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ABSTRACT 
This study evaluates the potential for computer-aided real-time monitoring and decision-making 
in pilot-scale ion-exchange chromatography operations using only historical data from the pilot-
scale facility. Historical data of flow and conductivity were utilized from students running pilot-
scale ion exchanges that resemble industrial ion exchange processes. A Lumped Rate Model (LRM) 
with a Steric Mass Action (SMA) isotherm was implemented and parameterized to characterize 
the fixed-bed column. The Discontinuous Galerkin Spectral Element Method (DGSEM), imple-
mented in CADET-Julia, enabled efficient simulation and parameter estimation. Using DGSEM, the 
LRM with SMA was solved in less time than the sensor measurement frequency.  This development 
allows for the prediction of batch evolution in real time for operators of the ion-exchange column. 
Despite challenges related to data preprocessing and manual operation inconsistencies, the re-
sults demonstrate the feasibility of integrating real-time analysis into pilot-scale operations. 

Keywords: Ion-exchange chromatography, Real-time analysis, Pilot-scale, Computer-aided, Modelling, 
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1. INTRODUCTION 
Chromatography constitutes an important part of 

downstream bio-manufacturing, where it is used to sep-
arate valuable products of upstream production. Precise 
control over chromatographic processes aids in increas-
ing product yield. Current conservative operational strat-
egies sometimes lead to product loss, which may be re-
mediable with real-time process insights [1].  

Batch-to-batch variations in feed composition and 
operating conditions further complicate achieving opti-
mal yields [2]. Improved understanding and monitoring of 
separation processes could enable operators to account 
for batch-to-batch variation, increasing yields without 
sacrificing product quality [2].  

The complexity of chromatographic processes 
arises from their underlying mechanisms, which can be 
described using partial differential equations (PDEs) that 
model advection, diffusion, mass transfer, and adsorp-
tion. To enable real-time applications involving systems 
governed by PDEs, fast discretization methods are es-
sential for solving these equations accurately and effi-
ciently. 

This study investigates the potential for real-time 
process analysis using a pilot-scale ion exchange column 
at the Technical University of Denmark (DTU) pilot facil-
ity. For more details on this facility, see [3]. Here, an ion 
exchange fixed-bed column equipped with sensors is 
used as a teaching instrument. The column and the exer-
cises run on it resemble operations encountered in indus-
trial ion exchange operations. The system is equipped 
with sensors that automatically log measurements every 
two seconds.  

There exist historical data sets of these sensor 
measurements for experiments run by students from 
2019 onwards. In this case, students use the data to per-
form calculations relating to upscaling the process. Be-
yond this, the data is not employed for other purposes. 
This has some resemblance to industrial process sys-
tems, where sensors are placed on systems for monitor-
ing and quality control purposes, and process optimiza-
tion using historical data is an afterthought. This study 
will evaluate whether the fixed-bed column can be char-
acterized solely by historical data and whether such data 
provides a sufficient foundation for real-time process ap-
plications.  
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2. METHODOLOGY 

2.1 Scoping 
There are two subjects of interest in this study. First 

is the ability to simulate operation of the ion-exchange 
system based entirely on historical data. The historical 
data gathered by students was not intended for applica-
tions such as those suggested in this study but rather as 
data to support other investigations. Here, this study in-
vestigates the degree to which this data can be repur-
posed for column characterization and process simula-
tion. 

Secondly, the study will investigate if, by using com-
putationally fast numerical schemes, the ion-exchange 
breakthrough process can be simulated in less time than 
the measurement frequency of every two seconds. 
Achieving this would support the development of real-
time applications, as the numerical scheme could be 
solved uniquely for each data point that is gathered. A 
real-time application of interest in this setting would be 
the prediction of the breakthrough profile, enabling feed-
back to the operators of the system as they operate the 
system. 

2.2 Experimental Methods 
The data used for this study stems from exercises 

performed by chemical engineering students at DTU [8]. 

The goal of the exercise is for students to evaluate break-
through curves during the operation and regeneration of 
an ion-exchange system, and to determine isotherms and 
resin properties for scaling up a pilot plant unit. 

