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ABSTRACT 
Following the discovery of the least squares method in 1805 by Legendre and later in 1809 by 
Gauss, surrogate modeling and machine learning have come a long way. From identifying patterns 
and trends in process data to predictive modeling, optimization, fault detection, reaction network 
discovery, and process operations, machine learning became an integral part of all aspects of 
process design and process systems engineering. This is enabled, at the same time necessitated, 
by the vast amounts of data that are readily available from processes, increased digitalization, 
automation, increasing computation power, and simulation software that can model complex phe-
nomena that span over several temporal and spatial scales. Although this paper is not a compre-
hensive review, it gives an overview of the recent history of machine learning models that we use 
every day and how they shaped process design problems from the recent advances to the explo-
ration of their prospects. 
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A BRIEF HISTORY OF MACHINE 
LEARNING 

The roots of machine learning (ML) can be traced 
back to the early 19th century when the method of least 
squares was first discovered by Legendre in 1805 and 
later by Gauss in 1809 [1]. However, the main concept of 
computers learning from experience without explicitly 
being programmed has roots tracing back to more recent 
history, the mid-20th century.  

The foundational idea of neural networks emerged 
in the 1940s and 1950s when researchers began explor-
ing mathematical models inspired by the structure and 
functioning of the human brain. Warren McCulloch and 
Walter Pitts' paper, "A Logical Calculus of Ideas Immanent 
in Nervous Activity," was published in 1943, where they 
proposed a mathematical model of an artificial neuron 
which was the first idea of using a computational model 
for neural networks [2]. This foundational paper laid the 
groundwork for subsequent developments in neural net-
work theory. The term "neural network" itself gained 
prominence in the 1950s and 1960s as researchers like 
Frank Rosenblatt developed the perceptron, an early 

form of a neural network designed for pattern recognition 
tasks. While the perceptron had limitations, the idea of 
using computational models to simulate neural processes 
became a cornerstone in the evolution of artificial neural 
networks (ANNs) and ML. Around the same timeline, re-
sponse surface methodology was introduced by Box and 
Wilson [3], and the term “machine learning” was coined 
by Arthur Samuel [4].  

Throughout the following decades, various model-
ing approaches and algorithms, including Gaussian pro-
cess (GP) regression, backpropagation algorithm, sup-
port vector machines (SVMs), and Random Forest (RF), 
emerged in the ML landscape. Especially, the establish-
ment of the backpropagation algorithm was a pivotal mo-
ment in the resurgence and widespread adoption of neu-
ral works starting 1980s, enabling researchers to revisit 
the complex problems that were not possible to address 
before. This ultimately led to the application of neural 
networks in various scientific and engineering domains, 
including process design and operations, and to the de-
velopment of more complex algorithms. These include 
reinforcement learning, deep learning, natural language 
processing, and generative artificial intelligence (AI) 
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which are emerging areas of research within process 
systems engineering [5,6]. Although NN models have 
been the primary modeling strategy in process design 
problems due to their ability to capture nonlinearities very 
accurately, we will also demonstrate that SVMs and tree-
based ensemble models like RF and gradient boosted 
trees are also studied in depth.  

PAST APPLICATIONS OF ML IN PROCESS 
DESIGN 

With these developments underway, it was also im-
perative to revisit optimal design problems from the lens 
of ML models and process synthesis. Regression analysis 
and parameter estimation for kinetic or thermodynamic 
models were already performed for process design, da-
ting back to the 1960s. However, with the increasing 
computation power and the development of process sim-
ulation software, optimal design problems recognized the 
need for surrogate ML models due to: (1) the “black-box” 
nature of the simulation software that lacks the derivative 
information that is imperative for optimization; (2) the 
computational expense associated with sample-based 
derivative-free optimization techniques; and (3) the high 
mathematical complexity of process synthesis problems 
(mixed-integer nonlinear program – MINLP) that become 
intractable with high number of variables and constraints. 
Hence, earlier introduction of ML techniques in process 
design focused on replacing highly complex and/or noisy 
simulations with relatively simpler representations, espe-
cially within optimization frameworks to alleviate the 
mathematical complexity.  

