
Research Article
Foundations of Computer Aided Process Design (FOCAPD 2024)

Breckenridge, Colorado, USA. July 14-18, 2024
Peer Reviewed Conference Proceeding

https://doi.org/10.69997/sct.160262 Syst Control Trans 3:950-958 (2024) 950

Jacobian-based Model Diagnostics and Application to
Equation Oriented Modeling of a Carbon Capture System
Douglas A. Allanab*, Anca Ostaceab, Andrew Leeab, Brandon Paulab, Anuja Deshpandeab, Miguel A.
Zamarripaab, Joshua C. Morganab and Benjamin P. Omella
a National Energy Technology Laboratory, Pittsburgh, PA 15236, USA
b NETL Support Contractor, Pittsburgh, PA 15236, USA
*Corresponding author: douglas.allan@netl.doe.gov

ABSTRACT
Equation-oriented (EO) modeling has the potential to enable the effective design and optimization
of the operation of advanced energy systems. However, advanced modeling of energy systems
results in a large number of variables and non-linear equations, and it can be difficult to search
through these to identify the culprit(s) responsible for convergence issues. The Institute for the
Design of Advanced Energy Systems Integrated Platform (IDAES-IP) contains a tool to identify
poorly scaled constraints and variables by searching for rows and columns of the Jacobian matrix
with small L2-norms so they can be rescaled. A further singular value decomposition can be per-
formed to identify degenerate sets of equations and remaining scaling issues. This work presents
an EO model of a flowsheet developed for post-combustion carbon capture using a monoethano-
lamine (MEA) solvent system as a case study. The IDAES diagnostics tools were successfully ap-
plied to this flowsheet to identify problems to improve model robustness and enable the optimi-
zation of process design and operating conditions of a carbon capture system.

Keywords: Pyomo, Optimization, Carbon Dioxide Capture, Jacobian, Modelling

INTRODUCTION
In order to achieve carbon neutrality by 2050, as is

the US Department of Energy’s present goal [1], a wide
variety of energy systems must be deployed. Process
optimization can help allocate resources in the most effi-
cient manner to effect the changes necessary in the US
and world economies to achieve this goal. The Institute
for the Design of Advanced Energy Systems (IDAES) was
founded in 2015 to study such advanced energy systems
and to develop the IDAES Integrated Platform (IDAES-IP)
to facilitate their development and optimization. [2]
IDAES-IP is based on the Pyomo modeling language [3-
4] in Python and has been used to simulate a wide variety
of chemical and energy process systems.

Because IDAES-IP is equation-oriented (EO), it can
provide improved convergence when closing recycle
loops over the sequential-modular (SM) approach that is
used in popular commercial process modeling and simu-
lation tools like Aspen Plus®. [5] However, it also requires
more user skill to ensure that the model is well-

formulated to benefit from these theoretical convergence
improvements. IDAES has developed and implemented a
diagnostics toolbox leveraging several years of experi-
ence of many experts in EO modeling, debugging, and
optimization, making it available to the public. [6] In this
work, we detail some of the techniques that have been
incorporated in that toolbox as applied to a flowsheet be-
ing developed for analysis of post-combustion carbon
capture (PCC) systems.

METHODS
When prototyping a model, it is typically best to

solve a “square problem,” i.e., one in which there are an
equal number of free variables and equality constraints.
The number of degrees of freedom can be checked by
the function idaes.core.util.model_statis-
tics.degress_of_freedom. There are zero degrees of
freedom in a square problem. Variable bounds can be
present, as they are often helpful to keep the nonlinear
solver from exploring areas with non-physical solutions

mailto:douglas.allan@netl.doe.gov
https://doi.org/10.69997/sct.160262

Allan et al. / LAPSE:2024.1630 Syst Control Trans 3:950-958 (2024) 951

or areas in which equations become undefined. For ex-
ample, if a logarithm of a variable is taken, its lower bound
should be set to zero.

However, variable bounds should not be active at a
solution, because the inclusion of such a bound is effec-
tively a constraint, reducing the number of degrees of
freedom by 1. The system of equations then either be-
comes infeasible, which precludes a solution, or degen-
erate, which means that some of the equations are re-
dundant. Different nonlinear solvers handle degeneracy
differently, but it either prevents or dramatically slows
convergence to a solution. For this reason, inequality
constraints more complex than variable bounds should
be avoided when formulating a square problem.

 The principal diagnostic methods used in this work
utilize the Jacobian. When solving a root-finding problem

�
𝑓𝑓1(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

⋮
𝑓𝑓𝑛𝑛(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

� ≔ 𝒇𝒇(𝒙𝒙) = 𝟎𝟎 (1)

the Jacobian matrix of 𝒇𝒇(𝒙𝒙) is given by

𝐽𝐽(𝒙𝒙) ≔

⎣
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

⋯ 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥1

⋯ 𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥𝑛𝑛⎦

⎥
⎥
⎤
 (2)

For a square problem, the Jacobian matrix is square. Each
row of 𝐽𝐽(𝒙𝒙) corresponds to an equality constraint and
each column corresponds to a free variable. Therefore,
we can examine 𝐽𝐽(𝒙𝒙) to find clues about problems in
equations and constraints. In the past, calculation of the
Jacobian was difficult because derivatives had to either
be calculated by hand or by finite differences. However,
advances in algorithmic differentiation (AD) allow for au-
tomatic, precise calculation of derivatives. Pyomo offers
access to the AD capacities of the AMPL solver library
(ASL) [7] through the PyNumero interface [8].
 The most common methods of solving multivariate
root-finding problems of the form of (1), like the one uti-
lized in IPOPT [9], which is freely available and was used
as a nonlinear solver in this paper, are variations on New-
ton’s Method. The method approximates 𝒇𝒇(⋅) as linear
and then repeatedly solves the linearized equation

