

 Research Article

Foundations of Computer Aided Process Design (FOCAPD 2024)
Breckenridge, Colorado, USA. July 14-18, 2024

 Peer Reviewed Conference Proceeding

https://PSEcommunity.org/LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 105

Guaranteed Error-bounded Surrogate Framework for
Solving Process Simulation Problems
Chinmay M. Arasa, Ashfaq Iftakhera, and M. M. Faruque Hasana,b*
a Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA
b Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843-3122, USA
* Corresponding Author: hasan@tamu.edu.

ABSTRACT
Process simulation problems often involve systems of nonlinear and nonconvex equations and
may run into convergence issues due to the existence of recycle loops within such models. To that
end, surrogate models have gained significant attention as an alternative to high-fidelity models
as they significantly reduce the computational burden. However, these models do not always pro-
vide a guarantee on the prediction accuracy over the domain of interest. To address this issue, we
strike a balance between computational complexity by developing a data-driven branch and
prune-based framework that progressively leads to a guaranteed solution to the original system
of equations. Specifically, we utilize interval arithmetic techniques to exploit Hessian information
about the model of interest. Along with checking whether a solution can exist in the domain under
consideration, we generate error-bounded convex hull surrogates using the sampled data and
Hessian information. When integrated in a branch and prune framework, the branching leads to
the domain under consideration becoming smaller, thereby reducing the quantified prediction er-
ror of the surrogate, ultimately yielding a solution to the system of equations. In this manner, we
overcome the convergence issues that are faced by many simulation packages. We demonstrate
the applicability of our framework through several case studies. We first utilize a set of test prob-
lems from literature. For each of these test systems, we can find a valid solution. We then demon-
strate the efficacy of our framework on real-world process simulation problems.

Keywords: Surrogate Model, Modelling and Simulations, Algorithms, Data-Driven

INTRODUCTION
Systems of equations arise in many fields of practi-

cal interest such as engineering, economics, physics, and
chemistry. A system of equations in 𝑁𝑁 -dimensions is rep-
resented as:

𝑭𝑭(𝒙𝒙) = (𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), … . . 𝑓𝑓𝑁𝑁(𝑥𝑥))𝑇𝑇

Simulation of chemical processes involve numeri-
cally solving such systems of equations. Solving such a
system means finding a vector 𝒙𝒙 such that 𝑭𝑭(𝒙𝒙) = 0
where 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 … . . , 𝑥𝑥𝑛𝑛),which is not trivial, but there
are many existing methods that have been developed to
solve such systems traditionally. These methods can be
categorized under three general classes: i) Homotopy
continuation methods; ii) Interval-Newton methods; iii)
Newton-type methods.

Homotopy continuation methods involve starting
with a system of equations 𝑮𝑮(𝒙𝒙), whose solution is
known, embedded in a homotopy function 𝑯𝑯(𝒙𝒙, 𝒕𝒕) along
with the original system of equations 𝑭𝑭(𝒙𝒙) where t is the
homotopy parameter. The idea here is to solve a series
of problems as t increases from 0 to 1 to obtain the solu-
tions of 𝑭𝑭(𝒙𝒙) by following the solution paths starting from
𝑮𝑮(𝒙𝒙) [1,2]. Interval-Newton methods involve finding inter-
vals of the solution space where solutions can exist with
mathematical guarantee [2,3].

Newton's methods [4] or Newton-type methods are
iterative techniques that generate increasingly improved
approximations of the root with each iteration. These
methods have a faster rate of convergence but there are
a few issues associated with Newton-type methods [5],
e.g., i) Newton-type methods require computation of the
Jacobian while some require the inverse of the Jacobian

https://psecommunity.org/LAPSE:2024.1515
mailto:hasan@tamu.edu

Aras et al. / LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 106

as well which may be computationally expensive to ob-
tain for large systems of equations at every iteration; ii)
This may also lead to numerical instabilities with conver-
gence if the Jacobian is very close to zero; iii) The con-
vergence of such methods also depends upon the initial-
ization. It is difficult to know apriori if a particular initiali-
zation converges to a root within a desired neighbor-
hood. If initialized at a point which is far away from a root,
convergence to that desired root may not be obtained.

Several other algorithms have been developed
which do not exactly fall under any one of these catego-
ries but are nevertheless intelligent algorithms to find so-
lutions to systems of equations. Grosan and Abraham [6]
developed an evolutionary algorithm where they convert
the system of equations into a multi-objective optimiza-
tion problem and use pareto dominance relationships to
find solutions. Ramos and Vigo-Aguiar [5] developed an
approach which involves replacing a non-linear equation
with 2 associated equations with the idea being that the
system of associated equations is easier to solve than the
original equation using Newton’s methods. Ramos and
Monteiro [7] further developed this approach to solve
systems to non-linear equations.