For example, Caballero and Grossmann used kriging 
surrogate models to replace noisy unit operations in 
modular flowsheet optimization [7]. Likewise, Davis and 
Ierapetritou used kriging surrogates for tertbutyl methac-
rylate production design and process synthesis [8]. He-
nao and Maravelias used ANN surrogate models trained 
using the data collected from the process simulator to re-
place complex unit operations (e.g., distillation column, 
expansion valves, heaters/coolers, flash vessels, absorp-
tion columns) and reformulated these ANNs to incorpo-
rate within their superstructure optimization framework 
[9]. Fahmi and Cremaschi also used ANNs to substitute 
for thermodynamics and mixing models, as well as unit 
operations for process synthesis of biodiesel production 
[10]. One of the key challenges using ANNs was also 
noted in this work, where these models were “data hun-
gry” (i.e., large amounts of data were required to train ac-
curate ANN representations). The modeling complexity 
of the ANNs also made it challenging to incorporate them 
in large-scale optimization problems without any efficient 
reformulation strategies. Equation 1 shows the mathe-
matical structure of a general feed-forward NN, repre-
sented by a repeated composition of functions, 

𝑦𝑦 = 𝒇𝒇(𝒙𝒙;𝜽𝜽) = 𝑓𝑓𝐿𝐿 ∘ 𝑓𝑓𝐿𝐿−1 ∘ … ∘ 𝑓𝑓2 ∘ 𝑓𝑓1(𝒙𝒙;𝜽𝜽) (1) 

where 𝑦𝑦 is the output of the network, 𝒙𝒙 are the inputs to 
the network, 𝑓𝑓𝑖𝑖 is a layer in the neural network with trans-
formations applied by the activation functions, and 𝜽𝜽  are 
the weights and biases for the entire network. In simpler 
terms, this mathematical structure generates highly non-
linear expressions (except for purely linear activation 
functions) that create additional complexities for optimi-
zation algorithms to handle (Equation 2). 

𝑦𝑦 = 𝑓𝑓𝐿𝐿(𝑓𝑓𝐿𝐿−1 (𝑓𝑓𝐿𝐿−2(… . 𝑓𝑓1(𝒙𝒙)))) (2) 

Especially, within a global optimization framework, 
this nested functional form can be intractable as well. 
Motivated by this, most recent progress focused on using 
more simplified surrogate models for process design and 
synthesis problems, as well as developing novel reformu-
lation strategies that exploit the mathematical properties 
of activation functions. Next, we discuss these develop-
ments and other key progress in this area. 

CURRENT PROGRESS  

Reformulation of ML Models 
One of the most recent key breakthroughs in using 

ML in any optimization framework (e.g., process design, 
synthesis, or operations) is the ability to reformulate deep 
NNs with rectified linear unit (ReLU) activation functions 
into a mixed-integer linear program (MILP) [11-13]. By 
recognizing ReLU activation functions as max-affine 
spline operators that are piecewise linear (Equation 3), 
ANNs can be exactly reformulated with big-M constraints 
to create a MILP that can be solved to global optimality 
with off-the-shelf solvers. 

𝑦𝑦 = max{0, 𝑧𝑧} = �0       𝑖𝑖𝑖𝑖 𝑧𝑧 < 0
𝑧𝑧   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(3) 

This enabled MILP-reformulated ANNs to be em-
bedded in a variety of problems including optimizing the 
extractive distillation process [] sustainable hydrogen 
production using sorption enhanced steam methane re-
forming [] as well as for modeling flexibility index con-
straints in biorefinery design by superstructure optimiza-
tion []  This technique is also extended to other acti-
vation functions that are nonlinear [] and different 
modeling strategies such as tree-based ML models as 
they also partition the modeling space with piecewise lin-
ear models (Figure )  

Mišić [19] and Mistry et al. [20] encoded trained gra-
dient boosted regression trees, which are ensemble de-
cision tree models), to MILP models that are later embed-
ded into optimization problems. This technique is further 
extended as a black-box optimization algorithm in the 
ENTMOOT framework [21] and implemented as an open-
source software package named OMLT [22]. The ap-
plicability of the tree-based reformulation is also 
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demonstrated on an optimal layout design problem of an 
offshore windfarm [23]. 