𝒇𝒇(𝒙𝒙𝑘𝑘) + 𝐽𝐽(𝒙𝒙𝑘𝑘)Δ𝒙𝒙𝑘𝑘 = 0 (3)

𝒙𝒙𝑘𝑘+1 = 𝒙𝒙𝑘𝑘 + Δ𝒙𝒙𝑘𝑘 (4)

until the condition

‖𝒇𝒇(𝒙𝒙𝑘𝑘+1)‖2 ≤ 𝜀𝜀 (5)

in which ‖⋅‖2 is the vector two (Euclidean) norm, is satis-
fied for some chosen tolerance 𝜀𝜀. In a practical implemen-
tation, the Newton step (4) may be truncated, either to
account for variable bounds or because ‖𝒇𝒇(𝒙𝒙𝑘𝑘+1)‖2 >
 ‖𝒇𝒇(𝒙𝒙𝑘𝑘)‖2, but it is desirable to take the full step when
possible. It is a sign of a well-formulated method working

on a well-formulated problem when the full step (4) is fre-
quently taken until a solution is reached.
 A condition number of a matrix is a measure of the
sensitivity of changes in the solution to a system of linear
equations. For example, for the Newton step-finding
problem

𝐽𝐽(𝒙𝒙𝑘𝑘)Δ𝒙𝒙𝑘𝑘 = −𝒇𝒇(𝒙𝒙𝑘𝑘) (6)

suppose we perturb the function output by 𝛿𝛿𝒇𝒇𝑘𝑘 and want
to estimate the perturbation in the resulting step 𝛿𝛿𝒙𝒙𝑘𝑘

𝐽𝐽(𝒙𝒙𝑘𝑘)(Δ𝒙𝒙𝑘𝑘 + 𝛿𝛿𝒙𝒙𝑘𝑘) = −(𝒇𝒇(𝒙𝒙𝑘𝑘) + 𝛿𝛿𝒇𝒇𝑘𝑘) (7)

Use of the condition number for the 2-norm 𝜅𝜅2(𝐽𝐽(𝒙𝒙𝑘𝑘))
gives us the bound

‖𝛿𝛿𝒙𝒙𝑘𝑘‖2 ≤ 𝜅𝜅2�𝐽𝐽(𝒙𝒙𝑘𝑘)�‖𝛿𝛿𝒇𝒇𝑘𝑘‖2 (8)

In practice, such perturbations in the function output al-
ways exist from the roundoff errors in floating point arith-
metic. The relative error inherent in double precision
floating point arithmetic is on the order of 10−16. Addi-
tionally, a large condition number 𝜅𝜅2(𝐽𝐽(𝒙𝒙𝑘𝑘)) (greater than
about 108) makes it difficult to solve the problem (6) nu-
merically, increasing the time that Newton iterations take
to solve.
 The condition number of 𝐽𝐽(𝒙𝒙) is given by

𝜅𝜅2� 𝐽𝐽(𝒙𝒙)� = ‖ 𝐽𝐽(𝒙𝒙)‖2/‖𝐽𝐽(𝒙𝒙)−1‖2 (9)

in which ‖ ⋅ ‖2 is the operator norm induced by the vector
2-norm, provided 𝐽𝐽(𝒙𝒙) is full rank. A more useful formula
comes from the singular value decomposition (SVD). We
factorize

𝐽𝐽(𝒙𝒙) = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 (10)

in which 𝑈𝑈 and 𝑉𝑉 are orthogonal matrices and

Σ = �
𝜎𝜎1 0 0
0 ⋱ 0
0 0 𝜎𝜎𝑛𝑛

� (11)

in which 𝜎𝜎1 ≥ 𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎𝑛𝑛 ≥ 0. If 𝐽𝐽(𝒙𝒙) is full rank, then
𝜎𝜎𝑛𝑛 > 0 and

𝜅𝜅2� 𝐽𝐽(𝒙𝒙)� = 𝜎𝜎1/𝜎𝜎𝑛𝑛 (12)

Therefore, we can improve the problem formulation by
reducing the condition number by bringing the values of
𝜎𝜎1 and 𝜎𝜎𝑛𝑛 closer together. This can be done by appropri-
ate scaling of variables and constraints.

Scaling
When working in SI units, it is common to have vari-

ables and equations that vary over many orders of mag-
nitude, from mole fractions of trace components with
magnitudes 10−6 to enthalpy flow values that can be up
to 106. IDAES-IP offers a variety of tools to assist in scal-
ing both variables and constraints. Scaling serves two
purposes: first, to ensure that the convergence criterion

Allan et al. / LAPSE:2024.1630 Syst Control Trans 3:950-958 (2024) 952

(5) guarantees that all equations are satisfied without be-
ing unduly difficult to satisfy, and second, to reduce the
condition number of the Jacobian. A method exists [10]
for calculating scaling factors for variables and con-
straints that minimize the condition number of the Jaco-
bian by solution of a convex program. While this method
achieves the second goal, it has no guarantee of achiev-
ing the first goal.

 Let there be two example equations that may occur
in, for example, a heater:

𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑓𝑓1(𝒙𝒙) (13)

𝐻𝐻𝑖𝑖𝑛𝑛 + 𝑄𝑄 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑓𝑓2(𝒙𝒙) (14)

in which 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the mole fraction of a trace component,
𝐻𝐻 represents stream enthalpies, and 𝑄𝑄 is a heat duty. If
the initial values were off by a relative error of 100%, the
error in (13) would be of the order 10−6 and the error in
(14) of the order 106. If equations of these magnitudes
are loaded into the same 𝒇𝒇(⋅), significant error can exist
in the values of mole fractions with the equation ostensi-
bly satisfied while the solver would strain to keep reduc-
ing the error in the enthalpy equation far beyond what is
significant. IDAES and Pyomo allow us to give the first
equation a scaling factor of 106 and the second one of
10−6 to bring them to the same basis.

