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ABSTRACT

The synthesis of membrane networks to recover components from liquid mixture is challenging
due to an extensive array of feasible network configurations and the added complexity of modeling
membrane permeators caused by nonidealities in liquid mixtures. We present a mixed-integer
nonlinear programming (MINLP) framework for synthesizing membrane networks to recover
multiple components from liquid mixtures. First, we develop a physics-based nonlinear surrogate
model to accurately describe crossflow membrane permeation. Second, we propose a richly
connected superstructure to represent numerous potential network configurations. Third, the two
aforementioned elements are integrated into an MINLP model to determine the optimal network
configuration. Finally, the effectiveness of the proposed approach is demonstrated through a
range of applications.

Keywords: Liquid Mixture Separations, Membrane Network Synthesis, Superstructure-based Optimization,

Mixed-Integer Nonlinear Programming.

INTRODUCTION

Membranes for liquid separation are recognized as
a promising technology, offering several advantages
including low energy requirements and chemical-free
operation [1]. Polymeric membranes, in particular, have
emerged as a preferred choice due to their scalability.
The two key properties of polymeric membranes are
permeability and selectivity. High permeability facilitates
enhanced recovery, while high selectivity ensures high
purity. However, polymeric membranes inherently exhibit
a trade-off between selectivity and permeability [2].
Therefore, utilizing a single-stage membrane unit to
achieve both high recovery and purity simultaneously is
often impractical or incurs high operating and capital
costs. To address this limitation, a multi-stage membrane
network must be synthesized.

Multiple configurations of membrane networks,
differentiated by the number of membrane stages and
stream connections, can be synthesized for a given
separation task. However, the energy consumptions and
capital costs of these configurations can vary
significantly depending on the total utilized membrane
area and the operating conditions. The two primary
https://doi.org/10.69997/sct.151896

methods for synthesizing membrane networks are
simulation-based and optimization-based methods. In
the former, a network is chosen from various potential
network configurations and the operating conditions are
subsequently determined [3]. However, with an increase
in the number of membrane stages, this method
becomes increasingly cumbersome due to the significant
increase in the number of potential network
configurations, so only a limited number of network
configurations can be evaluated, potentially leading to
suboptimal designs. In optimization-based methods, the
network configuration and operating conditions are
determined simultaneously by solving an optimization
model [4]. In general, a superstructure is constructed to
include all potential network configurations. Then, a
mixed-integer nonlinear programming (MINLP) model is
formulated based on the superstructure, with binary and
continuous  variables used to represent the
configurational and operational decisions, respectively.
However, the accuracy of unit models is limited due to
the approximations required to formulate a
computationally tractable optimization model. This work
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Figure 1: Comparison between the NLAE (solid lines) and the DAE (square markers) unit model. a, Retentate flow
rate comparison: Blue, orange, yellow, and violet colors represent the flow rate of methyl acetate, ethyl acetate,
isopropanol, and 1-butanol, respectively. b, membrane area comparison.
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Figure 2: Schematic of a superstructure with two sub-network, each with three stages, with distinct membrane
types. Yellow and blue disks represent splitters and mixers, respectively.

addresses this limitation by using an accurate membrane
unit model.

Various membrane unit models for gas separation
have been proposed. Marriott and Serensen
incorporated mass, momentum, and energy balances,
employing partial differential-algebraic  equations
(PDAE), to model membrane separation [5]. The
crossflow models proposed by Weller and Steiner [6] and
Shindo et al. [7], formulated as differential-algebraic
equations (DAE), have been commonly utilized to model
the separation of gas and liquid mixture. However,
integrating PDAE/DAE systems in an optimization model
to achieve a globally optimal solution presents significant
challenges [8]. Thus, various discretization techniques
are employed to reformulate the PDAE/DAE systems into
a system of algebraic equations. However, discretization
schemes involve a trade-off between model complexity
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and solution accuracy. While finer discretization provides
high accuracy, it also increases the number of nonlinear
equations, making it computationally challenging to attain
global optimality. Additionally, building on the work of
Weller and Steiner [6] and Shindo et al. [8], Chen et al.
[9] and Taifan and Maravelias [10] developed a unit
model for the separation of multicomponent gas
mixtures. Moreover, Chavez Velasco et al. [11] developed
a unit model specifically for the separation of binary liquid
mixtures. As a result, current unit models are limited to
the separation of either binary liquid mixtures or
multicomponent gas mixtures. Thus, there is a critical gap
in the development of membrane unit models for the
separation of multicomponent liquid mixtures.