This work aims to propose and study the GEMS
framework which we have developed to solve systems of
equations. GEMS stands for Guaranteed Error-bounded
Modeling of Surrogates which involves replacing each of
the original 𝐶𝐶2-continuous equations by surrogates. The
maximum error between these equations and their re-
spective surrogates is bounded by an error metric, 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖,
which can be derived through the theory of guaranteed
estimators and using interval arithmetic methods [8]. One
of the key features of the GEMS framework is that it does
not depend on the Jacobian of the system of equations
but does require a bound on the diagonal elements of the
Hessian. Another key feature is that is allows the user to
define domain bounds to selectively search the space for
solutions. Lastly, it defines a convergence criterion which
ensures that a solution is found.

The contents of this work are organized as follows:
the methodology section introduces the overall flow of
the framework along with the theoretical requisites. In the
next section, we present case studies to demonstrate the
applicability of the framework. The computational results
are reported in the next section, finally followed by the
conclusions.

METHODOLOGY
We propose the GEMS framework to solve systems

of equations with one of its key ideas being that it can
check whether a solution exists in a search space using
sampled data, the error metric 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖, and interval arith-
metic. From the point of view of the user, GEMS takes in
input data in the form of the systems of equations 𝑭𝑭(𝒙𝒙)

and the global domain bounds and returns a solution to
𝑭𝑭(𝒙𝒙). When provided with a system of equations and the
global domain bounds, the framework first checks for the
existence of a solution in the global search space. If a so-
lution can exist, the search space (domain) is then di-
vided into two subproblems which are explored. Explora-
tion of a subproblem involves checking for the existence
of a solution which, if exists, necessitates the evaluation
of the fitness for the subproblem. The domain of the sub-
problem with the best fitness is then set as the domain to
be explored next. This is done iteratively until a solution
is found. A high-level flow of the GEMS framework is
shown in Figure 1.

Figure 1: Overall flow of the GEMS framework.

The subsequent subsections explain the thoeries and
subroutines that are utilized in the GEMS framework.

Data Sampling and Generation of Convex Hull
Surrogates

GEMS replaces the original system of equations with
convex hull surrogates. Given a search space i.e., a
bounded domain, the functions are evaluated (sampled)
at the domain bounds so that the set of points used to
generate the convex hull can cover even the extremities
of the search space. An 𝑁𝑁-dimensional space has 2𝑁𝑁 ver-
tices. The number of vertices increases drastically as 𝑁𝑁
increases thereby making it impractical to have a function
evaluation at every vertex for higher dimensional prob-
lems. Caratheodory’s theorem states that given an 𝑁𝑁-di-
mensional space, if any point 𝑥𝑥 lies within a convex hull
defined by a set of points, then it is possible to express 𝑥𝑥
as a convex combination of at most 𝑁𝑁 + 1 points in that
set of points [9]. In other words, 𝑁𝑁 + 1 points are suffi-
cient to generate a convex hull surrogate in any domain.
When obtaining 𝑭𝑭(𝒙𝒙) is expensive, this theorem can be
used to reduce the number of required function evalua-
tions. We consider both cases where 2𝑁𝑁 and 𝑁𝑁 + 1 points
are used to generate the convex hull surrogates. To illus-
trate, the 2-D functions 𝑓𝑓1(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + 𝑦𝑦2 − 25 and
𝑓𝑓2(𝑥𝑥,𝑦𝑦) = (𝑥𝑥 − 6)2 + 𝑦𝑦2 − 9 with their convex hull

Aras et al. / LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 107

surrogates 𝑐𝑐1(𝑥𝑥,𝑦𝑦) and 𝑐𝑐2(𝑥𝑥,𝑦𝑦) which are constructed us-
ing the vertex evaluations are shown in Figure 2.

Figure 2: 𝑓𝑓1(𝑥𝑥,𝑦𝑦) (blue) and 𝑓𝑓2(𝑥𝑥,𝑦𝑦) (orange) shown in a
given domain (left). Their respective convex hulls 𝑐𝑐1(𝑥𝑥,𝑦𝑦)
(blue) and 𝑐𝑐2(𝑥𝑥,𝑦𝑦) (orange) shown over the same domain
(right). The red and green curves represent the zeros of
𝑓𝑓1(𝑥𝑥,𝑦𝑦) and 𝑓𝑓2(𝑥𝑥,𝑦𝑦) respectively.

