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Abstract: This paper investigates the decentralized fuzzy control problems for nonlinear-state-
unmeasured interconnected descriptor systems (IDSs) that utilize the observer-based-feedback ap-
proach and the proportional–derivative feedback control (PDFC) method. First of all, the IDS is
represented as interconnected Takagi–Sugeno (T–S) fuzzy subsystems. These subsystems can effec-
tively capture the dynamic behavior of the system through fuzzy rules. For the stability analysis of
the system, this paper uses the free-weighing Lyapunov function (FWLF), which allows the designer
to set the weight matrix, to achieve the desired control performance and design the controller more
easily. Furthermore, the control problem can be transformed into a set of linear matrix inequalities
(LMIs) through the Schur complement, which can be solved using convex optimization methods.
Simulation results confirm the effectiveness of the proposed method in achieving the desired control
objectives and ensuring system stability.

Keywords: state-unmeasured interconnected descriptor systems; observer-based-feedback control;
estimated-state feedback fuzzy compensator; decentralized fuzzy control

1. Introduction

In recent decades, T–S systems have become popular due to their ability to model
nonlinear systems with a high accuracy and efficiency [1,2]. T–S fuzzy systems use a set
of fuzzy if–then rules to represent the system, and each rule corresponds to a local linear
model that approximates the behavior of the system. Therefore, we can extend many
linear control methods to the constructed system. In addition, T–S fuzzy systems can
handle uncertainties in the system by associating different local models with different
fuzzy rules. In recent years, T–S fuzzy systems have been successfully used in various
fields, such as robotics, power systems, and finance [3–5]. Furthermore, T–S systems can be
extended to T–S interconnected systems (ISs) [6,7], where each subsystem is described by
a T–S model and the entire system is represented by a set of interconnected subsystems.
However, the design of the T–S IS controllers needs to address the challenges related to local
controller coordination to achieve the required global performance. To solve this problem,
decentralized control is a method of distributing control actions among multiple local
controllers, which can be designed using available local information [8–10]. This increases
the computational efficiency of the entire system and improves the fault tolerance, as each
local controller can operate independently and adapt to the changes in local conditions.
Furthermore, the design of decentralized controllers for T–S ISs poses challenges, such
as selecting appropriate local models and coordinating local controllers to achieve the
desired global performance. Nonetheless, the potential advantages of the T–S IS and its
applications in various fields demonstrate its importance as a framework for the modeling
and control of complex systems.
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Based on the T–S IS system concept, the T–S IS can be expressed in the form of descrip-
tors. Descriptor systems provide a general mathematical framework for the modeling and
analysis of complex dynamic systems. Unlike ordinary differential equations, descriptor
systems combine differential equations with algebraic constraints, making them well-suited
for representing a variety of physical phenomena in mathematics, engineering, and physics.
Therefore, the T–S IDS is a mathematical model used to represent complex system dy-
namics in control theory [11–13]. It is widely used for the accurate modeling of systems
with nonlinear and time-varying behavior, making it a powerful tool for analyzing and
simulating complex systems in diverse fields, such as engineering, science, and industry.
The versatility and applicability of the T–S IDS make it an important tool for researchers
and practitioners. However, to effectively control the T–S IDS, it is very important to keep
the T–S IDS impulse-free [14–16], which involves avoiding sudden or abrupt changes in
the control actions. Impulse-free action can lead to unstable behavior or even damage
the system, making it difficult to control complex systems with high precision. In ad-
dition to the impulse-free problem, regularity is another key requirement for descriptor
systems [17–19]. Regularity ensures that the system is well-posed and that the solution to
the system equations is unique and stable. Therefore, designing a controller that guarantees
impulse-free and regularity is a challenging problem in control theory.

