Systems .Control
Transactions

Foundations of Computer Aided Process Design (FOCAPD 2024)

Research Article

PSE

Breckenridge, Colorado, USA. July 14-18, 2024
PRESS

Peer Reviewed Conference Proceeding

Guaranteed Error-bounded Surrogate Framework for
Solving Process Simulation Problems

Chinmay M. Aras?, Ashfaq Iftakher?, and M. M. Faruque Hasan®"*

@ Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA
b Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843-3122, USA

* Corresponding Author: hasan@tamu.edu.

ABSTRACT

Process simulation problems often involve systems of nonlinear and nonconvex equations and
may run into convergence issues due to the existence of recycle loops within such models. To that
end, surrogate models have gained significant attention as an alternative to high-fidelity models
as they significantly reduce the computational burden. However, these models do not always pro-
vide a guarantee on the prediction accuracy over the domain of interest. To address this issue, we
strike a balance between computational complexity by developing a data-driven branch and
prune-based framework that progressively leads to a guaranteed solution to the original system
of equations. Specifically, we utilize interval arithmetic techniques to exploit Hessian information
about the model of interest. Along with checking whether a solution can exist in the domain under
consideration, we generate error-bounded convex hull surrogates using the sampled data and
Hessian information. When integrated in a branch and prune framework, the branching leads to
the domain under consideration becoming smaller, thereby reducing the quantified prediction er-
ror of the surrogate, ultimately yielding a solution to the system of equations. In this manner, we
overcome the convergence issues that are faced by many simulation packages. We demonstrate
the applicability of our framework through several case studies. We first utilize a set of test prob-
lems from literature. For each of these test systems, we can find a valid solution. We then demon-

strate the efficacy of our framework on real-world process simulation problems.

Keywords: Surrogate Model, Modelling and Simulations, Algorithms, Data-Driven

INTRODUCTION

Systems of equations arise in many fields of practi-
cal interest such as engineering, economics, physics, and
chemistry. A system of equations in N -dimensions is rep-
resented as:

F(x) = (i(0), 2(0), oo iy ()T

Simulation of chemical processes involve numeri-
cally solving such systems of equations. Solving such a
system means finding a vector x such that F(x) =0
where x = (x4, x5, X3, xp),Which is not trivial, but there
are many existing methods that have been developed to
solve such systems traditionally. These methods can be
categorized under three general classes: i) Homotopy
continuation methods; ii) Interval-Newton methods; iii)
Newton-type methods.

https://PSEcommunity.org/LAPSE:2024.1515

Homotopy continuation methods involve starting
with a system of equations G(x), whose solution is
known, embedded in a homotopy function H(x,t) along
with the original system of equations F(x) where t is the
homotopy parameter. The idea here is to solve a series
of problems as t increases from 0 to 1 to obtain the solu-
tions of F(x) by following the solution paths starting from
G(x) [1,2]. Interval-Newton methods involve finding inter-
vals of the solution space where solutions can exist with
mathematical guarantee [2,3].

Newton's methods [4] or Newton-type methods are
iterative techniques that generate increasingly improved
approximations of the root with each iteration. These
methods have a faster rate of convergence but there are
a few issues associated with Newton-type methods [5],
e.g., i) Newton-type methods require computation of the
Jacobian while some require the inverse of the Jacobian

Syst Control Trans 3:105-112 (2024) 105

https://psecommunity.org/LAPSE:2024.1515
mailto:hasan@tamu.edu

as well which may be computationally expensive to ob-
tain for large systems of equations at every iteration; ii)
This may also lead to numerical instabilities with conver-
gence if the Jacobian is very close to zero; iii) The con-
vergence of such methods also depends upon the initial-
ization. It is difficult to know apriori if a particular initiali-
zation converges to a root within a desired neighbor-
hood. If initialized at a point which is far away from a root,
convergence to that desired root may not be obtained.

Several other algorithms have been developed
which do not exactly fall under any one of these catego-
ries but are nevertheless intelligent algorithms to find so-
lutions to systems of equations. Grosan and Abraham [6]
developed an evolutionary algorithm where they convert
the system of equations into a multi-objective optimiza-
tion problem and use pareto dominance relationships to
find solutions. Ramos and Vigo-Aguiar [5] developed an
approach which involves replacing a non-linear equation
with 2 associated equations with the idea being that the
system of associated equations is easier to solve than the
original equation using Newton’'s methods. Ramos and
Monteiro [7] further developed this approach to solve
systems to non-linear equations.