Pilot Plant Setup 
The experimental setup features a 10 cm diameter, 

1 m tall column occupied by a fixed-bed ion exchange 
resin. In Figure 1, a piping and instrumentation (P&I) dia-
gram for the system can be seen. The feed solution, 
stored in a 100 L tank (T1), is pumped through the col-
umn. The system includes the following instrumentation: 

 Flow-through cell (CI1): Measures conductivity 

 Magnetic flow indicator (FI1): Measures flow rate 

 Pt100 sensors (TI1 & TI2): Monitor temperature 

 Manometer (PI1): Records pressure 

Data for time, flow, conductivity, temperature, and 
pressure are logged automatically every 2 seconds. The 
resin used is Amberjet 1200 in H-form. The operator must 
manually control the system by configuring the pump 
spend and configure valve settings. 

Experimental Procedure 
30 L of 0.1 N NaNO₃ feed solution is prepared by 

dissolving NaNO₃ in water, mixing thoroughly for homog-
enization, and transferring it to the feed tank. 

 
 
Figure 1: (Left) An image of the pilot-scale fixed-bed ion exchange column and (right) P&I diagram for the pilot-
scale ion exchange fixed-bed column [8]. The green, orange, and red sections on both the image and the P&I 
diagram represent the in-flow pipes, the fixed-bed column, and the out-flow pipes, respectively. 
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Next, The feed solution of NaNO₃ is pumped 
through the column at a flow rate of 50-80 L/h. Exit flow 
and conductivity were recorded automatically. The pro-
cess continued until an S-shaped curve was observed in 
the conductivity. 

Finally, 10 L of water is pumped through the system 
and column to remove any NaNO₃ in the mobile phase. 

During all operations, the operator must manually 
adjust flow rates and the water height inside the column 
by adjusting valve V3. This is to ensure the resin is always 
submerged, and to limit excess water in the column. 

2.3 Modelling 
To describe the ion-exchange chromatography pro-

cess, the Lumped Rate Model (LRM) with the Steric Mass 
Action (SMA) was used. The LRM and the SMA isotherm 
are given for each component 𝑖𝑖 ∈ {1, … ,𝑁𝑁𝐶𝐶} in eq. (1)-(2). 

𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝐷𝐷ax
𝜕𝜕2𝑐𝑐𝑖𝑖
𝜕𝜕𝑧𝑧2

− 𝑢𝑢 𝜕𝜕𝑐𝑐𝑖𝑖
𝜕𝜕𝜕𝜕
− 1−𝜀𝜀

𝜀𝜀
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝜕𝜕

,   (1) 

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝑘𝑘kin,𝑖𝑖�𝑘𝑘eq,𝑖𝑖𝑐𝑐𝑖𝑖𝑞𝑞�0𝑣𝑣 − 𝑞𝑞𝑖𝑖𝑐𝑐0𝑣𝑣�.   (2) 

Here, 𝑡𝑡 is time, 𝑐𝑐𝑖𝑖 is the mobile phase concentration 
of component 𝑖𝑖, 𝑞𝑞 is the corresponding stationary phase 
concentration, 𝑧𝑧 is the spatial coordinate, 𝐷𝐷ax is the axial 
dispersion coefficient, 𝜀𝜀 is the total porosity, 𝑘𝑘eq is the 
equilibrium adsorption constant,  𝑘𝑘kin is a kinetic con-
stant, 𝑞𝑞0��� = 𝑞𝑞0 − Σ𝑗𝑗

𝑁𝑁𝑐𝑐  𝜎𝜎𝑗𝑗𝑞𝑞𝑗𝑗 is the number of free binding sites 
where 𝑞𝑞0 is the bound salt concentration and 𝜎𝜎 is the ste-
ric hindrance factor. The bound salt concentration is 
given by electroneutrality as 𝑞𝑞0 = Λ − Σ𝑗𝑗

𝑁𝑁𝑐𝑐𝑣𝑣𝑗𝑗𝑞𝑞𝑗𝑗 where Λ is 
the ionic capacity and 𝑣𝑣 is the characteristic charge. The 
boundary conditions are given in eq. (3)-(4), respectively. 

