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ABSTRACT 
The synthesis of membrane networks to recover components from liquid mixture is challenging 
due to an extensive array of feasible network configurations and the added complexity of modeling 
membrane permeators caused by nonidealities in liquid mixtures. We present a mixed-integer 
nonlinear programming (MINLP) framework for synthesizing membrane networks to recover 
multiple components from liquid mixtures. First, we develop a physics-based nonlinear surrogate 
model to accurately describe crossflow membrane permeation. Second, we propose a richly 
connected superstructure to represent numerous potential network configurations. Third, the two 
aforementioned elements are integrated into an MINLP model to determine the optimal network 
configuration. Finally, the effectiveness of the proposed approach is demonstrated through a 
range of applications. 

Keywords: Liquid Mixture Separations, Membrane Network Synthesis, Superstructure-based Optimization, 
Mixed-Integer Nonlinear Programming. 

INTRODUCTION
Membranes for liquid separation are recognized as 

a promising technology, offering several advantages 
including low energy requirements and chemical-free 
operation [1]. Polymeric membranes, in particular, have 
emerged as a preferred choice due to their scalability. 
The two key properties of polymeric membranes are 
permeability and selectivity. High permeability facilitates 
enhanced recovery, while high selectivity ensures high 
purity. However, polymeric membranes inherently exhibit 
a trade-off between selectivity and permeability [2]. 
Therefore, utilizing a single-stage membrane unit to 
achieve both high recovery and purity simultaneously is 
often impractical or incurs high operating and capital 
costs. To address this limitation, a multi-stage membrane 
network must be synthesized. 

Multiple configurations of membrane networks, 
differentiated by the number of membrane stages and 
stream connections, can be synthesized for a given 
separation task. However, the energy consumptions and 
capital costs of these configurations can vary 
significantly depending on the total utilized membrane 
area and the operating conditions. The two primary 

methods for synthesizing membrane networks are 
simulation-based and optimization-based methods. In 
the former, a network is chosen from various potential 
network configurations and the operating conditions are 
subsequently determined [3]. However, with an increase 
in the number of membrane stages, this method 
becomes increasingly cumbersome due to the significant 
increase in the number of potential network 
configurations, so only a limited number of network 
configurations can be evaluated, potentially leading to 
suboptimal designs. In optimization-based methods, the 
network configuration and operating conditions are 
determined simultaneously by solving an optimization 
model [4]. In general, a superstructure is constructed to 
include all potential network configurations. Then, a 
mixed-integer nonlinear programming (MINLP) model is 
formulated based on the superstructure, with binary and 
continuous variables used to represent the 
configurational and operational decisions, respectively. 
However, the accuracy of unit models is limited due to 
the approximations required to formulate a 
computationally tractable optimization model. This work 
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addresses this limitation by using an accurate membrane 
unit model. 
 Various membrane unit models for gas separation 
have been proposed. Marriott and Sørensen 
incorporated mass, momentum, and energy balances, 
employing partial differential-algebraic equations 
(PDAE), to model membrane separation [5]. The 
crossflow models proposed by Weller and Steiner [6] and 
Shindo et al. [7], formulated as differential-algebraic 
equations (DAE), have been commonly utilized to model 
the separation of gas and liquid mixture. However, 
integrating PDAE/DAE systems in an optimization model 
to achieve a globally optimal solution presents significant 
challenges [8]. Thus, various discretization techniques 
are employed to reformulate the PDAE/DAE systems into 
a system of algebraic equations. However, discretization 
schemes involve a trade-off between model complexity 

and solution accuracy. While finer discretization provides 
high accuracy, it also increases the number of nonlinear 
equations, making it computationally challenging to attain 
global optimality. Additionally, building on the work of 
Weller and Steiner [6] and Shindo et al. [8], Chen et al. 
[9] and Taifan and Maravelias [10] developed a unit 
model for the separation of multicomponent gas 
mixtures. Moreover, Chavez Velasco et al. [11] developed 
a unit model specifically for the separation of binary liquid 
mixtures. As a result, current unit models are limited to 
the separation of either binary liquid mixtures or 
multicomponent gas mixtures. Thus, there is a critical gap 
in the development of membrane unit models for the 
separation of multicomponent liquid mixtures. 
 Numerous computational methods have been 
proposed for the synthesis of membrane networks. 
Pathare and Agrawal [12] devised a method that 
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Figure 1: Comparison between the NLAE (solid lines) and the DAE (square markers) unit model. a, Retentate flow 
rate comparison: Blue, orange, yellow, and violet colors represent the flow rate of methyl acetate, ethyl acetate, 
isopropanol, and 1-butanol, respectively. b, membrane area comparison. 
 