This work aims to propose and study the GEMS
framework which we have developed to solve systems of
equations. GEMS stands for Guaranteed Error-bounded
Modeling of Surrogates which involves replacing each of
the original C2-continuous equations by surrogates. The
maximum error between these equations and their re-
spective surrogates is bounded by an error metric, emax,
which can be derived through the theory of guaranteed
estimators and using interval arithmetic methods [8]. One
of the key features of the GEMS framework is that it does
not depend on the Jacobian of the system of equations
but does require a bound on the diagonal elements of the
Hessian. Another key feature is that is allows the user to
define domain bounds to selectively search the space for
solutions. Lastly, it defines a convergence criterion which
ensures that a solution is found.

The contents of this work are organized as follows:
the methodology section introduces the overall flow of
the framework along with the theoretical requisites. In the
next section, we present case studies to demonstrate the
applicability of the framework. The computational results
are reported in the next section, finally followed by the
conclusions.

METHODOLOGY

We propose the GEMS framework to solve systems
of equations with one of its key ideas being that it can
check whether a solution exists in a search space using
sampled data, the error metric emax, and interval arith-
metic. From the point of view of the user, GEMS takes in
input data in the form of the systems of equations F(x)

Aras et al. / LAPSE:2024.1515

and the global domain bounds and returns a solution to
F(x). When provided with a system of equations and the
global domain bounds, the framework first checks for the
existence of a solution in the global search space. If a so-
lution can exist, the search space (domain) is then di-
vided into two subproblems which are explored. Explora-
tion of a subproblem involves checking for the existence
of a solution which, if exists, necessitates the evaluation
of the fitness for the subproblem. The domain of the sub-
problem with the best fitness is then set as the domain to
be explored next. This is done iteratively until a solution
is found. A high-level flow of the GEMS framework is

shown in Figure 1.

‘ Check for existence of a solution in the global domain |

Does a solution
potentially exist?

Create subproblems of current domain under consideration |

| Explore and evaluate fitness for both subproblems |

Is a solution found? Yes

No
Set subproblem with the best fitness value as next node to
be explored

Figure 1: Overall flow of the GEMS framework.

The subsequent subsections explain the thoeries and
subroutines that are utilized in the GEMS framework.

Data Sampling and Generation of Convex Hull
Surrogates

GEMS replaces the original system of equations with
convex hull surrogates. Given a search space i.e., a
bounded domain, the functions are evaluated (sampled)
at the domain bounds so that the set of points used to
generate the convex hull can cover even the extremities
of the search space. An N-dimensional space has 2V ver-
tices. The number of vertices increases drastically as N
increases thereby making it impractical to have a function
evaluation at every vertex for higher dimensional prob-
lems. Caratheodory’s theorem states that given an N-di-
mensional space, if any point x lies within a convex hull
defined by a set of points, then it is possible to express x
as a convex combination of at most N + 1 points in that
set of points [9]. In other words, N + 1 points are suffi-
cient to generate a convex hull surrogate in any domain.
When obtaining F(x) is expensive, this theorem can be
used to reduce the number of required function evalua-
tions. We consider both cases where 2¥ and N + 1 points
are used to generate the convex hull surrogates. To illus-
trate, the 2-D functions fi(x,y) =x*+y?—25 and
f(,y)=(x—-6)2+y2—-9 with their convex hull

Syst Control Trans 3:105-112 (2024) 106

surrogates ¢; (x,y) and ¢, (x,y) which are constructed us-
ing the vertex evaluations are shown in Figure 2.

Figure 2: f,(x,y) (blue) and f,(x,y) (orange) shown in a
given domain (left). Their respective convex hulls ¢, (x,y)
(blue) and c¢,(x,y) (orange) shown over the same domain
(right). The red and green curves represent the zeros of
fi(x,y) and f,(x,y) respectively.