Interval Arithmetic
We use our in-house subroutine to compute Hessian

bounds for a 𝐶𝐶2-continuous function in a closed form in-
volving the standard arithmetic, trigonometric, logarith-
mic, and exponential operators. We first generate the
computational graph for a given function, and then imple-
ment interval arithmetic rules in all nodes of the graph to
efficiently compute bounds on the output. An automatic
differentiation type scheme is then used to compute
bounds on the gradients. The computational graph that
corresponds to the gradient is dynamically created to
store all dependencies. Using these graphs, we then au-
tomatically compute bounds on the Hessian. A key ad-
vantage of this approach is the guaranteed estimation of
Hessian bounds that can not be achieved using point-
wise evaluation techniques. In some cases, we also use
interval arithmetic on the computational graph to com-
pute a lower bound, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and upper bound, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 for
each function in the case where enough samples aren’t
available.

Guaranteed Estimators
Now that Hessian bounds can be obtained, the con-

cept of guaranteed estimators is utilized which is used to
compute the error metric 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖. Namely, we use the guar-
anteed edge-concave underestimator [10], 𝐿𝐿(𝑥𝑥) defined
as:

𝐿𝐿(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) −�𝜃𝜃𝑖𝑖𝐿𝐿�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐺𝐺�
2

𝑁𝑁

𝑖𝑖=1

 (1)

where 𝜃𝜃𝑖𝑖𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �𝑑𝑑
2𝑓𝑓

𝑑𝑑𝑥𝑥2
�
𝑈𝑈
�

The edge-concave definition for a function 𝑓𝑓 is
equivalent to:

𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2 ≤ 0 ∀𝑖𝑖 = 1, … .𝑁𝑁 (2)

For an edge concave function, 𝜃𝜃𝑖𝑖𝐿𝐿 = 0 ∀ 𝑖𝑖 = 1, … .𝑁𝑁

Similarly, we use the edge-convex overestima-

tor, 𝑈𝑈(𝑥𝑥) defined as [11]:

𝑈𝑈(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + �𝜃𝜃𝑖𝑖𝑈𝑈�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝐺𝐺�
2

𝑁𝑁

𝑖𝑖=1

 (3)

where 𝜃𝜃𝑖𝑖𝑈𝑈 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,− �𝑑𝑑
2𝑓𝑓

𝑑𝑑𝑥𝑥2
�
𝐿𝐿
�

The edge-convex definition for a function 𝑓𝑓 is equiv-
alent to:

𝑑𝑑2𝑓𝑓
𝑑𝑑𝑥𝑥2

≥ 0 ∀𝑖𝑖 = 1, … .𝑁𝑁 (4)

For an edge convex function, 𝜃𝜃𝑖𝑖𝑈𝑈 = 0 ∀ 𝑖𝑖 = 1, … .𝑁𝑁

𝑥𝑥𝑖𝑖𝐺𝐺 is the point from which the estimator is generated. The
estimators are illustrated in Figure 3.

Figure 3: The function 𝑓𝑓(𝑥𝑥) shown along with its
guaranteed underesimator 𝐿𝐿(𝑥𝑥) (shown in orange) and its
guaranteed overestimator 𝑈𝑈(𝑥𝑥) (shown in green)
generated from the sample point (shown in red).

Error-boundedness
𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 is the maximum possible error between the

equations and their respective surrogates and therefore
it is desired to have the smallest 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 as possible. If the
closed form of the equations is convoluted in the sense
that it contains nested terms, interval arithmetic may re-
sult in extremely large (loose) values of 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖.

Based on the nature of the function i.e., based on its
𝜃𝜃𝑖𝑖𝐿𝐿 and 𝜃𝜃𝑖𝑖𝑈𝑈 values, each of the functions in the original sys-
tem can be classified into one of three categories:

i) Category 1 - The function is neither edge-con-
vex nor edge-concave in all dimensions,

ii) Category 2 - The function is both edge-concave
and edge-convex in all dimensions,

iii) Category 3 - The function is edge-convex or

Aras et al. / LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 108

edge-concave in some but not all dimensions.
The value for 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 for each of these categories

when we consider the set of all 2𝑁𝑁 vertices and then a
subset of 𝑁𝑁 + 1 of those 2𝑁𝑁 are shown in Tables 1 and 2
respectively.

Table 1: 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 values when all 2𝑁𝑁 vertices are evaluated.

Category 
𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 = ��𝜃𝜃𝑖𝑖𝐿𝐿 + 𝜃𝜃𝑖𝑖𝑈𝑈�

𝑁𝑁

𝑖𝑖=1

�𝑥𝑥𝑈𝑈𝑖𝑖 + 𝑥𝑥𝑀𝑀𝑖𝑖 �

Category  𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 = max{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} − min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒}
Category  𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

Table 2: 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 values when 𝑁𝑁 + 1 vertices are evaluated.