 
Figure 2: Schematic of a superstructure with two sub-network, each with three stages, with distinct membrane 
types. Yellow and blue disks represent splitters and mixers, respectively. 
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systematically enumerates all networks and solves a 
nonlinear program (NLP) for each. However, this 
approach becomes increasingly computationally 
intensive as the number of potential networks increases. 
Other existing optimization models for synthesizing 
membrane networks typically rely on local optimization or 
meta-heuristic methods [13–15]. The studies aiming to 
obtain global optimality generally focus on the separation 
of binary mixtures [11,14]. Moreover, the optimization 
models developed by Chen et al. [9] and Taifan and 
Maravelias [10] specifically target multicomponent gas 
mixtures and impose restrictions on the stream 
connections within the membrane network 
superstructure. This limitation excludes some feasible 
network configurations, potentially leading to suboptimal 
solutions. 

In this work, we present a novel approach for 
synthesizing optimal membrane networks for 
multicomponent liquid mixture separation [16]. We 
propose a generalized optimization model that 
incorporates three elements. First, we develop a physics-
based nonlinear surrogate unit model to describe 
crossflow membrane permeation for multicomponent 
liquid mixtures. Second, we propose a highly 
interconnected superstructure to represent an extensive 
array of potential network configurations. Third, we 
formulate an optimization model to determine the 
configuration and operating conditions that minimize the 
total required membrane area. Finally, we present 
multiple applications to showcase the effectiveness of 
our approach. 

MEMBRANE UNIT MODEL 
First, we adapt the DAE-based crossflow membrane 

unit model from Shindo et al. [7] for multicomponent 
liquid mixtures. Next, the DAE unit model is reformulated 
to a nonlinear algebraic unit model (NLAE). Finally, we 
assess accuracy by comparing the NLAE unit model with 
the original DAE model. 

DAE Unit Model 
In an idealized crossflow membrane unit, the liquid 

mixture on the feed-side exhibits plug flow with no 
longitudinal mixing. The permeating components 
selectively pass through the membrane and enter the 
permeate-side without mixing with the permeate bulk 
flow. The DAE unit model is based on the following 
assumptions: (1) component permeabilities are 
independent of pressure and composition, (2) material 
transport follows Fick’s law of diffusion, (3) negligible 
concentration polarization, (4) only transmembrane 
pressure drop is observed, (5) isothermal operation, (6) 
negligible mass transfer resistance, and (7) uniform 
membrane thickness. In the DAE model, material 
transport across polymeric membranes is described by 

the solution-diffusion theory, which has been widely 
employed and extensively validated against experimental 
data from physical systems [17]. The DAE unit model for 
the pervaporation process is given by the following 
equations [7]: 

𝑑𝑑𝐹𝐹𝑖𝑖
F

𝑑𝑑𝑑𝑑
= −𝜋𝜋𝑖𝑖�𝐺𝐺𝑖𝑖𝑋𝑋�𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑌𝑌�𝑖𝑖� ∀ 𝑖𝑖 ∈ 𝐈𝐈  (1) 

𝑌𝑌�𝑖𝑖 = 𝜋𝜋𝑖𝑖(𝐺𝐺𝑖𝑖𝑋𝑋�𝑖𝑖−𝜏𝜏𝑖𝑖𝑌𝑌�𝑖𝑖)
∑ 𝜋𝜋𝑖𝑖′(𝐺𝐺𝑖𝑖′𝑋𝑋�𝑖𝑖′−𝜏𝜏𝑖𝑖′𝑌𝑌�𝑖𝑖′)𝑖𝑖′∈𝐈𝐈

  ∀ 𝑖𝑖 ∈ 𝐈𝐈  (2) 

𝐹̇𝐹F𝑋𝑋�𝑖𝑖 = 𝐹𝐹𝑖𝑖   ∀ 𝑖𝑖 ∈ 𝐈𝐈  (3) 