From the above, we can see that designing a controller for the T–S IDS is challenging
because of the additional complexity introduced by impulse-free and regularity constraints.
Constraints must be considered when designing the controller to ensure that the system
remains stable and meets the required performance specifications. Through the PDFC
method [20,21], the T–S IDS is usually converted into a conventional system through
derivative signals. The PDFC is an effective technology to improve the stability and
performance of the T–S IDS [22,23]. To design the PDFC method, it is crucial to access the
state signals and state-derivative signals within the system. This ensures that the fuzzy
controller can be designed and implemented efficiently. However, it should be noted that
not all signals in the system are directly measurable, which poses a significant challenge
to the controller design. To overcome this challenge, observer-based methods can be used
to estimate the derivative signals in the system [24–26]. This enables the PDFC strategy
to be effectively implemented in real-world applications, even if some signals cannot be
measured directly. Based on the above reasons, the main motivation of this article is to
increase the possibility of designing PDFC methods through observer control technology
and solve the problem of unmeasured system signals. Furthermore, the design procedure of
the fuzzy controller considers the decay rate performance to enhance the transient response
of the system.

Inspired by the above discussion, this paper uses the T–S fuzzy model to divide the
nonlinear ID into a series of interconnected linear subsystems. The contributions of this
article are summarized as follows: 1. Decentralized control technology is used in the design
process of the controller. Each subsystem is controlled by the local controller, allowing
the controller to operate independently. 2. Compared with the previous literature [20,27],
this article uses the observer method to estimate system signals that cannot be directly
measured, which can effectively increase the possibility of designing a PDFC method.
3. The proposed controller will be implemented through mathematical tools, such as
the FWLF, LMIs, and the Schur complement. In addition, in the design process of the
fuzzy controller, the focus will be on improving the transient response of the system by
considering the decay-rate performance. 4. The effectiveness of the proposed controller
will be evaluated through different simulation case studies.

The remainder of the paper is organized as follows: Section 2 reviews the overall state
of the unmeasured T–S IDS and its nonlinear dynamics, and some remarks and lemma are
also given. Our research method, a decentralized fuzzy control of the T–S IDS, is shown in
Section 3, with the observer-based-feedback approach and the PDFC method. Simulation
results of realistic case studies are provided in Section 4. Finally, Section 5 deals with the
conclusions and future perspectives.
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2. Problem Descriptions

In this section, let us consider the nonlinear-state-unmeasured IDS composed of non-
linear subsystems. The nonlinear IDS is transformed into the T–S IDS with interconnections
and perturbations, as follows:

Model Rule ℜl
i : IF θi1(t) is Nl

i1, · · · , and θig(t) is Nl
ig,

El
i

.
xi(t) = Al

i xi(t) + Bl
iui(t) +

S

∑
h=1,h ̸=i

Al
ihxh(t) (1a)

yi(t) = Cl
i xi(t) (1b)

for i = {1, 2, · · · , S}, ϕ = {1, 2, · · · , g} and l = {1, 2, · · · , ri}; Nl
iϕ are fuzzy sets and

θi1(t) · · · θig(t) denotes the premise variable. For the i-th nonlinear subsystem, ri is the
number of rules; xi(t) ∈ ℜnxi denotes the vector of state; ui(t) ∈ ℜnui denotes the vector
of the control input; yi(t) ∈ ℜnyi denotes the vector of the output. The matrices Al

i , Bl
i ,

and Cl
i are the appropriate dimensions. The matrices El

i may be singular. Al
ih is the

interconnection term.
By using the central average defuzzifier and fuzzy inference, the fuzzy system (1) can

be deduced as follows:

ri

∑
l=1

µl
iE

l
i

.
xi(t) =

ri

∑
l=1

µl
i

{
Al

i xi(t) + Bl
iui(t) +

S

∑
h=1,h ̸=i

Al
ihxh(t)

}
(2a)

ri

∑
l=1

µl
iyi(t) =

ri

∑
l=1

µl
iC

l
i xi(t) (2b)

Define µl
i = µl

i(θi(t)) and µl
i(θi(t)) = ∏

g
ϕ=1 µl

iϕ
(
θiϕ(t)

)
/∑ri

ς=1 ∏
g
ϕ=1 µ

ς
iϕ
(
θiϕ(t)

)
; µl

iϕ is

the fuzzy membership grade of θiϕ(t) in µl
iϕ.