Let us note the effect of such scaling on the function
and the Jacobian. We would replace (13) and (14) with

106(𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛 − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜𝑡𝑡) = 𝑓𝑓1(𝒙𝒙) (15)

10−6(𝐻𝐻𝑖𝑖𝑛𝑛 + 𝑄𝑄 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡) = 𝑓𝑓2(𝒙𝒙) (16)

and the corresponding rows in the Jacobian would be re-
placed by

𝐽𝐽(𝒙𝒙) ≔

⎣
⎢
⎢
⎡ 106 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥1
⋯ 106 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑛𝑛

10−6 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

⋯ 10−6 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥n

⋮ ⋮ ⋮ ⎦
⎥
⎥
⎤
 (17)

Now we have coefficients in the Jacobian of extremely
different values. Row 1 has norm 106√2 and row 2 has
norm of 10−6√3. We can derive a lower bound for the con-
dition number in terms of rows with largest and smallest
2-norm. Rearrange Jacobian rows so that they are sorted
in descending order of 2-norm magnitude

𝐽𝐽(𝒙𝒙) = �
𝑟𝑟𝑚𝑚𝑡𝑡𝑥𝑥
⋮

𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛

� (18)

Then we have that

1 Scaling at the time of passing the model to the solver can be
done by use of the ipopt_v2 solver in Pyomo through the
SolverFactory function.

‖𝑟𝑟max‖2 = �[1 0 …] �
𝑟𝑟𝑚𝑚𝑡𝑡𝑥𝑥
⋮

𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛

��
2

≤ 𝜎𝜎1 (19)

and

‖𝑟𝑟min‖2 = �[… 0 1] �
𝑟𝑟𝑚𝑚𝑡𝑡𝑥𝑥
⋮

𝑟𝑟𝑚𝑚𝑖𝑖𝑛𝑛

��
2

≥ 𝜎𝜎𝑛𝑛 (20)

so, we have that

𝜅𝜅2� 𝐽𝐽(𝒙𝒙)� = 𝜎𝜎1/𝜎𝜎𝑛𝑛 ≥ ‖𝑟𝑟max‖2/‖𝑟𝑟min‖2 (21)

Presently, the Jacobian matrix has condition number
greater than √6

3
⋅ 1012. To reduce it, we need to also set

scaling factors for variables. We define
𝑦𝑦�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛 ≔ 106𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛

𝐻𝐻�𝑜𝑜𝑜𝑜𝑡𝑡 ≔ 10−6𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡
Suppose we had 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖𝑛𝑛 = 𝑥𝑥1 and 𝐻𝐻𝑜𝑜𝑜𝑜𝑡𝑡 = 𝑥𝑥𝑛𝑛. The Jaco-
bian now looks like

𝐽𝐽(𝒙𝒙) ≔

⎣
⎢
⎢
⎡

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

⋯ 1012 𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

10−12 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

⋯ 𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥n

⋮ ⋮ ⋮ ⎦
⎥
⎥
⎤
 (22)

The entry involving 1012 would be potentially problem-
atic, but because 𝜕𝜕𝑓𝑓1

𝜕𝜕𝑥𝑥𝑛𝑛
= 0, it is irrelevant. In short, scaling

a constraint multiplies the corresponding Jacobian row
by that scaling factor, and scaling a variable divides the
corresponding Jacobian column by that scaling factor.
 It is not necessary to manually create transformed
variables and constraints because Pyomo allows the user
to store scaling factors associated with variables and
constraints as part of the model. The unscaled model can
then be transformed into the scaled model before being
passed to the nonlinear solver.1 A scaled version of the
model can also be retrieved for debugging purposes
through a scaling transformation.
 In a model with thousands of variables and con-
straints, however, it is difficult to keep track of which var-
iables and constraints have been scaled, and whether the
scaling factors assigned are appropriate. The IDAES di-
agnostics toolbox, described in [6], has the methods
display_constraints_with_extreme_jacobians
and display_variables_with_extreme_jacobians
that iterate over Jacobian rows and columns, respec-
tively, to display the ones with 2-norms larger and smaller
than some user-specified tolerances (by default 104 and
10−4). These methods highlight areas of the model that
require work, but the user still needs to determine appro-
priate values for scaling factors, as well as which varia-
bles and constraints need to be scaled. For example,
rows 1 and 2 would be highlighted in the Jacobian of (17),

Allan et al. / LAPSE:2024.1630 Syst Control Trans 3:950-958 (2024) 953

when it is the variables, not the constraints, that require
scaling.
 Scaling is often an iterative process. Once appropri-
ate scaling factors are assigned to variables, bringing the
Jacobian into the form (22), large or small entries can ap-
pear in additional rows, corresponding to other con-
straints, that would then need to be scaled. Finally, a
large entry can correspond to a model that is intrinsically
ill-conditioned. For example, when modeling a process
with a large recycle ratio, large terms can appear in the
corresponding Jacobian. Small impurities in the feed
stream can become concentrated by factors of 100 or
1000 as a feature of the process. Scaling might be able
to hide this feature, but it can cause a loss in accuracy
and will be revealed by performing SVD of the Jacobian.