𝐹𝐹𝑖𝑖F�𝐹̇𝐹F=𝐹̇𝐹 = 𝐹𝐹𝑖𝑖   ∀ 𝑖𝑖 ∈ 𝐈𝐈  (4) 

where 𝑋𝑋�𝑖𝑖/𝑌𝑌�𝑖𝑖 represent the molar fraction of component 𝑖𝑖 
on the feed-side/permeate-side, while 𝐹𝐹𝑖𝑖F/𝐹𝐹𝑖𝑖  and 𝐹̇𝐹F/𝐹̇𝐹 
denote the molar flow rate of component 𝑖𝑖 in the feed-
side/fresh feed and the total molar flow rate in the feed-
side/fresh feed, respectively; 𝐺𝐺𝑖𝑖 , 𝜏𝜏𝑖𝑖 , and 𝜋𝜋𝑖𝑖 represent the 
activity coefficient, normalized permeate pressure, and 
permeance of component 𝑖𝑖, respectively. Finally, given 
the initial conditions and the desired separation 
specifications, composition profiles and the required 
membrane area can be determined. 

NLAE Unit Model 
Discretization schemes are primarily employed to 

convert DAE systems into algebraic equations. However, 
this approach increases computational complexity, 
making it difficult for optimization solvers to achieve 
global optimality. We utilize a different approach, based 
on the assumption of a uniform collective driving force, 
𝐵𝐵, and activity coefficients, 𝐺𝐺𝑖𝑖 , across the membrane 
surface. The DAE model can be reformulated into 
differential equations, which can be integrated to obtain 
the following set of nonlinear algebraic equations: 

ln �𝐿𝐿𝑖𝑖
𝐹𝐹𝑖𝑖
� = � 𝜋𝜋𝑖𝑖𝐺𝐺𝑖𝑖

𝐵𝐵+𝜋𝜋𝑖𝑖𝜏𝜏𝑖𝑖
� ln(1 − 𝐶𝐶) ∀ 𝑖𝑖 ∈ 𝐈𝐈  (5) 

∑ 𝐿𝐿𝑖𝑖𝑖𝑖∈𝐈𝐈 = (1 − 𝐶𝐶)∑ 𝐹𝐹𝑖𝑖𝑖𝑖∈𝐈𝐈    (6) 

𝐴𝐴 = 1
𝐵𝐵
�𝐹̇𝐹 − 𝐿̇𝐿�    (7) 

where 𝐹𝐹𝑖𝑖/𝐿𝐿𝑖𝑖 and 𝐹̇𝐹/𝐿̇𝐿 are the molar flow rates of 
component 𝑖𝑖 and the total molar flow rate in the 
feed/retentate stream, while 𝐶𝐶 and 𝐴𝐴 represents the 
stage cut and the required area, respectively. Detailed 
reformulation steps are provided in the Supplementary 
Material. Further, the accuracy of the NLAE unit model is 
essential for its integration in the optimization model. 
Thus, we validate the developed NLAE unit model by 
comparing it with the DAE unit model using simulations in 
MATLAB, focusing on two key variables: the retentate 
flow rate and the membrane area, under varying final 
stage cut, 𝐶𝐶, for both models. Data for the simulation is 
provided in the Supplementary Material. For the DAE unit 
model, the retentate flow rate and the membrane area 
are determined by solving Eq. (1), (2), (3), and (4), while 
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for the NLAE unit model, they are calculated using Eq. 
(5), (6), and (7). Consequently, the comparison between 
the two unit models, shown in Figure 1, demonstrates 
good agreement. 

