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Abstract: This study aims to address the problem of poor synchronous accuracy when facing a time-
varying load in conventional load-sensitive synchronous drive systems. The new electro-hydraulic
load-sensitive (EHLS) diverter synchronous drive system was proposed by combining the diverter
valve and the EHLS synchronous drive system. The variable pressure margin compensation control
was proposed to further improve the system’s synchronous control performance. Based on the
system control strategy and component mathematical model, the simulation models of the EHLS,
EHLS synchronous, and EHLS diverter synchronous drive systems were established using AMESim,
respectively, and the synchronous control performance of the systems was obtained. The simulation
results show that the EHLS drive system realized the primary functions of the load-sensitive system
and could realize the variable load-sensitive pressure margin control. The EHLS synchronous
drive system had poor synchronous control accuracy, but variable pressure compensation valve
pressure margin control could be realized. The EHLS diverter synchronous drive system effectively
improved the system’s synchronous control performance and diverter synchronous accuracy by
variable pressure margin compensation control. The diverter system diverter error was reduced by
40.8%, and the diverter system after the compensation diverter error was reduced by 52.6% when
the multi-way valves were fully opening. The system provides the solution for high-performance
hydraulic synchronous drives under severe operating conditions.

Keywords: EHLS; variable pressure margin compensation control; diverter valve; synchronous
drive; simulation

1. Introduction

In recent years, the international community has attached increasing importance to
developing the green economy, realizing “carbon neutrality” has become a significant
development goal in the future [1,2]. To achieve zero emissions, off-road mobile machines
and industrial hydraulics are also embracing the era of electrification, i.e., variable speed
hydraulics will be the mainstay of future development.

The EHLS systems are typical applications of variable speed hydraulics technology,
where the speed of the motor is controlled to match the pressure and flow of the system.
Because the system has the advantages of fast response speed, strong self-adaptation, and
smooth operation [3], it is widely used in electromechanical equipment. The development
of electromechanical equipment technology has led to large-scale and heavy-duty devel-
opments [4,5]. This also increases the need for hydraulic synchronous drive technology
for heavy loads. Hydraulic synchronous technology is used in various engineering appli-
cations [6–8]. High-precision, high-reliability, and high-efficiency hydraulic synchronous
drives have been an important research topic and problem in hydraulics [9]. Hydraulic
synchronous drive control consists of two primary forms of control: hydraulic synchronous
closed-loop control and hydraulic synchronous open-loop control [10].
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For hydraulic synchronous closed-loop control, scholars have carried out much
research [11]. Ma [12] proposed the improved automatic anti-interference controller-
improved particle swarm optimized position synchronous control method to solve the
problem of insufficient platform synchronous control accuracy of the multi-hydraulic
cylinder group platform of an anchor digging support robot. The results show that the
method has better position tracking performance and shorter adjustment time, its stepping
signal synchronous error was controlled within 5.0 mm, and the adjustment time was
less than 2.55 s. Ding [13] proposed the robust output feedback position controller to
solve the problem of the poor robustness of the conventional PID controller of the hy-
draulic support. The results show that the tracking accuracy of this controller was 47.2%
and 30.6% higher than the conventional controller, respectively. Guo [14] proposed the
synchronous controller based on improved sliding mode control for the hydraulic strut
system. The results show that the controller could effectively reduce the synchronous
error between the positions of two hydraulic struts and had better control performance
than the PI and fuzzy PID controllers. Zhu [15] proposed the control method with dual
closed-loop composite robustness to solve the performance deficiencies of the dual-pump
dual-valve-controlled motor, such as poor output speed stability, low controllability, and
difficulty in synchronous output management under external disturbances. The results
show that the control method had high accuracy and robustness. Jing [16] proposed a load
disturbance decoupling control method and developed a two-cylinder synchronous control
system to meet the high precision control requirements of the system. The results show
that the system’s robustness was improved. Therefore, most controllers were combined
with optimization algorithms for hydraulic synchronous closed-loop control. Although it
effectively improved the synchronous control performance of the system, the system was
more complex and costly [17].