Singular Value Decomposition
 Even once rows and columns with inappropriately
large or small norms have been removed by scaling, the
Jacobian’s condition number, which can be revealed
through the SVD of the Jacobian, can still be extremely
large. Both 𝜎𝜎1 and 𝜎𝜎n appear directly in the expression for
the condition number, so reducing 𝜎𝜎1 and increasing 𝜎𝜎n
should help reduce it. In practice, 𝜎𝜎1 is usually reduced to
a reasonable level by scaling rows and columns, so we
will focus on increasing 𝜎𝜎n instead.
 Consider the solution to a Newton step problem

𝒇𝒇(𝒙𝒙𝑘𝑘) = −𝐽𝐽(𝒙𝒙𝑘𝑘)Δ𝒙𝒙𝑘𝑘 (23)

By decomposing 𝐽𝐽(𝒙𝒙) using the SVD and using that to
solve (23), we obtain

𝒇𝒇(𝒙𝒙𝑘𝑘) = −𝑈𝑈Σ𝑉𝑉𝑇𝑇 Δ𝒙𝒙𝑘𝑘 (24)

−VΣ−1𝑈𝑈𝑇𝑇𝒇𝒇(𝒙𝒙𝑘𝑘) = VΣ−1𝑈𝑈𝑇𝑇𝑈𝑈Σ𝑉𝑉𝑇𝑇 Δ𝒙𝒙𝑘𝑘 = Δ𝒙𝒙𝑘𝑘 (25)

So, in solving the perturbed problem, the constraint re-
sidual is projected by 𝑈𝑈𝑇𝑇 into orthogonal components in
the space of the singular values, scaled by the inverse
singular values, and those scaled values are projected by
𝑉𝑉 into the space of variables.
 Looking at (25) another way

−𝑈𝑈𝑇𝑇𝒇𝒇(𝒙𝒙𝑘𝑘) = Σ𝑉𝑉𝑇𝑇Δ𝒙𝒙𝑘𝑘 (26)

Each column of 𝑈𝑈 (row of 𝑈𝑈𝑇𝑇) is an orthogonal vector, as-
sociating elements of 𝒇𝒇(𝒙𝒙𝑘𝑘), i.e., particular constraints,
with a singular value. Likewise, each column of 𝑉𝑉 (row of
𝑉𝑉𝑇𝑇) is a vector associating elements of Δ𝒙𝒙𝑘𝑘, i.e., particular
variables, with a singular value. The SVD shows which
constraints are being satisfied using which variables in a
neighborhood of 𝒙𝒙𝑘𝑘, and the sensitivity of the variables
with respect to constraints.
 If the smallest singular value 𝜎𝜎𝑛𝑛 ≪ 1, a small change
in certain function values requires a large change in vari-
able values. By looking at the constraints involved in the
nth left-singular vector 𝑢𝑢𝑛𝑛 and the variables involved in
nth right singular vector 𝑣𝑣𝑛𝑛 we can attempt to determine

what is causing this dysfunctional relationship. Because
of the dense linear algebra involved, we expect most en-
tries of 𝑢𝑢𝑛𝑛 and 𝑣𝑣𝑛𝑛 to be populated by nonzero numbers. A
simple but crude method is to filter for indices that have
values greater than some tolerance. We have found ab-
solute values of 0.1 to 0.3 work well for this. If too many
variables and constraints appear, raise the tolerance. If
too few appear, decrease it.
 Ideally, we would want the condition number of 𝐽𝐽(𝒙𝒙𝑘𝑘)
to be relatively small. In practice, however, we typically
accomplish a condition number on the order of 106-108.
That means filtering for singular values smaller than 10−8-
10−6 and attempting to remedy them. In general, there
are four causes of small singular values:

1. Incorrect scaling of variables or constraints
2. Redundant equations, hinting a problem that

over-specifies some variables and under-speci-
fies others, i.e., global degeneracy

3. A local singularity, caused by evaluating 𝐽𝐽(𝒙𝒙) at a
point where it locally loses rank, i.e., local degen-
eracy

4. Attempting to solve a problem that is inherently
ill-conditioned.

Incorrect scaling is probably the most common cause of
small singular values of values 10−12-10−6, followed by in-
herent ill-conditioning. For singular values smaller than
10−12, the cause is typically local or global degeneracy.
The next section presents a carbon capture application
in which these concepts can be demonstrated.
 A similar technique for identifying sets of degener-
ate equations is given by the Degeneracy Hunter algo-
rithm proposed in [11]. This algorithm is also incorporated
into the IDAES diagnostics toolbox. It differs from this
technique by performing a QR factorization instead of an
SVD, then solving a mixed integer linear program (MILP)
to find an irreducible degenerate set of equations. Which
algorithm is appropriate for a given problem depends on
the algorithms available for a sparse QR factorization, a
sparse SVD, and MILP solution. An advantage the SVD
provides, however, is that it shows which combinations
of variables are being used to satisfy combinations of
constraints. If a degenerate constraint is removed, then
another constraint must be added to constrain that com-
bination of free variables.

CASE STUDY: POST COMBUSTION
CARBON CAPTURE FLOWSHEET
 A flowsheet in which CO2 is captured from flue gas
(from a ~690 MWe Natural Gas Combined Cycle power
plant) by absorption into monoethanolamine (MEA) pro-
vides several examples in which these diagnostic tests
were of great assistance in model refinement and in-
creasing robustness. This flowsheet was first presented
in [12], but despite the techniques used to provide robust

Allan et al. / LAPSE:2024.1630 Syst Control Trans 3:950-958 (2024) 954

solutions, such as a four-stage initialization routine for
the absorption and stripping columns, it remained fragile
and prone to failure. It was desirable to improve conver-
gence and numerical robustness so the flowsheet could
be used for robust design optimization. The flowsheet
consists of an absorption column, stripper column, lean-
rich heat exchanger, and balance-of-plant equipment. It
is divided into two sub-flowsheets, an absorber section
and a stripper section, that are solved independently be-
fore being linked and solved together.