Figure 1. A demonstration of how decision tree models 
(A) partition the space with piecewise linear models; and
(B) map this partitioning onto decision trees for a visual
representation.

Despite reformulation strategies alleviating a portion 
of the nonlinearity issues in NN and tree-based ensemble 
models we also observe that large-scale process syn-
thesis problems still rely on more simplistic models For 
instance Demirhan et al used linear surrogate models to 
model the conversion of a Haber-Bosch reactor within 
the renewable ammonia process synthesis problem that 
has  continuous  binary variables and  
constraints [] Under such large-scale global optimiza-
tion problems reformulating MILP representations of NN 
or tree-based models of individual units will amplify the 

number of binary variables which will further increase 
the complexity of the overall optimization model Hence 
the use of ML in large-scale synthesis problems is still 
contingent on the overall problem complexity even when 
ML models offer highly accurate predictions  

ML Algorithms as Constraints 
Nowadays, the use of ML is not limited to modeling 

individual unit operations or an entire flowsheet, but it 
can also serve as constraints to process design prob-
lems. Especially, process simulations are typically subject 
to black-box constraints that lack explicit analytical ex-
pressions relating the decision variables to constraint vi-
olations (i.e., the constraint violations can only be ob-
tained once the simulation run is completed). Constraint 
handling can be achieved in many ways, including aug-
mented Lagrangian formulations, penalty, filter, or barrier 
methods [25].   

Figure 2. The feasible region derived by fitted surrogates 
using regression analysis (purple) is shown on a contour 
plot of the objective function. Black dots show the 
sampling points for the input space. The constraints are: 
𝑥𝑥2 + 𝑦𝑦2 − 200 ≤ 0;  𝑥𝑥 − 5𝑦𝑦 + 10 ≤ 0;  25𝑥𝑥 −  2𝑦𝑦2 +  4𝑦𝑦 − 5 ≤
0; −𝑥𝑥 − 2𝑦𝑦2 + 4𝑦𝑦 − 5 ≤ 0. 

On the other hand, ML tools can be leveraged to 
handle constraints individually as a regression task 
[26,27], where constraint violations are modeled as less 
than or equal to constraints with surrogate models (Fig-
ure 2), or holistically as a classification task [28-30], 
where a separating model between feasible and infeasi-
ble solutions are established. A conceptual demonstra-
tion of a nonlinear constraint being modeled as a classi-
fier using SVM with Gaussian radial basis function kernel 
is provided in Figure 3.  

This is achieved by using a dataset of simulated 
samples with their binary outcome (feasible/infeasible) to 
train one or more classification models instead of 
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individually modeling actual violation values as done in 
the regression analysis. The trained classifier can then be 
used with a data-driven optimizer or implemented in a 
superstructure model using the aforementioned reformu-
lation strategies. In that respect, SVM classifiers are 
shown to effectively model the implicit constraints of nu-
merically infeasible differential algebraic equations of a 
steam cracker reactor design problem [28,29]. SVM clas-
sifiers are also used for modeling feasibility constraints in 
the vertex formulation of modular design problems [30].  

Figure 3. An SVM-based classifier trained to mimic the 
nonlinear constraint, 𝑦𝑦 < 1/(𝑥𝑥3 − 𝑥𝑥2 + 1): (A) The original 
constraint within the bounded space; (B) The map of the 
feasible region captured by SVM. The predictive 
performance of the classifier on a blind testing set: 
Accuracy = 100%; Sensitivity = 100%; Specificity = 100%; 
F1 score = 100%. 