SUPERSTRUCTURE REPRESENTATION 
We present a superstructure with rich 

interconnections designed to recover multiple target 
components from a liquid mixture. The superstructure 
can employ distinct membrane materials, each 
specifically selective for different target components. 
Moreover, it incorporates multiple sub-networks that are 
interconnected to achieve the required separation task. 
Within each sub-network, the superstructure employs a 
unique membrane material and allows for: (1) a 
retentate/permeate to be sent to any of the previous 
stages as a retentate/permeate recycle, (2) a 
retentate/permeate to be sent to any of the subsequent 
stages as a retentate/permeate bypass, and (3) a 
retentate/permeate to be collected from any stage as a 
retentate/permeate product. The permeate final product 
from a sub-network contains a recovered target 
component, while the retentate final product is fed into 
other sub-networks for further separation of remaining 
target components. Additionally, each sub-network 
utilizes one mixer for each feed entering a stage, two 
mixers for retentate and permeate products, two splitters 
for each retentate and permeate leaving a stage, and one 
splitter for the fresh feed stream. Finally, to minimize the 
number of symmetrical solutions, the fresh feed is 
allowed to enter only the first stage of each sub-network. 
For illustration, Figure 2 shows a schematic of a 
superstructure with two sub-networks, each with three 
stages employing Type A and Type B membranes, to 
recover target components A and B from a liquid mixture, 
respectively. 

In the mathematical formulation, binary variables are 
utilized to denote the activation of membrane stages for 

specific membrane types. Thus, the binary variable 𝑍𝑍𝑛𝑛,𝑚𝑚 
is introduced to denote whether stage 𝑛𝑛 of membrane 
type 𝑚𝑚 is active. Additionally, the location of the fresh 
feed inlet to one of the sub-networks plays a critical role. 
Therefore, the binary variable 𝑌𝑌𝑚𝑚 is used to denote if the 
fresh feed enters the sub-network with membrane type 
𝑚𝑚. Further, material balances are introduced around all 
the mixers, splitters, and around each stage of the sub-
network. A detailed mathematical formulation is provided 
in the Supplementary Material. In practical applications, 
condensers and pumps are utilized to condense 
permeate vapors and adjust the pressure of the 
permeate stream for further recycling, bypassing, or 
collection of the permeate. However, the objective of the 
proposed model is to minimize the overall membrane 
area. Thus, calculations for condenser and vacuum pump 
units are excluded. 

APPLICATIONS 
First, we study the behaviour of a membrane 

network that utilizes a single sub-network with a unique 
material for the separation of one target component from 
an alcohol/water mixture. Second, we show the 
effectiveness of the proposed method using an example 
with three components for the simultaneous separation 
of two target components. All optimization models are 
written in GAMS 46.4.1 and are solved using BARON 
24.3.10 on a Windows machine with a 1.60 GHz CPU and 
32 GB RAM. 

Single Component Separation 
We analyze a membrane network system that 

processes a fresh feed, pressurized at 1 atm with a flow 
rate of 15 mol/s, of an alcohol/water mixture. The mixture 
consists of 26.67% ethanol (EtOH), 20% methanol 
(MeOH) and 53.33% water (H2O) on a molar basis. The 
feed-side pressure in a membrane unit is set to match the 
pressure of the fresh feed, while the permeate-side 

 
Figure 3: Single component separation: global optimal network to recover EtOH at the desired recovery and purity 
of 90%. 



Verma et al. / LAPSE:2025.0156 Syst Control Trans 4:33-39 (2025) 37 

pressure is maintained at 0.01 atm to facilitate 
pervaporation. Isothermal operation is assumed at 
323.15 K. The permeance values for EtOH, MeOH, and 
H2O for an ethanol-selective membrane are 0.088, 0.051, 
0.018 (mol/m2/s), and for a methanol-selective 
membrane type are 0.025, 0.18, 0.018 (mol/m2/s) 
respectively, which fall in the range of Nafion 
membranes. 

The proposed model is employed with a single 
membrane type, thus we construct a four-stage 
superstructure with an ethanol-selective membrane type 
(Type A), as shown in Figure S1. First, we determine the 
optimal network for the separation of ethanol from the 
liquid mixture at the desired purity and recovery of 90%. 
The model contains 309 equations and 247 variables (4 
binaries) and is solved to global optimality within 60 s. 
The global optimal network configuration, shown in 
Figure 3, requires four membrane stages with a total area 
of 204.87 m2. In the optimal network, EtOH permeates 
through the active stages of Type A membrane and is 
bypassed to the subsequent stages, facilitating effective 
separation by concentrating the EtOH rich permeate. 
Accordingly, the final permeate product is collected from 
the last stage meeting the higher recovery and purity 
specifications, while the residual mixture is collected as 
the retentate final product. 

 
Figure 4: Total membrane area and number of required 
stages under varying recovery and purity specifications. 