Figure 1. MEA carbon capture flowsheet, divided into
stripper and absorber sections.

 We begin with a flowsheet that has some partial
scaling applied to the column model, but does not have
scaling for any other models. The column model has al-
ready been reformulated to remove division in con-
straints where possible, which helps avoid bad numeric
behavior when the denominator of an expression is
nearly zero at an intermediate iteration. For an unscaled
or partially-scaled model, the output can be hundreds of
lines long. The output length is mostly the result of scal-
ing issues in indexed variables or constraints resulting in
those variables or constraints being printed for each
value of their indices. Since the column model is discre-
tized into 40 finite elements along its length, 10 badly-
scaled equations results in 400 entries. Therefore, the
output cannot be fully displayed here, but some repre-
sentative entries can be shown.

Jacobian Analysis
 Here, we run the diagnostics tools after a suc-

cessful solution of the flowsheet. They can be used after
failures to solve a flowsheet, but care should be taken as
variables may not have realistic values, which is reflected
in the model Jacobian. The following is one line (out of
hundreds) produced by the display_varia-
bles_with_extreme_jacobians command from the
DiagnosticsToolbox:

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].temperature: 1.997E+08

This entry indicates a column norm of 2 ⋅ 108. We can in-
spect the associated column of the Jacobian to find
which rows are associated with this large value. In IDAES-

IP, we can do this using the display_constraints_in-
cluding_variable function in the SVDToolbox.
fs.stripper_section.reflux_mixer.enthalpy_mixing_equa-
tions[0.0]: 1.997e+08

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_k_eq_constraint[bicarbonate]:
5.364e+00

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_k_eq_constraint[carbamate]: 6.551e+00

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,MEACO
O_-]: 1.514e+00

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,HCO3_
-]: 2.333e-01

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,MEA_+
]: 1.748e+00

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,H2O]:
3.183e+01

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,MEA]:
1.129e+00

fs.stripper_section.reflux_mixer.rich_sol-
vent_state[0.0].log_conc_mol_phase_comp_true_eq[Liq,CO2]:
5.685e-03

 fs.rich_temperature: 1.000e+02

From inspection, the problematic Jacobian entry is asso-
ciated with a mixer enthalpy mixing equation that is not
yet scaled.
 To fix the problem, we need to determine an appro-
priate scaling factor. We can calculate such a value from
scaling factors for both the molar flow and the specific
molar enthalpy. Finding the molar flow scaling factor is
easy; it is generally observed that the molar flow rates
are on the order of 103-104 throughout the flowsheet, so
we choose 3 ⋅ 10−4 as a scaling factor for the molar flow
rate. Determining a scaling factor for the specific molar
enthalpy is harder. Enthalpy can be either positive or
negative in different areas of the flowsheet, so its order
of magnitude does not make a good scaling factor. By
evaluating the liquid-phase enthalpy in the reflux mixer,
the water makeup mixer, and the reboiler, we get values
of −42200, −43600, and −38800. With an apparent range
of 4800, a scaling factor of 3 ⋅ 10−4 is also a good choice
for this variable. Values for scaling factors do not have to
be exact: almost counts in horseshoes, hand grenades,
and model scaling.
 The process of removing this scaling issue took us
through at least three Pyomo sub-models (and associ-
ated Python files) to determine a process through which
the scaling factor for one equation was calculated. How-
ever, had reasonable default scaling factors for the prop-
erty sub-model been set by the user ahead of time, this
issue would never have arisen.
 Next, we consider scaling the equations describing

Allan et al. / LAPSE:2024.1630 Syst Control Trans 3:950-958 (2024) 955

heat transfer in the column

ℎ𝑉𝑉𝑎𝑎𝑡𝑡 𝐴𝐴𝐴𝐴𝐴𝐴 = −(𝐶𝐶𝑝𝑝𝑝𝑝𝑂𝑂2,𝑉𝑉𝑁𝑁𝑝𝑝𝑂𝑂2,𝑉𝑉 + C𝑝𝑝𝐻𝐻2𝑂𝑂,𝑉𝑉𝑁𝑁𝐻𝐻2𝑂𝑂,𝑉𝑉) (28)

ℎ𝑉𝑉′ 𝑎𝑎𝑡𝑡(1 − exp (𝐴𝐴𝐴𝐴𝐴𝐴)) = C𝑝𝑝𝑝𝑝𝑂𝑂2,𝑉𝑉𝑁𝑁𝑝𝑝𝑂𝑂2,𝑉𝑉 + C𝑝𝑝𝐻𝐻2𝑂𝑂,𝑉𝑉𝑁𝑁𝐻𝐻2𝑂𝑂,𝑉𝑉 (29)

in which ℎ𝑉𝑉 is the heat transfer coefficient from liquid to
vapor, 𝑎𝑎𝑡𝑡 is the effective area of heat transfer per unit
column volume, 𝐶𝐶𝑝𝑝,𝑖𝑖,𝑉𝑉 is the heat capacity of species 𝑖𝑖, 𝑁𝑁𝑖𝑖,𝑉𝑉
is the molar flux of species 𝑖𝑖 from vapor to liquid, and 𝐴𝐴𝐴𝐴𝐴𝐴
is the Ackerman factor, which is a measure of how much
diffusive heat fluxes are distorted by convective heat
transfer. It was discovered that |𝐴𝐴𝐴𝐴𝐴𝐴| ≤ 10−2 for operating
conditions of interest and was frequently on the order of
10−5. This causes ill-conditioning in both equations be-
cause the factors 𝐴𝐴𝐴𝐴𝐴𝐴 and 1 − exp (𝐴𝐴𝐴𝐴𝐴𝐴) became close to
zero. Because 𝐴𝐴𝐴𝐴𝐴𝐴 could vary over several orders of mag-
nitude depending on location and operating conditions,
assigning a consistent scaling factor is difficult.
 If we first rearrange (28) and (29) to make the rela-
tionship between ℎ𝑉𝑉 and ℎ𝑉𝑉′ more clear