Category 
𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 = ��𝜃𝜃𝑖𝑖𝐿𝐿 + 𝜃𝜃𝑖𝑖𝑈𝑈�

𝑁𝑁

𝑖𝑖=1

�𝑥𝑥𝑈𝑈𝑖𝑖 + 𝑥𝑥𝑀𝑀𝑖𝑖 �

Category  𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
Category  𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

Here, max{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} is the maximum of the vertex func-
tion evaluations, min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} is the minimum of the vertex
function evaluations, 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is the upper bound on the
function obtained through interval arithmetic and 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 is
the lower bound on the function obtained through inter-
val arithmetic.

Solving the system of surrogates
Now that we have our system of error-bounded

convex hull surrogates, we wish to find a point 𝑥𝑥∗ in the
search space such that the distance 𝜏𝜏 between furthest
the convex hull surrogate and the zero “plane” is mini-
mized. The following linear programming (LP) model CH
enables us to do that:

min 𝜏𝜏

𝑠𝑠. 𝑡𝑡. 𝑥𝑥𝑛𝑛 = � 𝜆𝜆𝑗𝑗,𝑣𝑣𝑥𝑥�𝑣𝑣,𝑛𝑛
𝑣𝑣∈𝑐𝑐𝑐𝑐

 ∀ 𝑛𝑛 ∈ 𝑁𝑁, 𝑗𝑗 ∈ 𝐽𝐽 (5)

𝐶𝐶𝐶𝐶𝑗𝑗 = � 𝜆𝜆𝑗𝑗,𝑣𝑣𝑓𝑓𝑗𝑗(𝑥𝑥�𝑣𝑣,𝑛𝑛)
𝑣𝑣∈𝑐𝑐𝑐𝑐

 ∀ 𝑗𝑗 ∈ 𝐽𝐽 (6)

� 𝜆𝜆𝑗𝑗,𝑣𝑣
𝑣𝑣∈𝑐𝑐𝑐𝑐

= 1 ∀ 𝑗𝑗 ∈ 𝐽𝐽 (7)

𝐶𝐶𝐶𝐶𝑗𝑗 ≤ 𝜏𝜏 ∀ 𝑗𝑗 ∈ 𝐽𝐽 (8)

−𝐶𝐶𝐶𝐶𝑗𝑗 ≤ 𝜏𝜏 ∀ 𝑗𝑗 ∈ 𝐽𝐽 (9)

0 ≤ 𝜆𝜆𝑗𝑗,𝑣𝑣 ≤ 1 ∀ 𝑗𝑗 ∈ 𝐽𝐽, 𝑣𝑣 ∈ 𝑉𝑉 (10)

In this formulation, Equations 5, 6 and 7 are referred to as
the convex combination constraints. Equations 7 and 10
ensure that the point lies inside the domain under con-
sideration. Here, 𝐽𝐽 is the set of functions and 𝑉𝑉 is the set
of vertices.
Note that, 𝑥𝑥�𝑣𝑣,𝑛𝑛 is the known co-ordinates of vertex 𝑣𝑣 in
dimension 𝑛𝑛 and 𝑓𝑓𝑗𝑗(𝑥𝑥�𝑣𝑣,𝑛𝑛) is the value of the function

evaluation for a function 𝑗𝑗 at the point 𝑥𝑥�𝑣𝑣,𝑛𝑛. 𝜆𝜆𝑗𝑗,𝑣𝑣 is the
weight assigned to vertex 𝑣𝑣 for the function 𝑗𝑗.

Solving this formulation, we obtain a point (𝒙𝒙∗) at
which we evaluate fitness defined as follows:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = �𝑓𝑓𝑗𝑗2(𝒙𝒙∗)
𝑁𝑁

𝑗𝑗=1

This fitness allows us to define a metric for quanti-
fying the “closeness to zero” or quality of the obtained
solution. It is desirable to have a fitness function value
close to zero.

Branch and Prune
With the theoretical requisites established, GEMS

involves a branch and prune subroutine (which is inspired
by the classical branch and bound) where, given an initial
search space, the idea is to repeat the following steps
iteratively:

1) Prune regions of the search space based of the
existence of a solution in that space.

2) Branching to generate two subproblems if a so-
lution could exist.

3) Choose subproblem with the best (smallest) fit-
ness value to be explored next.