Interval Arithmetic

We use our in-house subroutine to compute Hessian
bounds for a ¢2-continuous function in a closed form in-
volving the standard arithmetic, trigonometric, logarith-
mic, and exponential operators. We first generate the
computational graph for a given function, and then imple-
ment interval arithmetic rules in all nodes of the graph to
efficiently compute bounds on the output. An automatic
differentiation type scheme is then used to compute
bounds on the gradients. The computational graph that
corresponds to the gradient is dynamically created to
store all dependencies. Using these graphs, we then au-
tomatically compute bounds on the Hessian. A key ad-
vantage of this approach is the guaranteed estimation of
Hessian bounds that can not be achieved using point-
wise evaluation techniques. In some cases, we also use
interval arithmetic on the computational graph to com-
pute a lower bound, Ibmin and upper bound, ubmax for
each function in the case where enough samples aren’t
available.

Guaranteed Estimators

Now that Hessian bounds can be obtained, the con-
cept of guaranteed estimators is utilized which is used to
compute the error metric emax. Namely, we use the guar-
anteed edge-concave underestimator [10], L(x) defined
as:

N
LG =f(x) = Y 0F(x; —xf)° €)
X) = f(x Z (x; — x8)
where 6F = max {0, [%]U}

The edge-concave definition for a function f is
equivalent to:
d*f

“L<o

T S Vi=1,...N)

Aras et al. / LAPSE:2024.1515

For an edge concave function, 8 =0vi=1,...N

Similarly, we use the edge-convex overestima-
tor, U(x) defined as [11]:

N
UG = F@) +) 67 (xi = xf)’)
i=1
v , azf1t
where 6; =mln{0,— z }

The edge-convex definition for a function f is equiv-
alent to:

d2f>0 vVi=1,...N 4
Pk i=1,... 4

For an edge convex function, BL-” =0vi=1,...N

xf is the point from which the estimator is generated. The
estimators are illustrated in Figure 3.

400 A

200 4

fix), L(x), U(x)

—200 o
— fix)
L(x)
— Ulx)
® sample point

—400 A

S = o : ; ;
X

Figure 3: The function f(x) shown along with its

guaranteed underesimator L(x) (shown in orange) and its

guaranteed overestimator U(x) (shown in green)

generated from the sample point (shown in red).

Error-boundedness

emax is the maximum possible error between the
equations and their respective surrogates and therefore
it is desired to have the smallest emax as possible. If the
closed form of the equations is convoluted in the sense
that it contains nested terms, interval arithmetic may re-
sult in extremely large (loose) values of emax.

Based on the nature of the function i.e., based on its
6F and 6! values, each of the functions in the original sys-
tem can be classified into one of three categories:

i) Category 1 - The function is neither edge-con-

vex nor edge-concave in all dimensions,

ii) Category 2 - The function is both edge-concave

and edge-convex in all dimensions,

iii) Category 3 - The function is edge-convex or

Syst Control Trans 3:105-112 (2024) 107

edge-concave in some but not all dimensions.
The value for emax for each of these categories
when we consider the set of all 2" vertices and then a
subset of N + 1 of those 2" are shown in Tables 1 and 2
respectively.

Table 1: emax values when all 2" vertices are evaluated.

Category 1 N S
emax = Z(Bf +07) (xb +xiy)

i=1

Category 2 emax = max{feyai} — min{fepar}

Category 3

€EMAX = fiamax = framin

Table 2: emax values when N + 1 vertices are evaluated.

Category 1 N o
emax = Z(Ql’“ +07) (xf + xiy)
i=1
Category 2 €EMax = fiamax — framin
Category 3 €EMax = fiamax — framin

Here, max{f,,q} is the maximum of the vertex func-
tion evaluations, min{f,,4} is the minimum of the vertex
function evaluations, fismaex iS the upper bound on the
function obtained through interval arithmetic and f; 4 in is
the lower bound on the function obtained through inter-
val arithmetic.