Numerous computational methods have been
proposed for the synthesis of membrane networks.
Pathare and Agrawal [12] devised a method that
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systematically enumerates all networks and solves a
nonlinear program (NLP) for each. However, this
approach  becomes increasingly = computationally
intensive as the number of potential networks increases.
Other existing optimization models for synthesizing
membrane networks typically rely on local optimization or
meta-heuristic methods [13-15]. The studies aiming to
obtain global optimality generally focus on the separation
of binary mixtures [11,14]. Moreover, the optimization
models developed by Chen et al. [9] and Taifan and
Maravelias [10] specifically target multicomponent gas
mixtures and impose restrictions on the stream
connections within the membrane network
superstructure. This limitation excludes some feasible
network configurations, potentially leading to suboptimal
solutions.

In this work, we present a novel approach for
synthesizing  optimal membrane networks for
multicomponent liquid mixture separation [16]. We
propose a generalized optimization model that
incorporates three elements. First, we develop a physics-
based nonlinear surrogate unit model to describe
crossflow membrane permeation for multicomponent
liquid mixtures. Second, we propose a highly
interconnected superstructure to represent an extensive
array of potential network configurations. Third, we
formulate an optimization model to determine the
configuration and operating conditions that minimize the
total required membrane area. Finally, we present
multiple applications to showcase the effectiveness of
our approach.

MEMBRANE UNIT MODEL

First, we adapt the DAE-based crossflow membrane
unit model from Shindo et al. [7] for multicomponent
liquid mixtures. Next, the DAE unit model is reformulated
to a nonlinear algebraic unit model (NLAE). Finally, we
assess accuracy by comparing the NLAE unit model with
the original DAE model.

DAE Unit Model

In an idealized crossflow membrane unit, the liquid
mixture on the feed-side exhibits plug flow with no
longitudinal mixing. The permeating components
selectively pass through the membrane and enter the
permeate-side without mixing with the permeate bulk
flow. The DAE unit model is based on the following
assumptions: (1) component permeabilities are
independent of pressure and composition, (2) material
transport follows Fick’s law of diffusion, (3) negligible
concentration polarization, (4) only transmembrane
pressure drop is observed, (5) isothermal operation, (6)
negligible mass transfer resistance, and (7) uniform
membrane thickness. In the DAE model, material
transport across polymeric membranes is described by
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the solution-diffusion theory, which has been widely
employed and extensively validated against experimental
data from physical systems [17]. The DAE unit model for
the pervaporation process is given by the following
equations [7]:

dFf o 73 i
= (6% — ) viel Q)
o _ _ mi(GiRi—t¥) i
Yi - Zi’el”i’(ci’gi'_‘[i'?i') viel (2)
FFR, = F, Viel (3)
FiF|FF=F = Fi Viel (4)

where X;/Y; represent the molar fraction of component i
on the feed-side/permeate-side, while FF/F,and FF/F
denote the molar flow rate of component i in the feed-
side/fresh feed and the total molar flow rate in the feed-
side/fresh feed, respectively; G;,1;,and m; represent the
activity coefficient, normalized permeate pressure, and
permeance of component i, respectively. Finally, given
the initial conditions and the desired separation
specifications, composition profiles and the required
membrane area can be determined.

NLAE Unit Model

Discretization schemes are primarily employed to
convert DAE systems into algebraic equations. However,
this approach increases computational complexity,
making it difficult for optimization solvers to achieve
global optimality. We utilize a different approach, based
on the assumption of a uniform collective driving force,
B, and activity coefficients, G;, across the membrane
surface. The DAE model can be reformulated into
differential equations, which can be integrated to obtain
the following set of nonlinear algebraic equations:

In(%)= (5 )m(1-¢)  viel (5)
Yietli = 1 =0 Yl Fi (6)
A= %(F -1L) (7)

where F;/L; and F/L are the molar flow rates of
component i and the total molar flow rate in the
feed/retentate stream, while ¢ and A represents the
stage cut and the required area, respectively. Detailed
reformulation steps are provided in the Supplementary
Material. Further, the accuracy of the NLAE unit model is
essential for its integration in the optimization model.
Thus, we validate the developed NLAE unit model by
comparing it with the DAE unit model using simulations in
MATLAB, focusing on two key variables: the retentate
flow rate and the membrane area, under varying final
stage cut, ¢, for both models. Data for the simulation is
provided in the Supplementary Material. For the DAE unit
model, the retentate flow rate and the membrane area
are determined by solving Eq. (1), (2),(3),and (4), while
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for the NLAE unit model, they are calculated using Eq.
(5),(6),and (7). Consequently, the comparison between
the two unit models, shown in Figure 1, demonstrates
good agreement.