Each subproblem in the branch and prune tree is also
called a node. The current node is branched at the
midpoint of the domain of the variable having the longest
edge. For systems of equations where the domain bound
ranges are unequal, we scale the domain bounds relative
to the global domain bounds and branch at the midpoint
of the domain of the variable having the scaled longest
edge. To check whether a solution exists in each search
space (each node), the GEMS framework does the
following: for each function, we perform a loose pruning
check which involves computing a lower bound, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
and an upper bound, 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 based solely using interval
arithmetic. For any function, if its lower and upper bounds
have the same sign, it is not possible for that function to
have a solution in that space. Each function has a distinct
lower and upper bound. If any of the functions have 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 of the same sign, it is impossible for the entire
system of equations to have a solution in that space,
thereby allowing us to discard that node from further
consideration. Note that, we are using the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 based solely on IA which are loose. However, this
check helps eliminate unnecessary computation. We
move to the next step of node exploration if a solution
can exist in the node i.e., if it cannot be pruned based on
the loose pruning condition. We then perform function
evaluations and Hessian bound estimations to obtain
tighter 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 values for another tighter
pruning check. Figure 4 shows the node exploration
subroutine. The 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 for each of the
categories when we consider the set of all 2𝑁𝑁 vertices are

Aras et al. / LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 109

shown in table 3. Similarly, the values of 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
when we consider a subset of 𝑁𝑁 + 1 vertices are shown
in table 4. Note that for functions which are both edge-
concave and edge-convex in all dimensions (Category 2),
when we have function evaluations at all 2𝑁𝑁 vertices,
Tardella’s theorem [12,13] enables us to obtain tightest
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢.

Table 3: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 values when all 2𝑁𝑁 vertices are
considered.

Category  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} − 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = max{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖

Category  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒}
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = max {𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒}

Category  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

Table 4: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 values when all 𝑁𝑁 + 1 vertices
are considered.

Category  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = min{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} − 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = max{𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒} + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖

Category  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

Category  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

If 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 have different signs, a solution
may possibly exist, and we move to the next step of node
fitness evaluation. The node fitness evaluation involves
generation of the convex hull surrogates and using the LP
formulation to find the point at which we evaluate fitness.
If the fitness of a node falls below a certain threshold
(<1e-4) we have found a point for which the value of each
function in 𝑭𝑭(𝒙𝒙) is extremely close to zero which basically
means we have found a solution to the original system of
equations.

Figure 4: The node exploration subroutine.

Convergence

As 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 reduces, the error between the function
and its convex hull surrogate reduces. The error metric
𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 is dependent on the Hessian bounds and domain
sizes which means the 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 of a child node can never be
greater than the 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 of its parent. In other words, the
error-bound for any subproblem is less than or equal to
its parent problem. The sum of all 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 for the child
node will always be greater than the sum of 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 of the
parent node. It can be considered an equivalent to the
gap in the classical branch and bound technique used in
optimization. Also, having a small enough value of 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖
can lead to efficient pruning of sub-regions.

This concludes the overall flow of the GEMS frame-
work.

CASE STUDIES
We consider some test problems having a single so-

lution as well as a few benchmark problems from litera-
ture along with examples of systems of equations arising
from test problems in chemical engineering literature.

Test problems
1) Hypersphere systems – The following system of

equations can be scaled to N-dimensions while
still maintaining the characteristic of having a
single solution. We consider the 10, 50 and 100-
dimensional systems for our studies. Here, R is
the radius of the hyperspheres.

𝑭𝑭𝑯𝑯𝑯𝑯𝑯𝑯(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �𝑥𝑥𝑖𝑖2

𝑁𝑁

𝑖𝑖=1

− R = 0

(𝑥𝑥12 − 2R)2 + �𝑥𝑥𝑖𝑖2
𝑁𝑁

𝑖𝑖=2

− R = 0

� 𝑥𝑥𝑖𝑖2
𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗−1

+ �𝑥𝑥𝑗𝑗 − R�2 − R = 0,∀ 𝑗𝑗 = (3, … . ,𝑁𝑁)

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Benchmark systems in literature
1) Interval Arithmetic [14] – The following system

has been considered as one of the benchmark
problems from interval arithmetic:

𝑭𝑭𝑰𝑰𝑰𝑰(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1 − 0.25428722 − 0.18324757𝑥𝑥4𝑥𝑥3𝑥𝑥9 = 0
𝑥𝑥2 − 0.37842197 − 0.16275449𝑥𝑥1𝑥𝑥10𝑥𝑥6 = 0
𝑥𝑥3 − 0.27162577 − 0.16955071𝑥𝑥1𝑥𝑥2𝑥𝑥10 = 0
𝑥𝑥4 − 0.19807914 − 0.15585316𝑥𝑥7𝑥𝑥1𝑥𝑥6 = 0
𝑥𝑥5 − 0.44166728 − 0.19950920𝑥𝑥7𝑥𝑥6𝑥𝑥3 = 0
𝑥𝑥6 − 0.14654113 − 0.18922793𝑥𝑥8𝑥𝑥5𝑥𝑥10 = 0
𝑥𝑥7 − 0.42937161 − 0.21180486𝑥𝑥2𝑥𝑥5𝑥𝑥8 = 0
𝑥𝑥8 − 0.07056438 − 0.17081208𝑥𝑥1𝑥𝑥7𝑥𝑥6 = 0
𝑥𝑥9 − 0.34504906 − 0.19612740𝑥𝑥10𝑥𝑥6𝑥𝑥8 = 0
𝑥𝑥10 − 0.42651102 − 0.21466544𝑥𝑥4𝑥𝑥8𝑥𝑥1 = 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

2) Neurophysiology Application [15] – The

Aras et al. / LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 110

following system arises from an application in
neurophysiology:

𝑭𝑭𝑵𝑵(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥12 + 𝑥𝑥32 = 1

𝑥𝑥22 + 𝑥𝑥42 = 1
𝑥𝑥5𝑥𝑥32 + 𝑥𝑥6𝑥𝑥43 = 𝑐𝑐1
𝑥𝑥5𝑥𝑥13 + 𝑥𝑥6𝑥𝑥23 = 𝑐𝑐2

𝑥𝑥5𝑥𝑥1𝑥𝑥32 + 𝑥𝑥6𝑥𝑥2𝑥𝑥42 = 𝑐𝑐3
𝑥𝑥5𝑥𝑥3𝑥𝑥12 + 𝑥𝑥6𝑥𝑥4𝑥𝑥22 = 𝑐𝑐4⎦

⎥
⎥
⎥
⎥
⎥
⎤

where the constants 𝑐𝑐𝑖𝑖 can be arbitrarily cho-
sen. We consider all 𝑐𝑐𝑖𝑖 = 0.

Systems arising form process engineering
models

1) Combustion Application [16] – The following
system arises from the combustion of propane
in air. The stoichiometric equation is:

𝐶𝐶3𝐻𝐻8 +
𝑅𝑅
2

(𝑂𝑂2 + 4𝑁𝑁2) → 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

where R is the relative amounts of air to fuel.
Combustion Application – The following system
arises from the combustion of propane in air.
The variables 𝑥𝑥𝑖𝑖 for 𝑖𝑖 = 1 to 10 are the number
of moles of product 𝑖𝑖 formed per every mole of
propane combusted.

𝑭𝑭𝑪𝑪𝑪𝑪(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1 + 𝑥𝑥4 = 3
2𝑥𝑥2 + 2𝑥𝑥5𝑥𝑥6𝑥𝑥7 = 8

2𝑥𝑥3 + 𝑥𝑥9 = 40
2𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥4 + 𝑥𝑥7 + 𝑥𝑥8 + 𝑥𝑥9 + 2𝑥𝑥10 = 10

𝑥𝑥1𝑥𝑥5 = 𝐾𝐾5𝑥𝑥2𝑥𝑥4
√40𝑥𝑥6𝑥𝑥10.5 = 𝐾𝐾6�𝑥𝑥2𝑥𝑥4𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇
√40𝑥𝑥7𝑥𝑥40.5 = 𝐾𝐾7�𝑥𝑥1𝑥𝑥2𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇

40𝑥𝑥8𝑥𝑥4 = 𝐾𝐾8𝑥𝑥1𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇
√40𝑥𝑥9𝑥𝑥4 = 𝐾𝐾9𝑥𝑥1�𝑥𝑥3𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇

40𝑛𝑛10𝑛𝑛42 = 𝐾𝐾10𝑛𝑛12𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 where,

 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑥𝑥𝑖𝑖

10

𝑖𝑖=1

The first for equations in the system arise form
the mole balances while the rest arise from the
equilibrium relations. 𝐾𝐾i for i = 5 to 10 are the
equilibrium constants.