Hydraulic synchronous open-loop control is mainly based on the load-sensitive system.
Hu [18] proposed the new pile-pressing hydraulic control system based on the design of the
load-sensitive pump aimed at the problem of unsynchronous movement of pile-pressing
cylinders during the pile pressing of a hydraulic static pile driver. The results show that the
system had good synchronous control performance. Yang [19] used load-sensitive control
for the two-cylinder synchronous drive to demand the high-efficiency, adjustable-speed,
and high-precision synchronous drive system. The results reveal the primary factors and
laws that affect the synchronous accuracy of the system. Wang [20] used the load-sensitive
principle for the open-loop synchronous loop of the stent from the point of view of energy
saving and high efficiency. The results show that this synchronous system’s displacement
and velocity synchronous error were small. Therefore, the hydraulic synchronous open-
loop control was mainly applied to the occasions where synchronous accuracy was not
required. Although the hydraulic synchronous open-loop control is relative to the hydraulic
synchronous closed-loop control, synchronous control accuracy is poor. The research of
a new high-precision hydraulic synchronous open-loop control system is also significant,
considering the cost.

Based on the above analysis, this study combined the EHLS synchronous drive system
with the diverter valve diverter synchronous technology to construct a new EHLS diverter
synchronous drive system. The contributions of this research are as follows:

(1) The EHLS drive system was constructed, and variable load-sensitive pressure margin
control was realized;

(2) The diverter valve diverter synchronous technology was used in the EHLS syn-
chronous drive system to construct the EHLS diverter synchronous drive system. It
effectively improved the diverter synchronous accuracy of the system. However, it
reduced the synchronous control performance of the system;

(3) The solenoid pressure compensation valve replaced the conventional pressure com-
pensation valve. The variable pressure compensation valve pressure margin control
was realized;
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(4) The system synchronous control performance was ensured, and the system diverter
synchronous accuracy was improved by variable pressure margin control.

This paper is structured as follows. Section 2 is the analysis of the system’s working
principle. Section 3 is the analysis of the system control strategy. Section 4 is the analysis
of the components’ mathematical model. Section 5 is system modeling and simulation.
Section 6 is the discussion. Furthermore, Section 7 is the conclusion.

2. Analysis of the System’s Working Principle

This part analyzes the working principle and drawbacks of the conventional EHLS
synchronous drive system. The new EHLS diverter synchronous drive system is proposed
based on the conventional system, and the system’s working principle is analyzed.

2.1. Analysis of the Working Principle of the Conventional System

A conventional and typical EHLS synchronous drive system [21–23] is shown in
Figure 1. The permanent magnet synchronous motor (PMSM), 1, drives a quantitative
pump, 2, to generate high-pressure oil. The high-pressure oil enters the pressure compen-
sation valves, 6 and 7, through the multi-way valves, 4 and 5, respectively, and the oil
from the pressure compensation valves, 6 and 7, enters the synchronous actuator, 8, which
causes the synchronous actuator, 8, to perform synchronous actions.
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Figure 1. Schematic diagram of the conventional typical EHLS synchronous drive system. 1. PMSM. 
2. Quantitative pump. 3. Safety valve. 4, 5. Multi-way valve. 6, 7. Conventional pressure 
compensation valve. 8. Synchronous actuator. 9, 10. Tank. 11. Pressure sensor. 12. Shuttle valve. 13. 
Controller. 14. Time-varying load. 

The multi-way valve openings are the same for load-sensitive synchronous drive sys-
tems during operation. The pressure compensation valves, 6 and 7, eliminate flow rate 
errors caused by static load variation. However, the load is mostly time-varying when the 

Figure 1. Schematic diagram of the conventional typical EHLS synchronous drive system. 1. PMSM.
2. Quantitative pump. 3. Safety valve. 4, 5. Multi-way valve. 6, 7. Conventional pressure compensa-
tion valve. 8. Synchronous actuator. 9, 10. Tank. 11. Pressure sensor. 12. Shuttle valve. 13. Controller.
14. Time-varying load.

The multi-way valve openings are the same for load-sensitive synchronous drive
systems during operation. The pressure compensation valves, 6 and 7, eliminate flow rate
errors caused by static load variation. However, the load is mostly time-varying when the
synchronous actuator, 8, performs synchronous actions. The pressure compensation valves
are slow to respond and do not eliminate time-varying loads. Furthermore, the system
uses pressure feedback closed-loop control to control the system pressure and flow rate.
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When the load changes, it will inevitably cause the system pressure and flow rate to change,
reducing the system’s synchronous accuracy. When the actuator requires high synchronous
accuracy, it is difficult for the system to meet the requirements. Therefore, it is necessary to
improve the system’s synchronous accuracy.

