonstrates the potential for real-time
analysis of ion-exchange chromatography using histori-
cal pilot-scale data of a fixed-bed ion exchange column.
Despite challenges such as incomplete metadata and
variability in manual operations, the findings confirm that
the system can be accurately characterized using only
operational historical data

By employing fast computational techniques, the
study shows that the system can be modeled in real time,
simulating entire breakthrough profiles within the two-
second measurement frequency of the system. These
findings underscore the potential of using historical data
to develop valuable real-time computer-aided process
applications in pilot and industrial-scale settings.
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