The objective of this study is to propose a decentralized fuzzy controller state-unmeasured
T–S IDS. To achieve this, the following fuzzy observer is proposed, which can effectively
estimate the unmeasurable states and increase the possibility of designing decentralized
fuzzy controllers:

ri

∑
l=1

µl
iE

l
i

.
x̂i(t) =

ri

∑
l=1

ri

∑
j=1

µl
iµ

j
i

{
Al

i x̂i(t) + Bl
iui(t) + Lj

si(yi(t)− ŷi(t)) + Lj
di

( .
yi(t)−

.
ŷi(t)

)}
(3a)

ri

∑
l=1

µl
i ŷi(t) =

ri

∑
l=1

µl
iC

l
i x̂i(t) (3b)

where
.
x̂i(t) ∈ ℜnxi is the estimate of xi(t) and ŷi(t) ∈ ℜnyi is the estimate of yi(t). The

matrices Lj
si and Lj

di are the observer gains. According to [23], the estimation error can be
defined as El

iei(t) = El
i xi(t)− El

i x̂i(t). The overall representation of the fuzzy observer can
be obtained by differentiating the estimation error.

ri

∑
l=1

µl
iE

l
i

.
ei(t) =

ri

∑
l=1

ri

∑
j=1

µl
iµ

j
i

[
El

i
.
xi(t)− El

i
.
x̂i(t)

]

=
ri

∑
l=1

ri

∑
j=1

µl
iµ

j
i

[
Al

i xi(t) + Bl
iuj(t) +

S

∑
h=1,h ̸=i

Al
ihxh(t)

]

−
[
Al

i x̂i(t) + Bl
iuj(t) + Lj

si(yi(t)− ŷi(t)) + Lj
di

( .
yi(t)−

.
ŷi(t)

)]
(4)
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With some simplifications (4) can be written as:

Eei(µi)
.
ei(t) = Aei(µi)ei(t) +

S

∑
h=1,h ̸=i

Al
ih(µi)xh(t) (5)

where 

Eei(µi) =
ri
∑

l=1

ri
∑

j=1
µl

iµ
l
i

{
El

i + Lj
diC

l
i

}
,

Aei(µi) =
ri
∑

l=1

ri
∑

j=1
µl

iµ
l
i

(
Al

i − Lj
siC

l
i

)
,

Aih(µi) =
ri
∑

l=1
µl

iA
l
ih.

(6)

Observers are designed to estimate the unmeasured or unobservable states of the
system using the available input and output information. Observer-based control is partic-
ularly useful when the direct measurement of all state variables is not feasible. It enhances
the system’s robustness, stability, and performance by utilizing the observer’s estimates.
The decentralized fuzzy controller with the observer-based-feedback method and the PDFC
method is proposed as:

ui(t) = −
ri

∑
l=1

µl
iF

l
id

.
x̂i(t) +

ri

∑
l=1

µl
iF

l
is x̂i(t) (7)

where Fl
id and Fl

is are the controller gains.

Remark 1 ([23]). In the IDS, the states of the system may not be uniquely identifiable from the
available measurements or outputs. This can occur due to the presence of degeneracy or redundancy
in the system dynamics near the singularity. As a result, designing an observer that can accurately
reconstruct the states of the system from its outputs becomes challenging. Moreover, in an observer-
based control system, the estimated states are integrated into the control law. This allows the
controller to utilize the estimated states to generate the control signals, thus compensating for the
absence of the direct measurements of all states. The author presents assumptions in [23], which
ensure the system’s observability and similar assumptions.