2) Chemical Equilibrium [17] – The mathematical
structure of the combustion application system
is analysed and reformulated by using the no-
tion of ‘element variables’ (surrogates for atomic
combinations). The first four equations arise
from the reformulation of the mole balances in
the combustion application system whereas the
equilibrium relations reduce to a single equation
because of the element variable substitutions

which leads to the following system:

𝑭𝑭𝑪𝑪𝑪𝑪𝑪𝑪(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1 − 3𝑥𝑥5 = 0
2𝑥𝑥1𝑥𝑥2 + 𝑥𝑥1 + 𝑥𝑥2𝑥𝑥32 + 𝑅𝑅8𝑥𝑥2 − 𝑅𝑅𝑥𝑥5
+2𝑅𝑅10𝑥𝑥22 + 𝑅𝑅7𝑥𝑥2𝑥𝑥3 + 𝑅𝑅9𝑥𝑥2𝑥𝑥4 = 0

2𝑥𝑥2𝑥𝑥32 + 2𝑅𝑅5𝑥𝑥32 − 8𝑥𝑥5
+𝑅𝑅6𝑥𝑥3𝑥𝑥4 + 𝑅𝑅7𝑥𝑥2𝑥𝑥3 = 0

2𝑥𝑥42 − 4𝑅𝑅𝑥𝑥5 + 𝑅𝑅9𝑥𝑥2𝑥𝑥4 = 0
𝑥𝑥1(𝑥𝑥2 + 1) + 𝑅𝑅10𝑥𝑥22 + 𝑥𝑥2𝑥𝑥32 + 𝑅𝑅8𝑥𝑥2
+𝑅𝑅5𝑥𝑥32 + 𝑥𝑥42 − 1 + 𝑅𝑅6𝑥𝑥3 + 𝑅𝑅7𝑥𝑥2𝑥𝑥3

+𝑅𝑅9𝑥𝑥2𝑥𝑥4 = 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Note that the variables 𝑥𝑥𝑖𝑖 for 𝑖𝑖 = 1 to 5 have
been redefined along with the constant 𝑅𝑅 for 𝑖𝑖 =
5 to 10 to account for the element variable sub-
stitutions.

3) Recycle and Purge in the Synthesis of Ammonia

–The ammonia synthesis process involving a re-
cycle and a purge stream in considered. Given
the feed stream specifications and the reactor
conversion, it is desired to calculate the overall
conversion of nitrogen and the ratio of moles of
gas purged to the moles of gas leaving the con-
denser.

Figure 4: Flowsheet for the ammonia synthesis process.

The following system of equations arises from
the overall mole balances, stoichiometric rela-
tions, and material balances at the mixing and
split points.

𝑭𝑭𝑨𝑨𝑨𝑨(𝒙𝒙) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 − 0.125𝑛𝑛6 = 0
148.5 − 3𝑛𝑛5 − 1.75𝑛𝑛6 + 2𝑛𝑛6𝑥𝑥 = 0

49.5 − 2𝑛𝑛6𝑥𝑥 − 𝑛𝑛5 = 0
𝑛𝑛6 − 0.75𝑛𝑛1 = 0
0.5𝑛𝑛1 − 𝑛𝑛5 = 0

𝑛𝑛6 − 𝑥𝑥𝑛𝑛7 − 𝑛𝑛4𝑥𝑥 = 0
74.25 + 0.875𝑛𝑛7 − 𝑥𝑥𝑛𝑛7 − 𝑛𝑛2 = 0

1 + 0.125𝑛𝑛7 − 𝑛𝑛3 = 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

The domain ranges considered for each of these
problems are shown in Table 5.

Table 5: Domain bounds for the test problems

Problem Instance Domain Ranges
D-hyperspheres 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑖𝑖 = 1, … 10

Aras et al. / LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 111

D-hyperspheres 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑖𝑖 = 1, … 50
D-hyperspheres 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑖𝑖 = 1, … 100
Interval Arithmetic 𝑥𝑥𝑖𝑖 ∈ [−4,4] ∀ 𝑖𝑖 = 1, … .10
Neurophysiology Application 𝑥𝑥1 ∈ [−10,5]

𝑥𝑥2 ∈ [−10,6]
𝑥𝑥3 ∈ [−10,7]
𝑥𝑥4 ∈ [−10,8]
𝑥𝑥5 ∈ [−10,9]
𝑥𝑥6 ∈ [−10,9]

Combustion Application 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑖𝑖 = 1, … 10
Chemical Equilibrium 𝑥𝑥𝑖𝑖 ∈ [−5,5] ∀ 𝑖𝑖 = 1, … 5
Ammonia Synthesis 𝑛𝑛𝑖𝑖 ∈ [0,500] ∀ 𝑖𝑖 = 1, … .7

𝑥𝑥 ∈ [0,1]

COMPUTATIONAL EXPERIMENTS AND
RESULTS

All runs were performed on an Intel Xeon Gold
6248R 3GHz processor running on Linux (CentOS 7). The
algorithm was developed in Python v3.6.8 and used
CPLEXv20.1.0.1 in GAMSv35.1 to solve the LP model CH
for the system of surrogates.

Table 6: Fitness of solution obtained, number of nodes
explored and number of function evaluations for the test
problems.