2.2. Analysis of the Working Principle of the New System

The diverter valve diverter synchronous technology is introduced into the typical
EHLS synchronous drive system to improve the synchronous accuracy of the conventional
drive system when facing a time-varying load. The new EHLS diverter synchronous drive
system is constructed, as shown in Figure 2. The system is compared with the conventional
system. The diverter valve, 18, is added between the quantitative pump, 2, and the multi-
way valves, 4 and 5. It can improve the system diverter synchronous accuracy. A solenoid
pressure compensation valve replaces the conventional pressure compensation valve. It
can improve the response speed of the pressure compensation valve and reduce the impact
of time-varying load on the synchronous system. When the system load is a time-varying
load, the system can effectively improve the synchronous accuracy of the system through
the diverter effect of the diverter valve and the compensation effect of the solenoid pressure
compensation valve.
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Figure 2. Schematic diagram of the new EHLS diverter synchronous drive system. 1. PMSM. 2. 
Quantitative pump. 3. Safety valve. 4, 5. Multi-way valve. 6, 7. Solenoid pressure compensation 
valve. 8. Synchronous actuator. 9, 10. Tank. 11, 12, 13, 14, 15. Pressure sensor. 16. Controller. 17. 
Time-varying load. 18. Diverter valve. 
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Figure 2. Schematic diagram of the new EHLS diverter synchronous drive system. 1. PMSM.
2. Quantitative pump. 3. Safety valve. 4, 5. Multi-way valve. 6, 7. Solenoid pressure compensation
valve. 8. Synchronous actuator. 9, 10. Tank. 11, 12, 13, 14, 15. Pressure sensor. 16. Controller.
17. Time-varying load. 18. Diverter valve.

3. Analysis of System Control Strategy

This section analyzes the variable speed control, the variable load-sensitive pressure
margin control, and the variable pressure compensation valve pressure margin control.

3.1. Variable Speed Control

The system utilizes a combination of the quantitative pump and the PMSM. The
PMSM speed is adjusted to control the quantitative pump outlet pressure and flow rate
using pressure feedback closed-loop control.
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The quantitative pump outlet target pressure can be described as [24]:

pp′ = pMax + ∆pLs (1)

where pp′ is the target pressure of the quantitative pump, Pa; pMax is the maximum load
pressure, Pa; and ∆pLs is the load-sensitive preset pressure margin, Pa.

The quantitative pump outlet pressure error can be described as [24]:

ep = pp′ − pp (2)

where ep is the quantitative pump outlet pressure error, Pa, and pp is the actual pressure of
the quantitative pump outlet, Pa.

The PMSM target torque can be obtained using ep as the PID controller inlet, and then
the PMSM target torque can be described as [24]:

T
(
ep
)
= kpep + ki

∫
epdt + kd

.
ep (3)

where T
(
ep
)

is the PMSM target torque, N·m; kp is the scaling factor; ki is the integration
coefficient; and kd is the differentiation coefficient.

The PMSM target speed can be described as [24]:

nre f = f
(
ep
)
=

9550P
T
(
ep
) (4)

where nre f is the PMSM target speed, rev/min, and P is the PMSM rated power, kW.
It can be seen in Equations (1)–(4) that when pMax changes dynamically to maintain

∆pLs, the PMSM target speed will also change to dynamically regulate the quantitative
pump’s outlet pressure and flow rate to bring the system to a new equilibrium state.

3.2. Variable Load-Sensitive Pressure Margin Control

Based on the analysis in Section 3.1, it can be seen that when ∆pLs is changed, the
system can maintain the new ∆pLs through the pressure feedback closed-loop control.
Therefore, the system can realize variable ∆pLs control.

For the EHLS synchronous drive system, synchronous performance can be reflected
by the flow rate of each branch.

The flow rate through the multi-way valve, 1, can be described as:

Q1 = Cdwx1

√
2(∆pLs − ∆pd)

ρ
= Cdwx1

√
2(∆p1)

ρ
(5)

where Q1 is the flow rate through the multi-way valve, 1, m3/s; Cd is the flow coefficient;
w is the area gradient, m; x1 is the spool displacement of the multi-way valve, 1, m; ∆pd
is the preset pressure margin of the pressure compensation valve, Pa; ρ is the oil density,
kg/m3; and ∆p1 is the pressure difference before and after the multi-way valve, 1, Pa.

The flow rate through the multi-way valve, 2, can be described as:

Q2 = Cdwx2

√
2(∆pLs − ∆pd)

ρ
= Cdwx2

√
2(∆p2)

ρ
(6)

where Q2 is the flow rate through the multi-way valve, 2, m3/s; x2 is the spool displacement
of the multi-way valve, 2, m; and ∆p2 is the pressure difference before and after the multi-
way valve, 2, Pa.