By incorporating controller (7) into system (1), we can establish the resulting closed-
loop system:

ri

∑
l=1

µl
iE

l
i

.
xi(t) =

ri

∑
l=1

ri

∑
j=1

µl
iµ

j
i

[
Al

i xi(t)− Bl
iF

j
id

.
x̂i(t) + Bl

iF
j
is x̂i(t) +

S

∑
h=1,h ̸=i

Al
ihxh(t)

]
(8)

From (8), we can obtain

Ei(µi) = Ai(µi) + Aih(µi) + Lsi(µi) (9)

where 

Ei(µi) =
ri
∑

l=1

ri
∑

j=1
µl

iµ
l
i

{
El

i + Bl
iF

l
di

}
,

Ai(µi) =
ri
∑

l=1

ri
∑

j=1
µl

iµ
l
i

{
Al

i + Bl
iF

l
si

}
,

Lsi(µi) =
ri
∑

l=1

ri
∑

j=1
µl

iµ
l
i

{
Bl

iF
j
id

.
ei(t)− BiF

j
isei(t)

}
.

(10)
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Remark 2 ([27]). The description matrix in a descriptor system may cause system impulse or
irregularities. First, irregular systems can cause simulation and control design difficulties because
they can lead to singular problems. Second, the impulse may cause transient changes in the state
variables. Therefore, we must ensure that the system is regular and impulse-free before we can
conduct the stability analysis. The constraints and definitions regarding the T–S IDS have been
discussed in detail in [27]. Through differential terms, we can convert the descriptor system into a
standard state-space system. In addition, when matrix

(
El

i + Bl
iF

l
di

)
is a full-rank matrix, it can be

ensured that the system is not singular-satisfied impulse-free and regular.

Remark 3 ([20,27]). Findings are from earlier investigations in [20,27]. The PDFC approach
generally relies on the direct measurement of the system’s current state for the efficient control-
signal generation. However, in cases where the direct measurement of the signal is not feasible,
it significantly impacts the control performance and diminishes the viability of the PD control
method. As a solution, this paper introduces an observer-based control technology. The
observer is capable of estimating the system’s state based on the input and output information,
enabling the utilization of these estimated signals in the controller design to enhance the
implementation feasibility.

Next, an important lemma is given for following derivations.

Lemma 1 ([27]). According to [27], the following inequality holds:

S

∑
i=1

(
2xT

i (t)Zi

S

∑
h=1,h ̸=i

Al
ihxh(t)

)

≤
S

∑
i=1

(
xT

i (t)ZiZT
i xi(t)

)
+

S

∑
i=1

{
(N − 1)

S

∑
h=1,h ̸=i

xT
i (t)A

T
hiAhixi(t)

}
(11)

or
S

∑
i=1

(
2xT

i (t)Zi

S

∑
h=1,h ̸=i

Al
ihxh(t)

)

≤
S

∑
i=1

(
xT

i (t)xi(t)
)
+

S

∑
i=1

{
(N − 1)

S

∑
h=1,h ̸=i

xT
i (t)A

T
hiZ

T
i ZiAhixi(t)

}
(12)

where Zi is the free-weighting matrices and Aih is the interconnection matrix.

Definition 1. The decay-rate performance refers to the rate at which the system’s transient response
diminishes over time. For all trajectories of system (10), if there exists a decay rate γi > 0 that
satisfies the following inequality, then the T–S IDS is said to be quadratically stable with the
decay rate.