𝑢𝑢𝑐𝑐in,𝑖𝑖 = u𝑐𝑐𝑖𝑖(𝑡𝑡, 0) −𝐷𝐷ax
𝜕𝜕𝑐𝑐𝑖𝑖(𝑡𝑡,0)
𝜕𝜕𝜕𝜕

,   (3) 

𝜕𝜕𝑐𝑐𝑖𝑖(𝑡𝑡,𝐿𝐿)
𝜕𝜕𝜕𝜕

= 0,     (4) 

where 𝐿𝐿 is the column length and 𝑐𝑐in is the inlet con-
centration. If assuming isotherm equilibrium, the equa-
tions eq. (1)-(2) must be discretized and solved as a dif-
ferential algebraic equations system, setting eq. (2) equal 
to 0. Alternatively, one can set a large 𝑘𝑘kin,  value to ap-
proximate the equilibrium and still discretize and solve 
the system as an ordinary differential equation (ODE) 
system [4]. To solve the PDEs in eq. (1)-(4), the spatial 
domain of eq. (1) was discretized using the Discontinuous 
Galerkin Spectral Element Method (DGSEM) derived by 
Breuer et al [5]. The resulting system of ODEs was solved 
using the QNDF solver which is a stiff backwards differ-
entiation formula solver using DifferentialEquations.jl 
[6,7]. 

Column Characterization 
To model the pilot-scale ion exchange fixed-bed 

column, CADET-Julia was used [4]. In Table 1, all values 

used for simulating the ion exchange system can be 
seen. The system was represented as three serially con-
nected segments: the in-flow pipes, the ion exchange 
column itself, and the out-flow pipes. In Figure 1, this seg-
mentation can be seen with respect to the physical sys-
tem. Approximate measurements of pipe length and radii 
were used for the in-flow and out-flow sections. For the 
simulation, the value of the axial diffusion coefficient in 
the pipes, 𝐷𝐷ax, pipes, was set to 10-3 m2/s. This value was 
heuristically chosen to balance minimizing diffusion in the 
pipes while avoiding an excessively stiff system that 
would significantly increase the computational time.   

For each batch, the median flow rate was calculated 
and applied as a constant flow in the simulated runs. The 
median flow was chosen to make the data cleaning more 
robust towards transmitted values that were deemed 
outliers. In some cases, pump start-ups were modelled 
by fitting flow profiles with second- or third-order poly-
nomials, before transitioning to a constant flow profile. 
 The historical data of the washes were used to char-
acterize the axial diffusion coefficient, 𝐷𝐷ax, and resin po-
rosity, 𝜀𝜀. Parameter estimation was done by fitting a sin-
gle value of 𝐷𝐷ax and a single value of 𝜀𝜀 across all batches, 
ensuring they remain constant. Conductivity was con-
verted to concentration by assuming the initial and final 
conductivity corresponded to concentrations of 0.1 and 
0 N NaNO₃, respectively.  

Table 1: Overview of variables used in simulation of the 
ion-exchange fixed-bed column using CADET-Julia. 

Symbol Description Value Used 
𝐿𝐿pipes, in In-flow pipes length  m 
𝐿𝐿pipes, out Out-flow pipes length  m 
𝐿𝐿 Fixed-bed column length  m 
𝑟𝑟pipes Pipe radius  m 
𝑟𝑟column Column radius  m 
𝐷𝐷ax, pipes Axial diffusion coefficient 

in the pipes 
- m/s 

𝜎𝜎H+/𝜎𝜎Na+  Shielding factor  /  
𝜈𝜈H+/𝜈𝜈Na+  Characteristic charge  /  
𝑘𝑘kin Kinetic coefficient  

 
Subsequently, historical breakthrough curve data 

were used to fit the SMA model parameters: the ionic ca-
pacity, Λ, and the equilibrium coefficient, 𝑘𝑘eq. Parameter 
estimation was done by fitting a single value of Λ and a 
single value of 𝑘𝑘eq across all batches, ensuring they re-
main constant.  