Ib Equations (5) and (6), Q1 and Q2 vary when ∆pLs varies. Therefore, the variable
∆pLs control can regulate the system flow rate.
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Normally, the system multi-way valve openings are equal, i.e., x1 = x2. Therefore,
theoretically, Q1 = Q2, i.e., the flow rate of each branch is equal. However, when time-
varying loads exist in each system branch, it is difficult for the system to reach equilibrium
quickly, resulting in the actual ∆p1 ̸= ∆p2 in each branch of the system, which results in
Q1 ̸= Q2, i.e., the flow rate in each branch is not equal, causing the system diverter error.

For the EHLS diverter synchronous drive system, the diverter valve is added to the
circuit, resulting in a system pressure loss.

The flow rate through the multi-way valve, 1, can be described as:

Q11 = Cdwx1

√
2(∆pLs − ∆ps1 − ∆pd)

ρ
= Cdwx1

√
2(∆p11)

ρ
(7)

where Q11 is the flow rate through the multi-way valve, 1, m3/s; ∆ps1 is the branch 1
diverter valve pressure drop, Pa; and ∆p11 is the pressure difference before and after the
multi-way valve, 1, Pa.

The flow rate through the multi-way valve, 2, can be described as:

Q22 = Cdwx2

√
2(∆pLs − ∆ps2 − ∆pd)

ρ
= Cdwx2

√
2(∆p22)

ρ
(8)

where Q22 is the flow rate through the multi-way valve, 2, m3/s; ∆ps2 is the branch 2
diverter valve pressure drop, Pa; and ∆p22 is the pressure difference before and after the
multi-way valve, 2, Pa.

It can be seen in Equations (7) and (8) that since the opening of the multi-way valve is
equal, i.e., x1 = x2. It must satisfy ∆p11 = ∆p22 to realize Q11 = Q22. When there is a time-
varying load in each branch of the system due to the diverter effect of the diverter valve,
∆ps1 and ∆ps2 are compensated for the system so that ∆p11 = ∆p22, realizing Q11 = Q22.
Thus, the system diverter synchronous accuracy is improved.

When the opening of the multi-way valve increases, the system flow rate increases, while
the throttling effect of the diverter valve is strengthened, resulting in an increase in ∆ps1 and
∆ps2, which reduces Q11 and Q22. It is necessary to satisfy Q1 = Q2 = Q11 = Q22 to ensure
the synchronous control performance of the system, as is shown in Equations (5)–(8), i.e., it is
necessary to satisfy ∆p1 = ∆p2 = ∆p11 = ∆p22. Therefore, ∆pLs and ∆pd must be changed so
that the system realizes ∆p1 = ∆p2 = ∆p11 = ∆p22, i.e., the system must undergo variable
pressure margin control.

3.3. Variable Pressure Compensation Valve Pressure Margin Control

The solenoid pressure compensation valve replaces the conventional pressure compen-
sation valve to realize the variable pressure compensation valve pressure margin control.

The actual differential pressure of the solenoid pressure compensation valve can be
described as [24]:

epd = pn − pMax (9)

where epd is the actual differential pressure of the solenoid pressure compensation valve,
Pa, and pn is the pressure before the solenoid pressure compensation valve, Pa.

The pressure compensation valve preset differential pressure error can be described
as [24]:

epdm = ∆pd − epd (10)

where epdm is the preset differential pressure error of the solenoid pressure compensation
valve, Pa.

The control current of the solenoid pressure compensation valve can be described
as [24]:

ic = kpepdm + ki

∫
epdmdt + kd

.
epdm (11)
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where ic is the control current of the solenoid pressure compensation valve, A.
It can be seen in Equations (9)–(11) that when pMax is dynamically changed, the

solenoid pressure compensation valve control current will also be changed to maintain ∆pd
so that the system reaches a new equilibrium state. When ∆pd is changed, the system can
maintain the new ∆pd by pressure feedback closed-loop control. Therefore, the system can
realize variable ∆pd control.

Based on the analysis in Sections 3.1–3.3, a block diagram of the system control strategy
can be obtained, as shown in Figure 3. Through the pressure feedback closed-loop control,
the system can realize variable load-sensitive and variable pressure compensation valve
pressure margin control to compensate for the pressure loss caused by the diverter valve.
Under the premise of ensuring the synchronous control performance of the system, the
diverter of synchronous accuracy of the system is improved.
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Figure 3. Block diagram of the system control strategy.

4. Analysis of Components’ Mathematical Model

This part analyzes the PMSM, solenoid pressure compensation valve, and diverter
valve mathematical model and establishes the components simulation model based on the
mathematical model.