N

∑
i=1

.
Vi(xi(t)) < −2γiVi(xi(t)) (13)

3. Main Results

This paper is devoted to the development of a decentralized fuzzy controller for
stabilizing system (9). To accomplish this objective, the stability conditions for system (9)
can be summarized as follows:
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Theorem 1. The state-unmeasured T–S IDS (9) can be stabilized asymptotically by the decentralized
fuzzy controller if the existence of controller gains, observer gains, and positive definite matrices
meet the following requirements: [

Gl j
i11 ∗

Gl j
i21 G0

]
< 0 (14)

[
Gl j

ei11 G0

G0 Gl j
ei22

]
< 0 (15)

where i = 1, 2, · · · , S, l = 1 · · · ri, l < j = 1 · · · ri,

Gl j
i11 =

Zi1ZT
i1 + sym

(
Zi1Al

ri(µi)
)
+ 2Ξsi ∗

Psi + Zi2Al
ri(µi)−

(
Zi1El

ri(µi)
)T

Zi2ZT
i2 − sym

(
Zi2El

ri(µi)
)
,

Gl j
i21 =

−
(

Zi1Bl
iF

j
is

)T
−
(

Zi2Bl
iF

j
is

)T

(
Zi1Bl

iF
j
id

)T (
Zi2Bl

iF
j
id

)T

, G0 =

[
0 ∗
0 0

]
, Gl j

ei11 =

[
2Ξei 0

0 0

]
,

Gl j
ei22 =

[
I + sym(Zi3Aei(µi)) ∗

Pei − (Zi3Eei(µi))
T + Zi4Aei(µi) I − sym(Zi4Eei(µi))

]
,

Ξsi = (N − 1)
S

∑
h=1,h ̸=i

AT
hiAhi, Ξei = (N − 1)

S

∑
h=1,h ̸=i

AT
hiZ

T
i ZiAhi.

Proof. Based on [28], we consider the FWLF as

S

∑
i=1

.
Vi(xi(t)) =

.
V1i(xi(t)) +

.
V2i(ei(t)) (16)

where .
V1i(xi(t)) = 2

.
xT

i (t)Psixi(t) (17)

and .
V2i(ei(t)) = 2

.
eT

i (t)Peiei(t) (18)

For any matrices Zi1, Zi2, Zi3, and Zi4 of proper dimensions, it follows from (5) and
(9) that

Θsi = 2

[[
xT

i (t)Zi1 +
.
xT

i (t)Zi2

][
−Ei(µi)

.
xi(t) + Ai(µi)xi(t) +

S

∑
h=1,h ̸=i

Aihxh(t) + Lsi(µi)

]]
≡ 0 (19)

and

Θei = 2

[[
eT

i (t)Zi3 +
.
eT

i (t)Zi4

][
−Eei(µi)

.
ei(t) + Aei(µi)ei(t) +

S

∑
h=1,h ̸=i

Aihxh(t)

]]
≡ 0 (20)

Substituting (19) into (17), then
.

V1i(xi(t)) = 2
.
xT

i (t)Psixi(t) + Θsi

= 2
.
xT

i (t)Psixi(t)− 2xT
i (t)Zi1El

ri(µi)
.
xi(t)− 2

.
xT

i (t)Zi2El
ri(µi)

.
xi(t) + 2xT

i (t)Zi1Al
ri(µi)xi(t)

+2
.
xT

i (t)Zi2Al
ri(µi)xi(t) + 2xT

i (t)Zi1
S
∑

h=1,h ̸=i
Al

ih(µi)xh(t) + 2
.
xT

i (t)Zi2
S
∑

h=1,h ̸=i
Al

ih(µi)xh(t)

−2xT
i (t)Zi1Bl

iF
j
isei(t) + 2xT

i (t)Zi1Bl
iF

j
id

.
ei(t)− 2

.
xT

i (t)Zi2Bl
iF

j
isei(t) + 2

.
xT

i (t)Zi2Bl
iF

j
id

.
ei(t)

(21)
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Based on (11) from Lemma 1, one has

.
V1i(xi(t)) = ξi(t)

[
Gl j

i11 ∗
Gl j

i21 G0

]
ξi(t)

T (22)

where

ξi(t) =
[

xT
i (t)

.
xT

i (t) eT
i (t)