Instance Fitness of
Solution

Nodes
Explored

Function
Evaluations

-D
hyperspheres

e-  

-D
hyperspheres

e-  

-D
hyperspheres

e-  

Interval
Arithmetic

e-  

Neurophysiol-
ogy
Application

e-  

Combustion
Application

e-  

Chemical
Equilibrium

e-  

Ammonia
Synthesis

e-  

We have reported the solutions for each of the test

problems using a sampled data set of 𝑁𝑁 + 1 vertices ex-
cept for the system of equations arising from the ammo-
nia synthesis model where we have used 2𝑁𝑁 vertices. The
solution of the LP (to minimize the distance to the fur-
thest convex hull surrogate) highly depends on choice of
the 𝑁𝑁 + 1 sampled vertices. In other words, the choice of
the set of the sampled data affects the path of the branch

and prune search.

CONCLUSIONS
In this work, we report a data-driven branch and

prune approach that has the potential to unlock new av-
enues for finding solutions to systems of equations with-
out the requirement of an initial guess. Furthermore, the
user can specify the domain bounds if solutions within a
desired search space are required. Multiple potential
sampling strategies need to be investigated which may
aid in faster convergence. Further work is needed to re-
duce the number of required function evaluations.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge support from

the NSF CAREER (CBET-1943479), and the DOE AIChE
RAPID Institute (DE-EE0007888-09-03) grants. Part of
the research was conducted with the computing re-
sources provided by Texas A&M High Performance Re-
search Computing.

REFERENCES
1. Wayburn, T. L., & Seader, J. D. Homotopy

continuation methods for computer-aided process
design. Computers & Chemical Engineering, 11(1),
7-25. (1987)

2. Maranas, C. D., & Floudas, C. A. Finding all
solutions of nonlinearly constrained systems of
equations. Journal of Global Optimization, 7, 143-
182. (1995)

3. Hansen, E. R., & Greenberg, R. I. An interval Newton
method. Applied Mathematics and
Computation, 12(2-3), 89-98. (1983)

4. Remani, C. Numerical methods for solving systems
of nonlinear equations. Lakehead University
Thunder Bay, Ontario, Canada, 77. (2013)

5. Ramos, H., & Vigo-Aguiar, J. The application of
Newton’s method in vector form for solving
nonlinear scalar equations where the classical
Newton method fails. Journal of computational and
applied mathematics, 275, 228-237. (2015)

6. Grosan, C., & Abraham, A. A new approach for
solving nonlinear equations systems. IEEE
Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, 38(3), 698-714.
(2008)

7. Ramos, H., & Monteiro, M. T. T. A new approach
based on the Newton’s method to solve systems of
nonlinear equations. Journal of Computational and
Applied Mathematics, 318, 3-13. (2017)

8. Alefeld, G., & Mayer, G. Interval analysis: theory
and applications. Journal of computational and

Aras et al. / LAPSE:2024.1515 Syst Control Trans 3:105-112 (2024) 112

applied mathematics, 121(1-2), 421-464. (2000)
9. Floudas, C. A. Deterministic global optimization:

theory, methods and applications (Vol. 37).
Springer Science & Business Media. (2013)

10. Hasan, M. M. F. An edge-concave underestimator
for the global optimization of twice-differentiable
nonconvex problems. Journal of Global
Optimization, 71(4), 735-752. (2018)

11. Iftakher, A., Aras, C. M., Monjur, M. S., & Hasan, M.
F. Data‐driven approximation of thermodynamic
phase equilibria. AIChE Journal, 68(6), e17624.
(2022)

12. Tardella, F. On a class of functions attaining their
maximum at the vertices of a polyhedron. Discrete
applied mathematics, 22(2), 191-195. (1988)

13. Tardella, F. On the existence of polyhedral convex
envelopes (pp. 563-573). Springer US. (2004)

14. Moore, R. E. Methods and applications of interval
analysis. Society for Industrial and Applied
Mathematics. (1979)

15. Verschelde, J., Verlinden, P., & Cools, R.
Homotopies exploiting Newton polytopes for
solving sparse polynomial systems. SIAM Journal
on Numerical Analysis, 31(3), 915-930. (1994)

16. Shacham, M., Brauner, N., & Cutlip, M. B. A web-
based library for testing performance of numerical
software for solving nonlinear algebraic equations.
In Computer Aided Chemical Engineering (Vol. 9,
pp. 291-296). Elsevier. (2001)

17. Meintjes, K., & Morgan, A. P. A methodology for
solving chemical equilibrium systems. Applied
Mathematics and Computation, 22(4), 333-361.
(1987)

© 2024 by the authors. Licensed to PSEcommunity.org and PSE
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator
and adaptations must be shared under the same terms. See
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