4.1. PMSM Mathematical Model

The PMSM consists of a controller, inverter, motor, and sensors. In order to facilitate
the analysis, the assumptions are simplified during the derivation of the mathematical
model [25]. Based on the assumptions, its equivalent schematic diagram can be obtained,
as shown in Figure 4.
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Figure 4. Equivalent schematic of the PMSM in dq coordinate system.

The stator voltage equation of the PMSM can be described as [25]:[
ud
uq

]
=

[
Rs −ωeLq

ωeLd Rs

][
id
iq

]
+

d
dt

[
ψd
ψq

]
+

[
0

ωeψ f

]
(12)

where ud and uq are the dp-axis voltages, V; id and iq are the dp-axis currents, A; ψd and ψq
are the dp-axis magnetic chains, Wb; and ωe is the rotor angular velocity, rad/s.

The magnetic chain equation of the PMSM can be described as [25]:[
ψd
ψq

]
=

[
Ld 0
0 Ld

][
id
iq

]
+

[
ψ f
0

]
(13)

The electromagnetic torque equation of the PMSM can be described as [25]:

T2e =
3
2

p2n

[
ψ f iq +

(
Ld − Lq

)
idiq

]
(14)

where T2e is the motor output torque, N·m, and p2n is the number of motor pole pairs.
Equation (14) consists of two terms. The first term, ψ f iq, is the excitation torque; the

electromagnetic torque formed by the interaction of the excitation field of the permanent
magnet with the stator current. The second term,

(
Ld − Lq

)
idiq, is the reluctance torque; the

electromagnetic torque formed by the rotor convex polarity effect. The reluctance torque is
inherent to the convex polarity PMSM. There is no formation of reluctance torque for the
hidden polarity PMSM due to Ld ̸= Lq. Therefore, the linear equation of the electromagnetic
torque can be described as [25]:

T2e =
3
2

pnψ f iq (15)

The PMSM equations of motion can be described as [25]:

T3e = TL + J
dω

dt
+ Bω (16)

where T3e is the motor outlet torque, N·m; TL is the load torque, N·m; J is the equivalent
moment of inertia converted to the motor shaft, kg·m2; B is the coefficient of viscous friction;
and ω is the mechanical angular velocity of the motor outlet shaft, rad/s.

In Equation (16), Bω is the loss torque of the motor motion and J dω
dt is the acceleration

torque of the whole motor system. Neglecting the damping efficiency and simplifying
Equation (16), we obtain:

J
dω

dt
= T3e − TL (17)
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The control of the PMSM speed control system can be categorized into variable voltage
and frequency, direct torque, speed without a sensor, and vector control [26]. This research
uses a representative control method, the idre f = 0 control in a vector. Based on the above
analysis, the AMESim establishes the simulation model, as shown in Figure 5.
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4.2. Mathematical Modeling of Solenoid Pressure Compensation Valve

The system pressure is controlled by the spool displacement during the operation of
the solenoid pressure compensation valve. The differential equation of the spool motion of
the pressure compensation valve can be described as follows [27]:

FC − FK = MC
d2xC

dt2 + BC
dxC
dt

+ KSCxC (18)

where FC is the electromagnetic force, N; FK is the preset spring force, N; MC is the spool
mass, kg; BC is the viscous damping coefficient; KSC is the spring stiffness, N/m; and xC is
the spool displacement, m.

For the maximum load branch, the pressure before the solenoid pressure compensation
valve can be described as [27]:

pC1 = ∆pd + pmax (19)

where pC1 is the pressure before the solenoid pressure compensation valve, Pa.
For the other branch, the pressure before the solenoid pressure compensation valve

can be described as [27]:
pC2 = ∆pd + pL + pC (20)

where pC2 is the pressure before the solenoid pressure compensation valve, Pa; pL is the
load pressure, Pa; and pC is the solenoid pressure compensation valve compensating
pressure, Pa.

When the load pressure pmax and pL change dynamically, FC changes with them. It can
be seen in Equations (18)–(20) that due to the compensating effect of the solenoid pressure
compensation valve, i.e., pC is compensated in the less loaded branch, making pC1 = pC2.
It makes the pressure difference before and after the multi-way valves, 1 and 2, equal,
making the flow rate through the multi-way valves, 1 and 2, equal.

Based on the above analysis, the AMESim hydraulic, signal, and HCD library are used
to establish the simulation model, as shown in Figure 6, and the simulation parameters in
Table 1.
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Table 1. The Main simulation parameters of the solenoid pressure compensation valve.