.
eT

i (t)
]
, G0 =

[
0 ∗
0 0

]
, Ξsi = (N − 1)

S

∑
h=1,h ̸=i

AT
hiAhi,

Gl j
i11 =

Zi1ZT
i1 + sym

(
Zi1Al

ri(µi)
)
+ 2Ξsi ∗

Psi + Zi2Al
ri(µi)−

(
Zi1El

ri(µi)
)T

Zi2ZT
i2 − sym

(
Zi2El

ri(µi)
)
,

Gl j
i21 =

−
(

Zi1Bl
iF

j
is

)T
−
(

Zi2Bl
iF

j
is

)T

(
Zi1Bl

iF
j
id

)T (
Zi2Bl

iF
j
id

)T

.

On the other hand, (18) can be rewritten as the following with (12) and (20):

.
V2i(ei(t)) = 2

.
eT

i (t)Peiei(t) + Θei

= 2
.
eT

i (t)Peiei(t) + 2

[[
eT

i (t)Zi3 +
.
eT

i (t)Zi4

][
−Eei(µi)

.
ei(t) + Aei(µi)ei(t) +

S
∑

h=1,h ̸=i
Aihxh(t)

]]
= 2

.
eT

i (t)Peiei(t)− 2eT
i (t)Zi3Eei(µi)

.
ei(t)− 2

.
eT

i (t)Zi4Eei(µi)
.
ei(t)

+2eT
i (t)Zi3Aei(µi)ei(t) + 2

.
eT

i (t)Zi4Aei(µi)ei(t)

+2eT
i (t)Zi3

S
∑

h=1,h ̸=i
Aihxh(t) + 2

.
eT

i (t)Zi4
S
∑

h=1,h ̸=i
Aihxh(t)

= ξi(t)

[
Gl j

ei11 G0

G0 Gl j
ei22

]
ξi(t)

T

(23)

where

Gl j
ei11 =

[
2Ξei 0

0 0

]
, Ξei = (N − 1)

S

∑
h=1,h ̸=i

AT
hiZ

T
i ZiAhi,

Gl j
ei22 =

[
I + sym(Zi3Aei(µi)) ∗

Pei − (Zi3Eei(µi))
T + Zi4Aei(µi) I − sym(Zi4Eei(µi))

]
.

According to (16), if the inequalities (14) and (15) are held, which also means
S
∑

i=1

.
Vi(xi(t)) < 0. If

S
∑

i=1

.
Vi(xi(t)) < 0 is held, then system (9) is asymptotically stable.

The proof of Theorem 1 has been concluded. However, the stability conditions presented
in Theorem 1 are bilinear matrix inequalities (BMIs), which cannot be directly computed
using the LMI toolbox. Consequently, it is essential to convert the stability condition into a
computationally tractable form. □

Theorem 2. The state-unmeasured T–S IDS (9) can be stabilized asymptotically by the decentralized
fuzzy controller if the existence of controller gains, observer gains, and positive definite matrices
meet the following requirements:

Nll
i < 0 (24)

Nl j
i + Njl

i < 0 (25)
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where i = 1, 2, · · · , S, l = 1 · · · ri, l < j = 1 · · · ri,