 While these studies show promise for using clas-
sifiers, the offline model training is still time-consuming 
(i.e., several thousand samples are collected from the 
simulator to create the model) with no efficient way to 

recycle or integrate the already collected data into the 
decision-making process. Also, understanding the uncer-
tainties surrounding these models as well as their mis-
classification rate is of utmost importance for constraint 
modeling, as misclassifications can lead to infeasible so-
lutions or designs, whereas in regression-based models, 
such misviolations are less likely to happen. 

Large Language Models & Generative AI for 
Process Design 

Choosing the right sequence of unit operations and 
connections to create a flowsheet is a fundamental prac-
tice in process design, whether it is done heuristically or 
through superstructure optimization. With the launch of 
ChatGPT, the key question becomes whether natural lan-
guage processing or generative techniques can be uti-
lized for process design and discovery. As a language 
model, ChatGPT is designed to understand and generate 
human-like text based on the input it receives. However, 
chemical engineering problems, such as process flow-
sheet generation, are based on recognizing the sequence 
of unit operations. This comes with the caveat of lack of 
suitable data to be able to train the large language mod-
els that can generate a flowsheet automatically [31]. For 
instance, there could be 20+ different representations for 
the same unit [32] or process flowsheets are most likely 
proprietary or unavailable to extract the information nec-
essary for the AI model development [33]. 

To overcome these limitations, Vogel et al. devel-
oped SFILES 2.0 [33] to represent flowsheets using a 
graph notation, analogically similar to the text-based 
SMILES notation for representing chemical structures. 
This was primarily developed to topologically describe a 
flowsheet with the disadvantage of not storing any infor-
mation about the sizing or the operating conditions of the 
units. Along the idea of ChatGPT, Vogel et al. also inves-
tigated the automatic completion of flowsheets using 
causal language modeling [34]. Their results show that 
the generative AI model can learn the topological pat-
terns in flowsheet data and can automatically complete 
flowsheets. However, like the issues faced in ChatGPT, 
the generated flowsheet may not make practical sense, 
as the developed model does not intake contextual infor-
mation about the process. Using the SFILES notation, 
Hirtreiter et al. also investigated the automatic genera-
tion of control structures for flowsheets [35]. While the 
predictive accuracy of the trained models was relatively 
high, significant limitations are also noted by the authors. 
Especially, concerns regarding safety indicators, under-
standing the process dynamics and operational objec-
tives, and lack of information on the equipment sizing and 
operating conditions for the units pose major questions. 
These promising developments show that natural lan-
guage processing and large language models can pro-
vide a “warm start” for flowsheet generation and facilitate 
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some of the time-consuming tasks. However, more re-
search needs to be done in this area to be able to improve 
confidence in model predictions while providing a holistic 
view of process design beyond just the topological inves-
tigation. 

CONCLUSIONS 
Artificial Intelligence and machine learning (ML) 

models are now an essential component of process de-
sign with efficient model integration and reformulation 
strategies paving the way. Constraint handling with ML 
models to flowsheet generation using large language 
models, we see new and innovative ways of how ML is 
used for process design problems. While the main moti-
vation for using ML models is to alleviate the model com-
plexities and such models have proven to be successful 
over the course of decades, domain knowledge and 
model interpretability will still play the most important 
role despite the promise these models hold.  The ability 
to understand why a model makes a particular prediction 
and to reason if predicted results are physically sound or 
whether a generative model-derived process flow dia-
gram is safe to implement becomes critically important. 
This judgment requires a deep fundamental understand-
ing of the process, engineering expertise, and other rele-
vant domain knowledge. Incorporating safety and risk 
measures, and combining ML models with first-principles 
information to create hybrid models are a few avenues 
that researchers are currently investigating. Neverthe-
less, the importance of interpretability and understanding 
the process relevance of the predictions will persist in 
this field.  
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