Solving the system of surrogates

Now that we have our system of error-bounded
convex hull surrogates, we wish to find a point x* in the
search space such that the distance 7 between furthest
the convex hull surrogate and the zero “plane” is mini-
mized. The following linear programming (LP) model CH
enables us to do that:

min T

st xg= Z Linton YR ENJEJ (5)

VECY

CHy = > AufjRun) Vj€J ©)
VECV

Y =1 vjej @

VECY

CHi<t Vj€j 8)

~CH;< 1 Vj €] 9)

0<A,<1Vje€EjveV (10)

In this formulation, Equations 5, 6 and 7 are referred to as
the convex combination constraints. Equations 7 and 10
ensure that the point lies inside the domain under con-
sideration. Here, J is the set of functions and V is the set
of vertices.

Note that, %,,,, is the known co-ordinates of vertex v in
dimension n and f;(%,,) is the value of the function

Aras et al. / LAPSE:2024.1515

evaluation for a function j at the point %,,,. 4;, is the
weight assigned to vertex v for the function j.

Solving this formulation, we obtain a point (x*) at
which we evaluate fitness defined as follows:

N
Fitness = Z sz(x*)
=1

This fitness allows us to define a metric for quanti-
fying the “closeness to zero” or quality of the obtained
solution. It is desirable to have a fitness function value
close to zero.

Branch and Prune

With the theoretical requisites established, GEMS
involves a branch and prune subroutine (which is inspired
by the classical branch and bound) where, given an initial
search space, the idea is to repeat the following steps
iteratively:

1) Prune regions of the search space based of the

existence of a solution in that space.

2) Branching to generate two subproblems if a so-

lution could exist.

3) Choose subproblem with the best (smallest) fit-

ness value to be explored next.

Each subproblem in the branch and prune tree is also
called a node. The current node is branched at the
midpoint of the domain of the variable having the longest
edge. For systems of equations where the domain bound
ranges are unequal, we scale the domain bounds relative
to the global domain bounds and branch at the midpoint
of the domain of the variable having the scaled longest
edge. To check whether a solution exists in each search
space (each node), the GEMS framework does the
following: for each function, we perform a loose pruning
check which involves computing a lower bound, lbmin
and an upper bound, ubmax based solely using interval
arithmetic. For any function, if its lower and upper bounds
have the same sign, it is not possible for that function to
have a solution in that space. Each function has a distinct
lower and upper bound. If any of the functions have lbmin
and ubmax of the same sign, it is impossible for the entire
system of equations to have a solution in that space,
thereby allowing us to discard that node from further
consideration. Note that, we are using the Ibmin and
ubmax based solely on |A which are loose. However, this
check helps eliminate unnecessary computation. We
move to the next step of node exploration if a solution
can exist in the node i.e., if it cannot be pruned based on
the loose pruning condition. We then perform function
evaluations and Hessian bound estimations to obtain
tighter lbmin and ubmax values for another tighter
pruning check. Figure 4 shows the node exploration
subroutine. The [bmin and ubmax for each of the
categories when we consider the set of all 2" vertices are

Syst Control Trans 3:105-112 (2024) 108

shown in table 3. Similarly, the values of lbmin and ubmax
when we consider a subset of N + 1 vertices are shown
in table 4. Note that for functions which are both edge-
concave and edge-convex in all dimensions (Category 2),
when we have function evaluations at all 2V vertices,
Tardella’s theorem [12,13] enables us to obtain tightest
lbmin and ubmax.

Table 3: Ibmin and ubmax values when all 2" vertices are
considered.

Category 1 Ibmin = min{f,,q} — emax
ubmax = max{f,,q} + emax
Category 2 Ibmin = min{f,,q;}
ubmax = max {fepq}
Category 3 lbmin = fiamin
ubmax = fiamax

Table 4: [bmin and ubmax values when all N + 1 vertices
are considered.

Category 1 Ibmin = min{f,,q} — emax
ubmax = max{f,,q} + emax
Category 2 Ibmin = fiamin
ubmax = fiamax
Category 3 Ibmin = fiamin
ubmax = fiamax

If lbmin and ubmax have different signs, a solution
may possibly exist, and we move to the next step of node
fitness evaluation. The node fithess evaluation involves
generation of the convex hull surrogates and using the LP
formulation to find the point at which we evaluate fitness.
If the fitness of a node falls below a certain threshold
(<1e-4) we have found a point for which the value of each
function in F(x) is extremely close to zero which basically
means we have found a solution to the original system of
equations.