ℎ𝑉𝑉′ = ℎ𝑉𝑉
𝐴𝐴𝑡𝑡𝑘𝑘

(exp(𝐴𝐴𝑡𝑡𝑘𝑘)−1) (30)

several solutions are possible. The function

𝜃𝜃(𝑥𝑥) = 𝑥𝑥
exp(𝑥𝑥)−1

 (31)

has an indeterminant form at 𝑥𝑥 = 0, but a well-defined
Taylor expansion

𝜃𝜃(𝑥𝑥) ≈ 1 − 𝑥𝑥
2

+ 𝑥𝑥2

12
+ 𝑂𝑂(𝑥𝑥4) (32)

A Taylor approximation could be substituted for 𝜃𝜃(𝐴𝐴𝐴𝐴𝐴𝐴) in
(30), but 𝜃𝜃(𝑥𝑥) could also be implemented as an external
grey-box function in IDAES, switching between the full
form (31) and Taylor form (32) based on |𝑥𝑥|. Both options
were eventually implemented. An external function for
𝜃𝜃(𝑥𝑥) is implemented in IDAES with a sixth-order Taylor
approximation, but the trivial Taylor approximation 𝜃𝜃(𝑥𝑥) ≈
1 is presently used in the MEA flowsheet because not
every solver in Pyomo supports external functions.

SVD Analysis
 The SVD also tells us valuable information about the
state of the flowsheet. Its condition number is 9.2 ⋅ 1017,
so the matrix is singular to machine precision. The small-
est singular value is 𝜎𝜎𝑛𝑛 = 3.1 ⋅ 10−10. Using a tolerance for
the singular vectors of 0.1, we find the following variables
involved:

fs.stripper_section.reflux_mixer.re-
flux_state[0.0].log_conc_mol_phase_comp_true[Liq,H
CO3_-]

fs.stripper_section.reflux_mixer.re-
flux_state[0.0].log_conc_mol_phase_comp_true[Liq,M
EA_+]

fs.stripper_section.reflux_mixer.re-
flux_state[0.0].log_conc_mol_phase_comp_true[Liq,M
EA]

fs.stripper_section.reflux_mixer.re-
flux_state[0.0].log_conc_mol_phase_comp_true[Liq,M
EACOO_-]

and the following constraints involved:
fs.stripper_section.condenser.liquid_phase[0.0].ap
pr_to_true_species[Liq,MEA]

fs.stripper_section.condenser.liquid_phase[0.0].tr
ue_mole_frac_constraint[Liq,HCO3_-]

fs.stripper_section.condenser.liquid_phase[0.0].tr
ue_mole_frac_constraint[Liq,MEA_+]

fs.stripper_section.condenser.liquid_phase[0.0].tr
ue_mole_frac_constraint[Liq,MEA]

fs.stripper_section.condenser.liquid_phase[0.0].lo
g_conc_mol_phase_comp_true_eq[Liq,HCO3_-]

fs.stripper_section.condenser.liquid_phase[0.0].lo
g_conc_mol_phase_comp_true_eq[Liq,MEA_+]

fs.stripper_section.condenser.liquid_phase[0.0].lo
g_conc_mol_phase_comp_true_eq[Liq,MEA]

fs.stripper_section.condenser.liquid_phase[0.0].ap
pr_to_true_species[Liq,HCO3_-]

fs.stripper_section.condenser.liquid_phase[0.0].ap
pr_to_true_species[Liq,MEA_+]

All these variables and constraints occur in the conden-
ser, which makes interpretation of the problem easier.
However, if multiple degeneracies are present, they can
mix between different tiny singular values, so sometimes
additional analysis is necessary to separate different de-
generacies.
 Because the property model in this flowsheet does
not account for amine volatility, the mole fraction of MEA
in the condenser is effectively zero. All the variables im-
plicated here are dissociation species of MEA, which sim-
ilarly have concentrations of effectively zero. The con-
straints are likewise the disassociation equations for
MEA. Thus, the absence of MEA causes degeneracy in
the system of equations governing the dissociation reac-
tions. Different strategies can be employed to overcome
this degeneracy. The easiest is to increase the mole frac-
tion of MEA to around 10−4. However, this merely miti-
gates the ill-conditioning—it does not remove it—and the
addition of extra MEA in the system could cause prob-
lems with material balances converging.
 IDAES-IP allows the user to define property pack-
ages that bundle together thermodynamic calculations
into a single sub-model that can then be employed in dif-
ferent unit models. The solution we employed was to
create a duplicate property package without the dissoci-
ation reactions and use that for the condenser and reflux
mixer. That solution works only because the liquid phase
property sub-model does not rely on ion concentrations
for the calculation of enthalpy. For one that requires ion
concentrations to calculate the enthalpy of mixing, like

Allan et al. / LAPSE:2024.1630 Syst Control Trans 3:950-958 (2024) 956

eNRTL, another solution would have to be devised.