Components Parameters Value

Solenoid pressure
compensation valve

Spool diameter 0.01 m

Zero displacement length 0.003 m

Rated current 0.04 A

Damping factor 50 N/(m/s)

Spool quality 0.01 kg

4.3. Mathematical Modeling of the Diverter Valve

The diverter valve is used as the system flow distribution element, ignoring the
secondary influences [28], and its mechanical simplified model is shown in Figure 7, in
which the throttle ports are all used as thin-walled small holes.
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Based on the flow equations for the cylindrical slide valve opening and throttle port,
the flow continuity equations for each volume chamber, and the spool dynamics equations,
the dynamic mathematical model of the diverter valve can be described as [29]:

Qa = cπdc(xm + ∆x)

√
2
ρ
(pc − pa) (21)

Qb = cπdc(xm − ∆x)

√
2
ρ
(pd − pb) (22)

Qc =
1
4

cπda
2

√
2
ρ
(ps − pc) (23)
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Qd =
1
4

cπdb
2

√
2
ρ
(ps − pd) (24)

Qc − Qa −
1
4

πdc
2 dx

dt
− V1

βe

dpc

dt
= 0 (25)

Qd − Qb +
1
4

πdc
2 dx

dt
− V2

βe

dpd
dt

= 0 (26)

Qs − Qc−Qd −
V0

βe

dps

dt
= 0 (27)

M
d2x
dt2 + Bv

dx
dt

+ [k1(xm + ∆x)− k2(xm − ∆x)] =
1
4

πdc
2(pc − pd) (28)

where Qa and Qb are the left and right outlet port flow rate, m3/s; Qc and Qd are the outlet
flow rate of the left and right cavity fixed throttling ports, m3/s; Qs is the inlet port flow
rate, m3/s; c is the throttle port flow coefficient, c = c1 = c2; da and db are the equivalent
diameters of the fixed throttling holes of the left and right valve cavities, m; dc is the
diameter of the valve seat bore, m; pa and pb are the left and right output port pressures,
Pa; pc and pd are the outlet pressure of the left and right cavity fixed throttling port, Pa; ps
is the inlet port pressure, Pa; xm is the pre-opening of the variable throttle port when the
spool is in the middle position, m; ∆x is the pre-opening volume of the convenience throttle
port when the spool is in the neutral position, m; V0 is the inlet cavity volume, m3; V1 and
V2 are the left and right cavity volumes of the spool, m3; βe is the integrated modulus of
elasticity of the system; Bv is the viscous damping of the liquid; M is the mass of the spool,
kg; and k1 and k2 are the centering spring stiffnesses.

The steady-state characteristic equation of the diverter valve can be obtained by
making dpc

dt = dpd
dt = dps

dt = d2x
dt2 = dx

dt = 0.
The system diverter error can be described as:

η = 2
Qa − Qb

Qs
× 100% (29)

where η is the system diverter error, %.
Based on the above analysis, the AMESim hydraulic, 2D mechanical, and HCD libraries

are used to establish the simulation model, as shown in Figure 8, and the simulation
parameters in Table 2.
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Table 2. The main simulation parameters of the diverter valve.

Components Parameters Value

Diverter valve

Spring stiffness 1000 N/m

Spring pre-compression force 10 N

Spool diameter 0.01 m

Zero displacement length 0.003 m

Maximum opening
displacement length 0.01 m

Spool quality 0.01 kg

5. System Modeling and Simulation

This part establishes the simulation models of the EHLS, EHLS synchronous, and
EHLS diverter synchronous drive systems and analyzes the system characteristics.

5.1. The EHLS Drive System

Based on the analysis in Section 3.1, Section 3.2, and Section 4.1, the simulation model
can be established using the AMESim hydraulic, 1D mechanical, and signal libraries,
as shown in Figure 9. The proportional relief valve simulates the load, which is set to
(5sin(2πt) + 20) MPa. The proportional throttle valve simulates the multi-way valve. The
main simulation parameters of the system are set, as shown in Table 3. The simulation time
is set to 10 s, in which 0 to 2 s multi-way valve opening is 20%, 2 s to 4 s multi-way valve
opening is 40%, 4 s to 6 s multi-way valve opening is 60%, 6 s to 8 s multi-way valve opening
is 80%, and 8 s to 10 s multi-way valve opening is 100%. Subsequent studies will analyze
the system characteristics based on this simulation time. The system characteristics are
discussed for simulated load-sensitive pressure margins of 2 MPa and 3 MPa, respectively.
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Table 3. The main simulation parameters of the system.