The ParticleSwarm algorithm from the Optim.jl pack-
age was utilized to perform global parameter searches, 
using the mean absolute error between simulated runs 
and historical data as the optimization metric [9]. 
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3. RESULTS & DISCUSSION 

3.1 Parameter Estimation 
The batches of wash data were analyzed to esti-

mate the best-fit values for the 𝐷𝐷ax and ε, which were de-
termined to be 7 × 10−5 m2/s and 0.6, respectively. Using 
these parameter values, Figure 2 illustrates the experi-
mental wash curves alongside their simulated counter-
parts. 

Subsequently, the SMA isotherm parameters Λ and 
𝑘𝑘eq were estimated from breakthrough data, which 
yielded values of 4 eq/L and 3, respectively. Figure 3 pre-
sents the experimental breakthrough curves and corre-
sponding simulations. 

The LRM with SMA isotherm produces strong fits for 
both wash data and the breakthrough data. The simula-
tions predict the timing of the initial break of the curve 
well and follow the same evolution as the observed data.  

Discussion 
In Figure 2 and Figure 3, it can be observed that the 

simulations predict a delayed breakthrough when flow 
rates (Q) are higher, i.e. Q ≈ 65 L/h, compared to those 

with lower flow rates, i.e. Q ≈ 51 L/h. This indicates there 
may be some flow-dependent mechanisms present in the 
process not entirely explained by the LRM model. 

Discrepancies between the simulated and experi-
mental results may stem from uncertainties in the histor-
ical data and inconsistent execution across batches. Var-
iations in how operators controlled the water height in the 
column could have affected the observed conductivity. 
Additionally, the exact concentration of the NaNO₃ solu-
tion is unknown; the concentration 0.1 N NaNO₃ is as-
sumed based on the exercise instructions. Furthermore, 
measurement uncertainties in the flow meter and con-
ductivity sensors further contribute to discrepancies be-
tween historical data and simulations. 

When preprocessing the data, it was observed that 
parameter estimation was highly sensitive to the choice 
of 𝑡𝑡 = 0, defined as when flow from the feed tank to the 
column begins. As 𝑡𝑡 = 0 was not always clearly discerna-
ble, in some batches, it was approximated based on other 
batches where it was easier to identify. Horizontal trans-
lations of the wash curves significantly affected the con-
verged values of the parameter estimation process.  

The quality of the available datasets varied noticea-
bly when evaluating historical data for parameter 

 
Figure 2: The six batch washes used for estimation of the axial diffusion coefficient, 𝐷𝐷ax and porosity, 𝜀𝜀, alongside 
simulated runs using best-fit values. Q denotes the median flow rate of the batch. 
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estimation. Smooth, undisrupted runs were critical to en-
abling parameter estimation. In this regard, some histori-
cal datasets were not considered for parameter estima-
tion, and those used had to be preprocessed to make 
modeling feasible. The datasets most applicable to pa-
rameter estimation were those run by experienced oper-
ators conducting experiments for their research. "Data 
gathered by first-time operators often exhibited signs of 
process disruption and were rarely as directly usable for 
parameter estimation, compared to data produced with 
dedication to the purpose. 

3.2 Computational Efficiency 
In this study, the PDEs described in eqs. (1)–(4) were 

solved efficiently using DGSEM in CADET-Julia. On an i5-
1345U processor (1.60 GHz), the equations were discre-
tized and solved in under two seconds, below the meas-
urement frequency. This was true for both the wash data, 
each consisting of approximately 100 data points, and 
the breakthrough data, containing up to 1000 points. 

The global parameter searches for all washes and 
breakthroughs were completed in less than 10 minutes 
each. Notably, accounting for the inherent uncertainties 
in the system, adequate parameter values were identified 
already within the first 1–2 minutes. Additional search it-
erations refined these values, but the improvements ex-
ceed the level of accuracy achievable given the uncer-
tainties present. 