Limits of Scaling and Reformulation
 Not every problem that can be discovered by these
diagnostic tools has a nice solution. Such is the case with
the system of equations for the enhancement factor for
mass transfer in reactive systems. Taken from [13] for the
MEA-CO2 system, the full enhancement factor model has
ten tightly coupled numerical expressions in it. However,
the core numerical issues derive from two equations:

𝐸𝐸 = 1 + (𝐸𝐸∞∗ − 1) 1−Υ𝑀𝑀𝑀𝑀𝑀𝑀
𝑖𝑖

1−Υ𝐶𝐶𝑂𝑂2
𝑏𝑏 (33)

𝐸𝐸 = 𝐻𝐻𝑎𝑎�Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖 1−Υ𝐶𝐶𝑂𝑂2
∗

1−Υ𝐶𝐶𝑂𝑂2
𝑏𝑏 (34)

in which 𝐸𝐸 is the enhancement factor, 𝐸𝐸∞∗ is the “instan-
taneous enhancement factor,” a theoretical maximum
value for the enhancement factor, Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖 is a dimension-
less concentration of MEA at the vapor/liquid interface,
Υ𝑝𝑝𝑂𝑂2
∗ is the dimensionless concentration of CO2 at the in-

terface, Υ𝑝𝑝𝑂𝑂2
𝑏𝑏 is the dimensionless concentration of CO2 in

the bulk liquid, and 𝐻𝐻𝑎𝑎 is the Hatta number, the ratio of
reaction film to the rate of diffusion in the film. Absorption
happens when Υ𝑝𝑝𝑂𝑂2

𝑏𝑏 < 1, desorption happens when Υ𝑝𝑝𝑂𝑂2
𝑏𝑏 >

1, and equilibrium occurs when Υ𝑝𝑝𝑂𝑂2
𝑏𝑏 = 1.

 The problem occurs near equilibrium, because the
expression 1 − Υ𝑝𝑝𝑂𝑂2

𝑏𝑏 is nearly equal to zero, and the quo-
tients in (33) and (34) are nearly singular. At actual solu-
tions to the system of equations, numerical tests show
that 1 − Υ𝑝𝑝𝑂𝑂2

∗ and 1 − Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖 also approach zero, so the quo-
tient remains defined. However, since we now must deal
with a multivariate function, we have been unsuccessful
at removing the singularity by use of a Taylor series, like
we did with the Ackerman factor. The expressions 1 −
Υ𝑝𝑝𝑂𝑂2
𝑏𝑏 and 1 − Υ𝑝𝑝𝑂𝑂2

∗ will have the same sign at any solution
to the activity factor system. However, contrary to what
is stated in [13], there exist at least one scenario in which
1 − Υ𝑝𝑝𝑂𝑂2

𝑏𝑏 has the opposite sign as 1 − Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖 . When CO2 is
desorbing at low temperatures, the rate of reaction can
become slow enough that the rate of desorption is lower
with reaction than it would be without reaction, and the
enhancement factor drops below one. That fact limits
possible reformulations of these two equations.
 The equations were ultimately reformulated in sev-
eral steps. First, a log variable 𝑆𝑆𝑝𝑝𝑂𝑂2 was introduced for
one of the singular ratios:

(1 − Υ𝑝𝑝𝑂𝑂2
𝑏𝑏) exp�𝑆𝑆𝑝𝑝𝑂𝑂2� = 1 − Υ𝑝𝑝𝑂𝑂2

∗ (35)

so that (34) could be rewritten as the linear equation

log𝐸𝐸 = log𝐻𝐻𝑎𝑎 + 1
2

logΥMEA𝑖𝑖 + 𝑆𝑆𝑝𝑝𝑂𝑂2 (36)

in which log𝐸𝐸, log𝐻𝐻𝑎𝑎, and logΥMEA𝑖𝑖 are all additional log
variables defined using equations of the form

exp (log 𝑥𝑥) = 𝑥𝑥 (37)

To be completely clear, log 𝑥𝑥 is a single variable, not an
expression denoting the logarithm of the variable 𝑥𝑥,
which we denote log(𝑥𝑥). We have that log 𝑥𝑥 = log(𝑥𝑥) at so-
lutions of the model, i.e., when 𝒇𝒇(𝒙𝒙) = 𝟎𝟎, but equality does
not necessarily hold at intermediate Newton iterates. The
benefit of implicitly taking the logarithm in equations like
(35) and (37) instead of using a log function in (36) is that
the variable log 𝑥𝑥 can maintain numerical accuracy even
when the values of 𝑥𝑥 are extremely small or extremely
large.

(a) (b)

Figure 1. Convergence of the pilot-scale stand-alone
column model depending on inlet parameters (a)
before and (b) after the scaling and reformulations
detailed here. A filled square indicates it converged, an
unfilled square indicates it did not converge. In the
reformulated model, divergence typically is a result of
Υ𝑝𝑝𝑂𝑂2
∗ incorrectly converging to 1, resulting in (35) and

(38) becoming degenerate.

(a) (b)

Figure 2. Convergence of the plant-scale full
flowsheet model depending on inlet parameters (a)
before and (b) after the scaling and reformulations
detailed here. A filled square indicates it converged, an
unfilled square indicates it did not converge.