Components Parameters Value

PMSM Rated speed 1500 rev/min

Quantitative pump
Displacement 0.0002 m3/rev

Rated speed 1500 rev/min

Safety valve Cracking pressure 28 MPa

Proportional throttle

Maximum opening diameter 0.01 m

Minimum signal 0

Maximum signal 1

Proportional
relief valve

Maximum opening pressure 25 MPa

Valve lagging pressure 0

Valve rated current 0.25 A

As shown in Figure 10, the system pressure, flow, and opening curves are simulated
when the load-sensitive pressure margin is 2 MPa. The outlet pressure of the quantitative
pump changes, and the pressure difference before and after the multi-way valve is maintained
at 2 MPa when the simulated load pressure changes. The flow rate through the multi-way
valve increases when the opening of the multi-way valve increases. The system flow rate is
independent of the load pressure and proportional to the opening of the multi-way valve.
Therefore, the system realizes the primary function of the load-sensitive system.
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As shown in Figure 11, the system pressure, flow, and opening curves are simulated
when the load-sensitive pressure margin is 3 MPa. The quantitative pump outlet pressure
changes, and the pressure difference before and after the multi-way valve is maintained at
3 MPa when the simulated load pressure changes. The flow rate through the multi-way
valve increases when the multi-way valve opening increases. As the simulated load-
sensitive pressure margin increases, the flow rate through the multi-way valve increases,
combined with the analysis in Figure 10. Therefore, the system can realize variable load-
sensitive pressure margin control to regulate the differential pressure and flow rate before
and after the multi-way valve.
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Based on the above analysis, the system realizes the primary functions of the load-
sensitive system and can realize the variable load-sensitive pressure margin control to
regulate the differential pressure and flow before and after the multi-way valve.

5.2. The EHLS Synchronous Drive System

Based on the analysis in Section 3.2 and combined with the analysis in Section 5.1,
a simulation model can be established, as shown in Figure 12. The system consists of
two synchronous branches: load 1 is set to (5sin(4πt) + 15) MPa and load 2 is set to
(5cos(4πt) + 15) MPa. The subsequent study will analyze the system characteristics based
on this load. The system characteristics are discussed for simulated solenoid pressure
compensation valves with 1 MPa and 1.5 MPa pressure margins, respectively.
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As shown in Figure 13, the system pressure, flow rate, and opening curves are shown
when the solenoid pressure compensation valve margin is 1 MPa. The pressure difference
before and after the multi-way valves, 1 and 2, is maintained at about 1 MPa when the
simulated load pressures, 1 and 2, change alternately. The flow rate of the multi-way
valves, 1 and 2, gradually increases, and the flow rate error becomes larger and larger as
the opening of the multi-way valve increases. Therefore, the system has poor synchronous
control accuracy.
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As shown in Figure 14, the system pressure, flow rate, and opening curves are shown
when the solenoid pressure compensation valve margin is 1.5 MPa. The pressure difference
between the front and rear of the multiplex valves, 1 and 2, is maintained at about 0.5 MPa
when the simulated load pressures, 1 and 2, change alternately. The flow rate of the multi-
way valves, 1 and 2, gradually increases, and the flow rate error becomes larger and larger
as the opening of the multi-way valve increases. As the solenoid pressure compensation
valve margin increases, the flow rate through the multi-way valve decreases, combined
with the analysis in Figure 13. The differential pressure error before and after the multi-
way valves, 1 and 2, is getting smaller and smaller, and the system flow error is getting
smaller and smaller. Therefore, the system can realize variable pressure compensation
valve pressure margin control to regulate the differential pressure and flow before and after
the multi-way valve.

Based on the above analysis, the system has poor synchronous control accuracy. It can
realize variable solenoid pressure compensation valve pressure margin control to regulate
the pressure difference and flow rate before and after the multi-way valve.
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5.3. The EHLS Diverter Synchronous Drive System