Nll
i =



Sym(Θi1) ∗ ∗ ∗ ∗ ∗ ∗
Xl

i21 Xl
i22 ∗ ∗ ∗ ∗ ∗

0 Kl
1i

TBl
i
T Xl

i33 ∗ ∗ ∗ ∗
0 −Kl

2i
TBl

i
T Xl

i43 Xl
i44 ∗ ∗ ∗

ΘT
i3 0 0 0 −I/2 ∗ ∗

ÃkiQi 0 0 0 0 Di ∗
Zi3Ãkii 0 0 0 0 0 Di


,

Nl j
i =



Sym(Θi1) ∗ ∗ ∗ ∗ ∗ ∗
Xj

i21 Xj
i22 ∗ ∗ ∗ ∗ ∗

0 Kj
1i

TBl
i
T Xj

i33 ∗ ∗ ∗ ∗
0 −Kj

2i
TBl

i
T Xj

i43 Xj
i44 ∗ ∗ ∗

ΘT
i3 0 0 0 −I/2 ∗ ∗

ÃkiQi 0 0 0 0 Di ∗
Zi3Ãkii 0 0 0 0 0 Di


,

Xl
i21 = ΘT

i2 + ΘT
i3 − Al

iQi + El
iΘi1 − Bl

iK
l
1i, Xj

i21 = ΘT
i2 + ΘT

i3 − Al
iQi + El

iΘi1 − Bl
iK

j
1i,

Xl
i22 = I + Sym

(
El

iΘi2 + Bl
iK

l
2i

)
, Xj

i22 = I + Sym
(

El
iΘi2 + Bl

iK
j
2i

)
,

Xl
i33 = I + sym

(
Zi3Al

i − Kl
e1iC

l
i

)
, Xj

i33 = I + sym
(

Zi3Al
i − Kj

e1iC
l
i

)
,

Xl
i43 = Pei −

(
Zi3El

i

)T
−
(

Kl
e2iC

l
i

)T
+ Zi3Al

i − Kl
e1iC

l
i ,

Xj
i43 = Pei −

(
Zi3El

i

)T
−
(

Kj
e2iC

l
i

)T
+ Zi3Al

i − Kj
e1iC

l
i ,

Xl
i44 = I − sym

(
Zi3El

i − Kl
e2iC

l
i

)
, Xj

i44 = I − sym
(

Zi3El
i − Kj

e2iC
l
i

)
,

Di = −2(N − 1)−1ε, Ãki =
[
AT

1i · · ·AT
ki,k ̸=i · · ·AT

Ni

]
︸ ︷︷ ︸

N−1

T
, ε = diag[Inxi · · · Inxi]︸ ︷︷ ︸

N−1

.

Proof. Pre- and postmultiplying

[
Gl j

i11 ∗
Gl j

i21 G0

]
by
[

Wi G0
G0 Wi

]
and its transpose, we have

G̃
l j
i11 ∗

G̃
l j
i21 G0

 (26)

where Qi = P−1
i , Qi > 0, ΘT

i1 = −QiZi1Z−1
i2 , ΘT

i2 = −Z−1
i2 , ΘT

i3 = ZT
i1Qi,

Wi =

[
Qi ΘT

i1

0 ΘT
i2

]
, G̃

l j
i11 =

[
sym(Θi1) + 2Θi3ΘT

i3 + 2QiΞsiQi ∗
ΘT

i2 + ΘT
i3 − Al

ri(µi)Qi + El
ri(µi)Θi1 I + sym

(
El

ri(µi)Θi2

)],

G̃
l j
i21 =

0
(

Fj
isQi − Fj

idΘi1

)T
Bl

i
T

0 −
(

Fj
idΘi2

)T
Bl

i
T

.
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Substituting (10) into (26), and expanding the membership function, then

.
V1i(xi(t)) = ξi(t)

ri

∑
l=1

µ2
il

G̃
ll
i11 ∗

G̃
ll
i21 G0

+
r

∑
l<j

µilµij


G̃

l j
i11 ∗

G̃
l j
i21 G0

+

G̃
jl
i11 ∗

G̃
jl
i21 G0

ξi(t)
T (27)

where

G̃
ll
i11 =

[
sym(Θi1) + 2Θi3ΘT

i3 + 2QiΞsiQi ∗
ΘT

i2 + ΘT
i3 −

(
Al

i + Bl
iF

l
is

)
Qi +

(
El

i + Bl
iF

l
id

)
Θi1 I + sym

((
El

i + Bl
iF

l
id

)
Θi2

)],

G̃
ll
i21 =

0
(

Fl
isQi − Fl

idΘi1

)T
Bl

i
T

0 −
(

Fl
idΘi2

)T
Bl

i
T

.