Unfortunately, both (35) and (39) become de-
generate when Υ𝑝𝑝𝑂𝑂2

𝑏𝑏 = 1. Because the enhancement
factor system can be largely decoupled from the re-
maining equations, a surrogate model was created to

Allan et al. / LAPSE:2024.1630 Syst Control Trans 3:950-958 (2024) 957

give the log enhancement factor as a function of liquid
phase CO2 and H2O loading, vapor phase CO2 partial
pressure, temperature, and liquid and vapor mass
transfer coefficients. However, too much accuracy
was lost in the first attempt at a surrogate model, and
the reformulated enhancement factor model is reliable
enough to keep. Figures 1a and 1b show the conver-
gence of the original and reformulated stand-alone
column models, while Figures 2a and 2b show the con-
vergence of the original and reformulated full flow-
sheet models (with all changes, not just to the en-
hancement factor calculations), respectively. The nu-
merical robustness of the reformulated and scaled
models is significantly improved over that of the origi-
nal model.
 It is possible to use the same technique as (35) for the
ratio of MEA to CO2 in (33). However, that implicitly
assumes that 1 − Υ𝑝𝑝𝑂𝑂2

∗ and 1 − Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖 have the same
sign, which is true for most operating conditions of in-
terest, but is not true for desorption at low tempera-
tures. The resulting reformulation of (33) is then

exp (log𝐸𝐸)(1 − Υ𝑝𝑝𝑂𝑂2
𝑏𝑏) = exp(η)�1 − Υ𝑀𝑀𝑀𝑀𝐴𝐴𝑖𝑖 � (38)

exp(𝜂𝜂) = 𝐸𝐸∗ − 1 (39)

in which the log variable 𝜂𝜂 has been introduced
for the instantaneous enhancement factor minus one
because there is a simple expression for 𝜂𝜂 (not given
here) in terms of logarithms of other variables.

CONCLUSIONS
We have outlined model diagnostic methods using

tools available in Pyomo and IDAES-IP. As illustrated
through the example of the MEA flowsheet, these tools
can be of great assistance to the user by serving to point
out likely problems. However, they do not solve them for
the user. Finding problems in a model with tens of thou-
sands of constraints and variables is a major service, but
the user’s insight and modelling expertise is still neces-
sary to solve them. Nevertheless, these tools and tech-
niques can help make EO modeling frameworks more ac-
cessible and facilitate the use of advanced optimization
techniques in process design.

Acknowledgements
This work was conducted as part of the U.S. Depart-

ment of Energy’s Institute for the Design of Advanced En-
ergy Systems (IDAES) supported by the Office of Fossil
Energy and Carbon Management through the Simulation-
based Engineering/Crosscutting Research and Carbon
Capture Programs.

Disclaimer
This project was funded by the Department of En-

ergy, National Energy Technology Laboratory an agency

of the United States Government, through a support con-
tract. Neither the United States Government nor any
agency thereof, nor any of its employees, nor the support
contractor, nor any of their employees, makes any war-
ranty, expressor implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not neces-
sarily constitute or imply its endorsement, recommenda-
tion, or favoring by the United States Government or any
agency thereof. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those
of the United States Government or any agency thereof.

REFERENCES
1. US Department of Energy.

https://www.energy.gov/articles/how-were-
moving-net-zero-2050

2. Lee, A., Ghouse, J. H., Eslick, J. C., Laird, C. D.,
Siirola, J. D., Zamarripa, M. A., Gunter, D., Shinn, J.
H., Dowling, A. W., Bhattacharyya, D., Biegler, L. T.,
Burgard, A. P., & Miller, D. C. The IDAES process
modeling framework and model library—Flexibility
for process simulation and optimization. J Adv
Manuf Process 3:e10095. (2021)

3. Bynum, M.L., Hackebeil, G.A., Hart, W.E., Laird,
C.D., Nicholson, B.L., Siirola, J.D., Watson, J.-P.,
Woodruff, D.L. Pyomo— Optimization Modeling in
Python. Springer (2021).

4. Hart, W.E., Watson, J.-P., Woodruff, D.L. Pyomo:
modeling and solving mathematical programs in
Python. Math Program Comput 3 219–260. (2011)

5. ASPENTech. ASPEN Engineering Suite.
6. Lee, A., Dowling, A. W., Parker, R., Poon, S., Gunter,

D., Nicholson, B. Model Diagnostics for Equation
Oriented Models: Roadblocks and the Path
Forward. Proc of FOCAPD. (2024)

7. Gay, D.M., Hooking Your Solver to AMPL. (2017)
8. Rodriguez, J.S., Parker, R.B., Laird, C.D., Nicholson,

B.L., Siirola, J.D., Bynum, M.L. Scalable Parallel
Nonlinear Optimization with PyNumero and
Parapint. INFORMS J Comput 35:509–517. (2023)

9. Wächter, A., Biegler, L.T. On the Implementation of
an Interior-Point Filter Line-Search Algorithm for
Large-Scale Nonlinear Programming. Math Program
106:25-57. (2004)

10. Braatz, R.D., Morari, M. Minimizing the Euclidean
Condition Number. Siam J Control Opt 32:1763–
1768 (1994)

11. Dowling A.W., Biegler L.T. (2015). Degeneracy
Hunter: An Algorithm for Determining Irreducible

Allan et al. / LAPSE:2024.1630 Syst Control Trans 3:950-958 (2024) 958

Sets of Degenerate Constraints in Mathematical
Programs. Comput Aided Chem Eng. 37:809 –814
(2015)

12. Akula, P., Eslick, J., Bhattacharyya, D., Miller, D.C.
Model Development, Validation, and Optimization
of an MEA-Based Post-Combustion CO 2 Capture
Process under Part-Load and Variable Capture
Operations. Ind Eng Chem Res 60:5176–5193
(2021)

13. Gaspar, J., Fosbøl, P.L. A general enhancement
factor model for absorption and desorption
systems: A CO2 capture case-study. Chem Eng Sci
138:203–215 (2015)

© 2024 by the authors. Licensed to PSEcommunity.org and PSE
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator
and adaptations must be shared under the same terms. See
https://creativecommons.org/licenses/by-sa/4.0/