Create Node.
Inputs: [x", x”], emax of parent node

Prunable solely
based on Interval Arithmetic?
| Estimate Hessian bounds

Evaluate vertices
+

| Compute tighter lbmin, ubmax and emax based on Hessian bounds and vertex evaluations ‘

Yes

No
‘ Evaluate fitness of node |

Update tree lists

Figure 4: The node exploration subroutine.

Convergence

Aras et al. / LAPSE:2024.1515

As emax reduces, the error between the function
and its convex hull surrogate reduces. The error metric
emax is dependent on the Hessian bounds and domain
sizes which means the emax of a child node can never be
greater than the emax of its parent. In other words, the
error-bound for any subproblem is less than or equal to
its parent problem. The sum of all emaxs for the child
node will always be greater than the sum of emaxs of the
parent node. It can be considered an equivalent to the
gap in the classical branch and bound technique used in
optimization. Also, having a small enough value of emax
can lead to efficient pruning of sub-regions.

This concludes the overall flow of the GEMS frame-
work.

CASE STUDIES

We consider some test problems having a single so-
lution as well as a few benchmark problems from litera-
ture along with examples of systems of equations arising
from test problems in chemical engineering literature.

Test problems

1) Hypersphere systems — The following system of
equations can be scaled to N-dimensions while
still maintaining the characteristic of having a
single solution. We consider the 10, 50 and 100-
dimensional systems for our studies. Here, R is
the radius of the hyperspheres.

N

Zx,-z—R=0

i=1

N
2 _ 2 2_R=
Fusy(x) = (xf —2R)* + z xi—R=0
i=2

N
Z xi2+(xj—R)2—R=0er =(3,...,N)

i=1
Li#j—1

Benchmark systems in literature

1) Interval Arithmetic [14] — The following system
has been considered as one of the benchmark
problems from interval arithmetic:

"%, — 025428722 — 0.18324757x,x3%9 = 0]
x; — 0.37842197 — 0.16275449x,x; % = 0
X3 —0.27162577 — 0.1695507 1,10 = 0
x4 —0.19807914 — 0.15585316x,x,x5 = 0
Fy() = | %5~ 044166728 = 0.19950920 x5 = 0
xg — 0.14654113 — 0.18922793xgxsx;0 = 0
x; — 042937161 — 0.21180486x,x5x5 = 0
xg — 0.07056438 — 0.17081208x,x,x5 = 0
X — 0.34504906 — 0.19612740x;4xsxg = 0
[x,0 — 042651102 — 0.21466544x,xgx, = O]

2) Neurophysiology Application [15] - The

Syst Control Trans 3:105-112 (2024) 109

following system arises from an application in
neurophysiology:
x2+ x2=1
x5+ x2=1
Fy(x) = xsxg + x6xz i ¢
XsXi + XgX; = Cp
X5X1 X2 + XgXpX2 = C3
XsX3X?P + XgX4Xx2 = ¢,
where the constants ¢; can be arbitrarily cho-
sen. We consider all ¢; = 0.

Systems arising form process engineering

models

1)

Combustion Application [16] — The following
system arises from the combustion of propane
in air. The stoichiometric equation is:

R
C3Hg +) (0, + 4N,) - Products

where R is the relative amounts of air to fuel.
Combustion Application — The following system
arises from the combustion of propane in air.
The variables x; for i = 1 to 10 are the number
of moles of product i formed per every mole of
propane combusted.

X1 + X4 = 3 T
2%y + 2x5x6x7 = 8
ZX3 + Xg = 40

ZX1 +x2 +X4+x7+x8 +XQ+2.X10 =10
X1X5 = KsxpX4

Fea(x) = VA0x6xY5 = Kg\[x2%4Nror
mxﬂg's = K7\/m
40xgx4 = KgxqNrot
\/4_0x9x4 = KoXx14/X3Nro¢
40n,9nf = KioniNrot E
where,

2)

Aras et al. / LAPSE:2024.1515

10

Nroe = Z Xi

i=1
The first for equations in the system arise form
the mole balances while the rest arise from the

equilibrium relations. K; for i =5to 10 are the
equilibrium constants.