SUPERSTRUCTURE REPRESENTATION

We present a superstructure with rich
interconnections designed to recover multiple target
components from a liquid mixture. The superstructure
can employ distinct membrane materials, each
specifically selective for different target components.
Moreover, it incorporates multiple sub-networks that are
interconnected to achieve the required separation task.
Within each sub-network, the superstructure employs a
unigue membrane material and allows for: (1) a
retentate/permeate to be sent to any of the previous
stages as a retentate/permeate recycle, (2) a
retentate/permeate to be sent to any of the subsequent
stages as a retentate/permeate bypass, and (3) a
retentate/permeate to be collected from any stage as a
retentate/permeate product. The permeate final product
from a sub-network contains a recovered target
component, while the retentate final product is fed into
other sub-networks for further separation of remaining
target components. Additionally, each sub-network
utilizes one mixer for each feed entering a stage, two
mixers for retentate and permeate products, two splitters
for each retentate and permeate leaving a stage, and one
splitter for the fresh feed stream. Finally, to minimize the
number of symmetrical solutions, the fresh feed is
allowed to enter only the first stage of each sub-network.
For illustration, Figure 2 shows a schematic of a
superstructure with two sub-networks, each with three
stages employing Type A and Type B membranes, to
recover target components A and B from a liquid mixture,
respectively.

In the mathematical formulation, binary variables are
utilized to denote the activation of membrane stages for
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specific membrane types. Thus, the binary variable Z,, ,,,
is introduced to denote whether stage n of membrane
type m is active. Additionally, the location of the fresh
feed inlet to one of the sub-networks plays a critical role.
Therefore, the binary variable Y,, is used to denote if the
fresh feed enters the sub-network with membrane type
m. Further, material balances are introduced around all
the mixers, splitters, and around each stage of the sub-
network. A detailed mathematical formulation is provided
in the Supplementary Material. In practical applications,
condensers and pumps are utilized to condense
permeate vapors and adjust the pressure of the
permeate stream for further recycling, bypassing, or
collection of the permeate. However, the objective of the
proposed model is to minimize the overall membrane
area. Thus, calculations for condenser and vacuum pump
units are excluded.

APPLICATIONS

First, we study the behaviour of a membrane
network that utilizes a single sub-network with a unique
material for the separation of one target component from
an alcohol/water mixture. Second, we show the
effectiveness of the proposed method using an example
with three components for the simultaneous separation
of two target components. All optimization models are
written in GAMS 46.4.1 and are solved using BARON
24.3.10 on a Windows machine with a 1.60 GHz CPU and
32 GB RAM.

Single Component Separation

We analyze a membrane network system that
processes a fresh feed, pressurized at 1 atm with a flow
rate of 15 mol/s, of an alcohol/water mixture. The mixture
consists of 26.67% ethanol (EtOH), 20% methanol
(MeOH) and 53.33% water (H20) on a molar basis. The
feed-side pressure in a membrane unit is set to match the
pressure of the fresh feed, while the permeate-side
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pressure is maintained at 0.01 atm to facilitate
pervaporation. Isothermal operation is assumed at
323.15 K. The permeance values for EtOH, MeOH, and
H20 for an ethanol-selective membrane are 0.088, 0.051,
0.018 (mol/m?/s), and for a methanol-selective
membrane type are 0.025, 0.18, 0.018 (mol/m?/s)
respectively, which fall in the range of Nafion
membranes.

The proposed model is employed with a single
membrane type, thus we construct a four-stage
superstructure with an ethanol-selective membrane type
(Type A), as shown in Figure S1. First, we determine the
optimal network for the separation of ethanol from the
liquid mixture at the desired purity and recovery of 90%.
The model contains 309 equations and 247 variables (4
binaries) and is solved to global optimality within 60 s.
The global optimal network configuration, shown in
Figure 3, requires four membrane stages with a total area
of 204.87 m2. In the optimal network, EtOH permeates
through the active stages of Type A membrane and is
bypassed to the subsequent stages, facilitating effective
separation by concentrating the EtOH rich permeate.
Accordingly, the final permeate product is collected from
the last stage meeting the higher recovery and purity
specifications, while the residual mixture is collected as
the retentate final product.
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Figure 4: Total membrane area and number of required
stages under varying recovery and purity specifications.