Based on the analysis in Section 3 and combined with the analysis in Section 5.2, the
simulation model can be established, as shown in Figures 15 and 16. The diverter valve is
added to the EHLS synchronous drive system to construct an EHLS diverter synchronous
drive system. The system characteristics are analyzed before and after the variable pressure
margin control.
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As shown in Figure 17, the system pressure, flow, and opening curves before the
variable pressure margin are shown. In the diverter system, as the opening of the multi-
way valves increases, the flow rate through the multi-way valve increases. The throttling
effect of the diverter valve is enhanced, resulting in a decrease in the pressure difference
between before and after the multi-way valves, 1 and 2, compared to the synchronous
system, which leads to a decrease in the flow rate through the multi-way valves, 1 and 2.
As a result, the synchronous control performance of the system decreases. The differential
pressure and flow rate before and after the multi-way valve can be adjusted by variable
pressure margin control to improve the synchronous control performance of the system
combined with the analysis in Sections 5.1 and 5.2.
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As shown in Figure 18, the system pressure and opening curves after the variable
pressure margin are shown. In the diverter system, after the variable pressure margin
control, compared with the before compensation period, the pressure difference before and
after the multi-way valve, 1 and 2, increases significantly as the opening of the multi-way
valve increases, and it is consistent with the synchronous system, which maintains the
pressure difference at about 1 MPa.
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As shown in Figure 19, the system flow and opening curves after the variable pressure
margin are shown. In the diverter system, after the variable pressure margin control, compared
with the before compensation period, the flow rate of the multi-way valve, 1 and 2, increases
significantly as the opening of the multi-way valve increases and is consistent with the
synchronous system. Therefore, the diverter system effectively improves the synchronous
control performance of the system after compensation by variable pressure margin.
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As shown in Figure 20, the system diverter error and opening curves are shown. The
diverter error of the conventional, the diverter, and the diverter compensation systems
gradually increases as the opening of the multi-way valve increases. In particular, the
maximum diverter error of the conventional system is 61%, the diverter system is 20.2%,
and the diverter system after compensation is 8.4% when the diverter valve is fully open-
ing. Therefore, the diverter system diverter error is reduced by 40.8%, and the diverter
system after compensation diverter error is reduced by 52.6%. The diverter system after
compensation effectively improves the synchronous accuracy of the system by variable
pressure margin compensation control.
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Based on the above analysis, the diverter system effectively improves the synchronous
control performance of the system by variable pressure margin compensation control. The
diverter system diverter error is reduced by 40.8%, and the diverter error of the diverter
system after compensation is reduced by 52.6% when the multi-way valve is fully opening.
The diverter system after compensation effectively improves the synchronous accuracy of
the system by the variable pressure margin compensation control. In summary, the system
performance can be compared, as shown in Table 4.

Table 4. The comparison of the system performance.

Components System Performance

The EHLS drive system The variable load-sensitive pressure margin control
is realized

The EHLS synchronous drive system The variable pressure compensation valve pressure
margin control is realized

The EHLS diverter
synchronous drive system

Conventional system The system diverter synchronous accuracy is low,
and the maximum diverter error is 61%

Diverter system
The synchronous control performance decreases, the
maximum diverter error is 20.2%, and the diverter

error is reduced by 40.8%

Diverter system after compensation
The synchronous control performance is guaranteed,
the maximum diverter error is 8.4%, and the diverter

error is reduced by 52.6%
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6. Discussion

The system working principle, control strategy, and component mathematical model
are analyzed. Based on this partial analysis, the EHLS, EHLS synchronous, and EHLS
diverter synchronous drive system simulation models were established, respectively, and
the system characteristics were analyzed. The simulation results show that the EHLS
diverter synchronous drive system effectively improves the diverter synchronous accuracy
of the system. It guarantees the system’s synchronous control performance compared with
the conventional EHLS synchronous drive system through the variable pressure margin
compensation control.

This EHLS diverter synchronous drive system and diverter valve combine an EHLS
synchronous drive system. They effectively improve the diverter synchronous accuracy
of the system through the diverter valve diverter effect and variable pressure margin
control. The system is suitable for the actuator action, the system of each branch of the
time-varying load, and the actuator synchronous accuracy requirements of high occasions.
The variable pressure margin control system can ensure that the system still has a high
diverter synchronous accuracy when the multi-way valve has different opening degrees.

7. Conclusions

Based on the above, the following conclusions can be obtained:

1. The EHLS drive system realizes the primary function of the load-sensitive system.
It can realize the variable load-sensitive pressure margin control to regulate the
differential pressure and flow rate before and after the multi-way valve;

2. The EHLS synchronous drive system has poor synchronous control accuracy. It can
realize variable pressure compensation valve pressure margin control to regulate the
differential pressure and flow before and after the multi-way valve;

3. The EHLS diverter synchronous drive system effectively improves the synchronous
control performance of the system through variable pressure margin compensation
control. The diverter system diverter error is reduced by 40.8%, and the diverter
compensation system diverter error is reduced by 52.6% when the multi-way valve is
fully opened. After the variable pressure margin compensation control, the diverter
system effectively improves the diverter synchronous accuracy;

4. The system provides a high-performance hydraulic synchronous drive solution under
severe working conditions.
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