Chemical Equilibrium [17] — The mathematical
structure of the combustion application system
is analysed and reformulated by using the no-
tion of ‘element variables’ (surrogates for atomic
combinations). The first four equations arise
from the reformulation of the mole balances in
the combustion application system whereas the
equilibrium relations reduce to a single equation
because of the element variable substitutions

3)

100 mol

F CEQ (x) =

which leads to the following system:

X1Xy +x1 — 3x5 =0
2x1X, + X1 + X,x2 + Rgx, — Rxs
+2R10x% + RyXx3Xx5 + Roxpx, = 0

2x,x% + 2Rsx2 — 8xy

+Rex3x4 + Ryxpx3 =0

2x% — 4Rx5 + Roxpx, = 0
%1 (x; + 1) + Rygx2 + x,x3 + Rgx,
+Rgx2 + x2 — 1 + RgX3 + Ryxpx5
+Roxx4 =0

Note that the variables x; for i =1 to 5 have
been redefined along with the constant R fori =
5 to 10 to account for the element variable sub-
stitutions.

Recycle and Purge in the Synthesis of Ammonia
—-The ammonia synthesis process involving a re-
cycle and a purge stream in considered. Given
the feed stream specifications and the reactor
conversion, it is desired to calculate the overall
conversion of nitrogen and the ratio of moles of
gas purged to the moles of gas leaving the con-
denser.

ng{mol recycled) nz{mol purged)

01251 01257
x Ny x Ny
(0.875 — x) H, ny(mol N,) (0.875 — x) H,
ns(mol H,)
ng(mol 1)

0.2475 N,
07425 H,
0.01 N,

Reactor Condenser

ny{mol Ny) ntg{mMol NHi)
ng(mol H,)
ng(mol NH,)

nz(mol 1)

n, (mol N)
na(mol Hz)
ny{mol [}

Figure 4: Flowsheet for the ammonia synthesis process.

The following system of equations arises from
the overall mole balances, stoichiometric rela-
tions, and material balances at the mixing and
split points.

1-0.125n=0
148.5 — 3n5 — 1.75n5 + 2ngx = 0
49.5 - 2ngx —n; =0
ng —0.75n, =0
0.5n; —nz; =0
Ng —xn; —nux =0
74.25+ 0.875n, —xn; —n, =0
1+0.125n;, —n3 =0

Fus(x) =

The domain ranges considered for each of these
problems are shown in Table 5.

Table 5: Domain bounds for the test problems

Problem Instance

Domain Ranges

10D-hyperspheres

x; €[-55]Vi=1,..10

Syst Control Trans 3:105-112 (2024)

110

50D-hyperspheres x; €[-55]vi=1,..50

100D-hyperspheres x; € [-55]Vvi=1,..100

Interval Arithmetic x; €[-44]Vi=1,...10

Neurophysiology Application x, € [-10,5]
x, € [—10,6]
x3 € [-10,7]
x4 € [-10,8]
x5 € [—10,9]
xg € [-10,9]

Combustion Application x; €[-55]vi=1,..10

Chemical Equilibrium x; €[-55]vi=1,..5

Ammonia Synthesis n; €[0,500]vVi=1,...7

x €[0,1]

COMPUTATIONAL EXPERIMENTS AND
RESULTS

All runs were performed on an Intel Xeon Gold
6248R 3GHz processor running on Linux (CentOS 7). The
algorithm was developed in Python v3.6.8 and used
CPLEXv20.1.0.1 in GAMSv35.1 to solve the LP model CH
for the system of surrogates.

Table 6: Fitness of solution obtained, number of nodes
explored and number of function evaluations for the test
problems.

Instance Fitness of | Nodes Function
Solution Explored | Evaluations

10-D 7e-5 228 1487

hyperspheres

50-D Te-4 1278 35827

hyperspheres

100-D 4e-5 813 51713

hyperspheres

Interval Te-5 64.48 1823

Arithmetic

Neurophysiol- 6e-5 307 1301

ogy

Application

Combustion Te-4 21650 97856

Application

Chemical 8e-5 837 3149

Equilibrium

Ammonia Te-8 383 54483

Synthesis

We have reported the solutions for each of the test
problems using a sampled data set of N + 1 vertices ex-
cept for the system of equations arising from the ammo-
nia synthesis model where we have used 2V vertices. The
solution of the LP (to minimize the distance to the fur-
thest convex hull surrogate) highly depends on choice of
the N + 1 sampled vertices. In other words, the choice of
the set of the sampled data affects the path of the branch

Aras et al. / LAPSE:2024.1515

and prune search.