Next, we study the impact of purity and recovery
specifications for EtOH on the network’s configuration
and operation by solving the model under varying purity
and recovery specifications. Figure 4 illustrates the
variation in the total required area and the number of
stages needed as the desired recovery and purity
increase.  Accordingly, the purity specification
significantly influences the network design, including the
number of required stages and the total required area,
compared to the specified recovery. However, the purity
threshold for installing an additional stage is lower at
higher recovery, suggesting a modest impact of specified
recovery on network performance.
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Two Component Separation

The separation and recovery of iso-butanol (i-
BuOH) and ethanol (EtOH) are of significant importance
in biological systems, particularly in the context of biofuel
production and sustainable energy solutions. However,
their separation presents challenges due to their similar
boiling points and azeotropic behaviours. Therefore,
membrane-based separation technology can be
employed to effectively recover both i-BuOH and EtOH.
In this example, we study the simultaneous separation
and recovery of i-BuOH and EtOH from an aqueous
mixture using a multi-material membrane network
system. We consider a fresh feed pressurized at 1 atm
with a flow rate of 15 mol/s, consisting of an aqueous i-
BUuOH/EtOH mixture. This mixture comprises 26.67% i-
BuOH, 20% EtOH and 53.33% water (H20) on a molar
basis. The feed-side pressure in a membrane unit is set
to match the pressure of the fresh feed, while the
permeate-side pressure is maintained at 0.01 atm to
facilitate pervaporation. Isothermal operation at 323.15 K
is assumed. Permeance values for i-BuOH, EtOH, and
H20 for an iso-butanol-selective membrane are 0.057,
0.023, 0.017 (mol/m?/s), and for an ethanol-selective
membrane type are 0.004, 0.138, 0.017 (mol/m?/s),
respectively.

We employ an iso-butanol-selective membrane type
(Type A) and an ethanol-selective membrane type (Type
B) across two interconnected sub-networks (see Figure
2). Additionally, we allow each sub-network to include
four stages to facilitate separation at higher purity and
recovery specifications. The proposed model is solved at
the desired purity and recovery specification of 90% for
both i-BuOH and EtOH, respectively. The model consists
of 506 equations and 495 variables (10 binaries) and is
solved to global optimality within 240 s. The globally
optimal network configuration is shown in Figure 5.

The optimal network incorporates three stages of
Type B membrane and utilizes all four available stages of
Type A membrane, requiring a total area of 1158.3 m2.
The higher permeance of EtOH in Type B membrane,
compared to the permeance of i-BuOH in Type A
membrane, facilitates the separation of EtOH as the initial
step. Therefore, the fresh feed is fed to the sub-network
with Type B membranes. As a result, EtOH is first
separated and gets collected in the final permeate
product in the sub-network with Type B membranes. In
contrast, the final retentate product from the sub-
network with Type B membranes, mainly comprising i-
BuOH and H20, is subsequently fed to the sub-network
with Type A membranes for the further separation of i-
BUuOH from the remaining aqueous mixture. Finally, i-
BUuOH is separated and collected as the final permeate
product from the sub-network with Type A membranes,
while the remaining aqueous mixture, predominantly
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Figure 5: Two component separation: global optimal network to recover i-BuOH and EtOH at the desired recovery

containing H20, is collected as the residual.

CONCLUSIONS

In this study, we proposed an optimization model for
membrane network synthesis tailored for the separation
of multiple components from liquid mixtures. First, we
developed a physics-based nonlinear surrogate model to
describe pervaporation-based crossflow membrane
permeation for liquid mixtures. Second, we proposed a
comprehensive superstructure, incorporating multiple
sub-networks, each with distinct membrane types,
featuring  multiple  stages with  rich  stream
interconnections. Third, we formulated a mixed-integer
nonlinear programming model, integrating the two
aforementioned elements, to determine the network
configuration and operating conditions that minimize the
overall network area. The proposed optimization model
effectively identifies the global optimal network, as
illustrated by the applications presented.

DIGITAL SUPPLEMENTARY MATERIAL

DAE unit model reformulation, simulation data,
figures, and the mathematical formulation for the
optimization model is presented in the Supplementary
Material (LAPSE:2025.0008).
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