Discussion 
The ability to solve the LRM with the SMA isotherm 

within the 2-second measurement frequency showcases 
the model’s potential for real-time computer-aided appli-
cations. In its current the state, the model can predict 
breakthrough profiles at a speed that enables it to be de-
ployed in real-time. By connecting the model to live data 
feeds of the flow in the column, the model can alter its 
predicted breakthrough profile for every new data point. 

Currently, the model predicts the entire break-
through profile from 𝑡𝑡 = 0 to the end of the data series, 
up to some 30 minutes in the future. The computation 
time can be further reduced by optimizing the routine to 
avoid redundant calculation on already-past data. The 
prediction horizon can also be limited, and more powerful 
hardware can be used to perform calculations. 

This may bring the computation time below one sec-
ond, and effort could then be spent in reducing the sen-
sor measurement frequency to similarly match that. This 
naively ignores any time taken to retrieve data from the 
system.  

The global parameter search can currently be com-
pleted in 1–10 minutes. To further accelerate this, an ap-
proach could be employing a local search algorithm with 
a well-informed initial guess. With tactics like this, the pa-
rameter estimation procedure could be reduced to sub-
minute computation times.  

This may enable real-time parameter adjustment, al-
lowing the system to dynamically adapt to batch-to-
batch variations. While it makes little sense for variables 
like, 𝐷𝐷ax, 𝜀𝜀, 𝑘𝑘eq, or Λ to change between batches, other 
parameters could be introduced to explain the effects of 
operating conditions and batch-to-batch variation. 

3.3 Perspectives 
The developed tool can be implemented directly to 

approximate breakthrough duration during operation. By 
evaluating the model in real-time, operators can see the 
impact of adjusting flow on the breakthrough profile. 

To enhance the modeling capabilities demonstrated 
in this study, additional metadata on the process would 
be beneficial. Specifically, this includes: 

 Timestamps for 𝑡𝑡 = 0 as the precise point when all 
the flow from the T1 feed tank is directed into the 
column. 

 
Figure 3: The three batch breakthroughs used for estimation of ionic capacity, Λ and equilibrium constant, 𝑘𝑘eq, 
alongside simulated runs using best-fit values. Q denotes the median flow rate of the batch. 
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 Measured concentrations of the NaNO₃ solution 
used for breakthrough. 

 Some indication of the operator’s ability to 
maintain the water height within the column.  

These lacking metadata mirror challenges fre-
quently faced in industrial systems, where incomplete 
metadata, missing signals, and absent critical sensors 
hinder effective modeling. 

The investigation has demonstrated the feasibility 
of characterizing pilot-scale equipment from historical 
data that mirrors industrial operational data. The meth-
ods employed here can be applied to historical data from 
industrial systems. Using fast numerical schemes or 
other methods, real-time computer-aided process in-
sights and predictions could be granted to process oper-
ators. Parameter search optimizations can be employed 
for real-time determination of factors that vary from 
batch to batch. 

The approach adopted in this study—leveraging 
historical data to identify areas of improvement—pro-
vides a framework for addressing these challenges.  
Drawing a clear connection between historical data and 
its value in developing real-time applications makes it 
possible to prioritize investments in metadata collection, 
new sensors, or dsata processing tools. These invest-
ments would provide a return in the improved ability to 
conduct real-time decision-making during operation to 
increase product yield.  

Additional historical data and process understand-
ing could be used to monitor the long-term health and 
efficiency of the system. In the case of ion-exchange, it 
could be used to quantify resin degradation and better 
schedule replacements. 

4. CONCLUSION 
This study demonstrates the potential for real-time 

analysis of ion-exchange chromatography using histori-
cal pilot-scale data of a fixed-bed ion exchange column. 
Despite challenges such as incomplete metadata and 
variability in manual operations, the findings confirm that 
the system can be accurately characterized using only 
operational historical data 

By employing fast computational techniques, the 
study shows that the system can be modeled in real time, 
simulating entire breakthrough profiles within the two-
second measurement frequency of the system. These 
findings underscore the potential of using historical data 
to develop valuable real-time computer-aided process 
applications in pilot and industrial-scale settings. 
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