 Next, we study the impact of purity and recovery 
specifications for EtOH on the network’s configuration 
and operation by solving the model under varying purity 
and recovery specifications. Figure 4 illustrates the 
variation in the total required area and the number of 
stages needed as the desired recovery and purity 
increase. Accordingly, the purity specification 
significantly influences the network design, including the 
number of required stages and the total required area, 
compared to the specified recovery. However, the purity 
threshold for installing an additional stage is lower at 
higher recovery, suggesting a modest impact of specified 
recovery on network performance. 

Two Component Separation 
The separation and recovery of iso-butanol (i-

BuOH) and ethanol (EtOH) are of significant importance 
in biological systems, particularly in the context of biofuel 
production and sustainable energy solutions. However, 
their separation presents challenges due to their similar 
boiling points and azeotropic behaviours. Therefore, 
membrane-based separation technology can be 
employed to effectively recover both i-BuOH and EtOH. 
In this example, we study the simultaneous separation 
and recovery of i-BuOH and EtOH from an aqueous 
mixture using a multi-material membrane network 
system. We consider a fresh feed pressurized at 1 atm 
with a flow rate of 15 mol/s, consisting of an aqueous i-
BuOH/EtOH mixture. This mixture comprises 26.67% i-
BuOH, 20% EtOH and 53.33% water (H2O) on a molar 
basis. The feed-side pressure in a membrane unit is set 
to match the pressure of the fresh feed, while the 
permeate-side pressure is maintained at 0.01 atm to 
facilitate pervaporation. Isothermal operation at 323.15 K 
is assumed. Permeance values for i-BuOH, EtOH, and 
H2O for an iso-butanol-selective membrane are 0.057, 
0.023, 0.017 (mol/m2/s), and for an ethanol-selective 
membrane type are 0.004, 0.138, 0.017 (mol/m2/s), 
respectively. 

We employ an iso-butanol-selective membrane type 
(Type A) and an ethanol-selective membrane type (Type 
B) across two interconnected sub-networks (see Figure 
2). Additionally, we allow each sub-network to include 
four stages to facilitate separation at higher purity and 
recovery specifications. The proposed model is solved at 
the desired purity and recovery specification of 90% for 
both i-BuOH and EtOH, respectively. The model consists 
of 506 equations and 495 variables (10 binaries) and is 
solved to global optimality within 240 s. The globally 
optimal network configuration is shown in Figure 5. 

The optimal network incorporates three stages of 
Type B membrane and utilizes all four available stages of 
Type A membrane, requiring a total area of 1158.3 m2. 
The higher permeance of EtOH in Type B membrane, 
compared to the permeance of i-BuOH in Type A 
membrane, facilitates the separation of EtOH as the initial 
step. Therefore, the fresh feed is fed to the sub-network 
with Type B membranes. As a result, EtOH is first 
separated and gets collected in the final permeate 
product in the sub-network with Type B membranes. In 
contrast, the final retentate product from the sub-
network with Type B membranes, mainly comprising i-
BuOH and H2O, is subsequently fed to the sub-network 
with Type A membranes for the further separation of i-
BuOH from the remaining aqueous mixture. Finally, i-
BuOH is separated and collected as the final permeate 
product from the sub-network with Type A membranes, 
while the remaining aqueous mixture, predominantly 
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containing H2O, is collected as the residual.  

CONCLUSIONS 
In this study, we proposed an optimization model for 

membrane network synthesis tailored for the separation 
of multiple components from liquid mixtures. First, we 
developed a physics-based nonlinear surrogate model to 
describe pervaporation-based crossflow membrane 
permeation for liquid mixtures. Second, we proposed a 
comprehensive superstructure, incorporating multiple 
sub-networks, each with distinct membrane types, 
featuring multiple stages with rich stream 
interconnections. Third, we formulated a mixed-integer 
nonlinear programming model, integrating the two 
aforementioned elements, to determine the network 
configuration and operating conditions that minimize the 
overall network area. The proposed optimization model 
effectively identifies the global optimal network, as 
illustrated by the applications presented. 

DIGITAL SUPPLEMENTARY MATERIAL 
DAE unit model reformulation, simulation data, 

figures, and the mathematical formulation for the 
optimization model is presented in the Supplementary 
Material (LAPSE:2025.0008). 
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