CONCLUSIONS

In this work, we report a data-driven branch and
prune approach that has the potential to unlock new av-
enues for finding solutions to systems of equations with-
out the requirement of an initial guess. Furthermore, the
user can specify the domain bounds if solutions within a
desired search space are required. Multiple potential
sampling strategies need to be investigated which may
aid in faster convergence. Further work is needed to re-
duce the number of required function evaluations.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support from
the NSF CAREER (CBET-1943479), and the DOE AIChE
RAPID Institute (DE-EE0007888-09-03) grants. Part of
the research was conducted with the computing re-
sources provided by Texas A&M High Performance Re-
search Computing.

REFERENCES

1. Wayburn, T. L., & Seader, J. D. Homotopy
continuation methods for computer-aided process
design. Computers & Chemical Engineering, 11(1),
7-25. (1987)

2. Maranas, C. D., & Floudas, C. A. Finding all
solutions of nonlinearly constrained systems of
equations. Journal of Global Optimization, 7, 143-
182. (1995)

3. Hansen, E. R., & Greenberg, R. |. An interval Newton
method. Applied Mathematics and
Computation, 12(2-3), 89-98. (1983)

4. Remani, C. Numerical methods for solving systems
of nonlinear equations. Lakehead University
Thunder Bay, Ontario, Canada, 77. (2013)

5. Ramos, H., & Vigo-Aguiar, J. The application of
Newton’s method in vector form for solving
nonlinear scalar equations where the classical
Newton method fails. Journal of computational and
applied mathematics, 275, 228-237. (2015)

6. Grosan, C., & Abraham, A. A new approach for
solving nonlinear equations systems. |IEEE
Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, 38(3), 698-714.
(2008)

7. Ramos, H., & Monteiro, M. T. T. A new approach
based on the Newton’s method to solve systems of
nonlinear equations. Journal of Computational and
Applied Mathematics, 318, 3-13. (2017)

8. Alefeld, G., & Mayer, G. Interval analysis: theory
and applications. Journal of computational and

Syst Control Trans 3:105-112 (2024) 111

applied mathematics, 121(1-2), 421-464. (2000)

9. Floudas, C. A. Deterministic global optimization:
theory, methods and applications (Vol. 37).
Springer Science & Business Media. (2013)

10. Hasan, M. M. F. An edge-concave underestimator
for the global optimization of twice-differentiable
nonconvex problems. Journal of Global
Optimization, 71(4), 735-752. (2018)

11. Iftakher, A., Aras, C. M., Monjur, M. S., & Hasan, M.
F. Data-driven approximation of thermodynamic
phase equilibria. AIChE Journal, 68(6), e17624.
(2022)

12. Tardella, F. On a class of functions attaining their
maximum at the vertices of a polyhedron. Discrete
applied mathematics, 22(2), 191-195. (1988)

13. Tardella, F. On the existence of polyhedral convex
envelopes (pp. 563-573). Springer US. (2004)

14. Moore, R. E. Methods and applications of interval
analysis. Society for Industrial and Applied
Mathematics. (1979)

15. Verschelde, J., Verlinden, P., & Cools, R.
Homotopies exploiting Newton polytopes for
solving sparse polynomial systems. SIAM Journal
on Numerical Analysis, 31(3), 915-930. (1994)

16. Shacham, M., Brauner, N., & Cutlip, M. B. A web-
based library for testing performance of numerical
software for solving nonlinear algebraic equations.
In Computer Aided Chemical Engineering (Vol. 9,
pp. 291-296). Elsevier. (2001)

17. Meintjes, K., & Morgan, A. P. A methodology for
solving chemical equilibrium systems. Applied
Mathematics and Computation, 22(4), 333-361.
(1987)

© 2024 by the authors. Licensed to PSEcommunity.org and PSE
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator
and adaptations must be shared under the same terms. See
https://creativecommons.org/licenses/by-sa/4.0/

Aras et al. / LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 12

https://creativecommons.org/licenses/by-sa/4.0/