Furthermore, defining the matrices Kl
1i = Fl

isQi − Fl
idΘi1, Kl

2i = Fl
idΘi2, Kj

1i = Fj
isQi −

Fj
idΘi1, and Kj

2i = Fj
idΘi2, we have the following equations:

.
V1i(xi(t)) = ξi(t)

ri

∑
l=1

µ2
il

G̃
ll
i11 ∗

G̃
ll
i21 G0

+
ri

∑
l<j

µilµij


G̃

l j
i11 ∗

G̃
l j
i21 G0

+

G̃
jl
i11 ∗

G̃
jl
i21 G0

ξi(t)
T (28)

where

G̃
ll
i11 =

[
sym(Θi1) + 2Θi3ΘT

i3 + 2QiΞsiQi ∗
ΘT

i2 + ΘT
i3 − Al

iQi + El
iΘi1 − Bl

iK
l
1i I + sym

(
El

iΘi2 + Bl
iK

l
2i

)],

G̃
l j
i11 =

[
sym(Θi1) + 2Θi3ΘT

i3 + 2QiΞsiQi ∗
ΘT

i2 + ΘT
i3 − Al

iQi + El
iΘi1 − Bl

iK
j
1i I + sym

(
El

iΘi2 + Bl
iK

j
2i

)],

G̃
ll
i21 =

[
0 Kl

1i
TBl

i
T

0 −Kl
2i

TBl
i
T

]
, G̃

l j
i21 =

[
0 Kj

1i
TBl

i
T

0 −Kj
2i

TBl
i
T

]
.

Similar to (27), substituting (6) into

[
Gl j

ei11 G0

G0 Gl j
ei22

]
, we have the following equation:

.
V2i(ei(t)) = ξi(t)

ri

∑
l=1

µ2
il

[
Gll

ei11 G0

G0 Gll
ei22

]
+

ri

∑
l<j

µilµij

{[
Gl j

ei11 ∗
G0 Gl j

ei22

]
+

[
Gjl

ei11 ∗
Gjl

i21 Gjl
ei22

]}
ξi(t)

T (29)

where

Gll
ei22 =

 I + sym
(

Zi3Al
i − Zi3Ll

siC
l
i

)
∗

Pei −
(

Zi3El
i

)T
−
(

Zi3Ll
diC

l
i

)T
+ Zi4Al

i − Zi4Ll
siC

l
i I − sym

(
Zi4El

i − Zi4Ll
diC

l
i

)
,

Gl j
ei22 =

 I + sym
(

Zi3Al
i − Zi3Lj

siC
l
i

)
∗

Pei −
(

Zi3El
i

)T
−
(

Zi3Lj
diC

l
i

)T
+ Zi4Al

i − Zi4Lj
siC

l
i I − sym

(
Zi4El

i − Zi4Lj
diC

l
i

)
.

Defining the matrices Zi3 = Zi4, Kl
e1i = Zi3Ll

si, Kl
e2i = Zi3Ll

di, Kj
e1i = Zi3Lj

si, and

Kj
e2i = Zi3Lj

di, we obtain

.
V2i(ei(t)) = ξi(t)

ri

∑
l=1

µ2
il

[
Gll

ei11 G0

G0 Gll
ei22

]
+

r

∑
l<j

µilµij

{[
Gll

ei11 ∗
G0 Gl j

ei22

]
+

[
Gjl

ei11 ∗
Gjl

i21 Gjl
ei22

]}
ξi(t)

T (30)
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where

Gll
ei22 =

 I + sym
(

Zi3Al
i − Kl

e1iC
l
i

)
∗

Pei −
(

Zi3El
i

)T
−
(

Kl
e2iC

l
i

)T
+ Zi3Al

i − Kl
e1iC

l
i I − sym

(
Zi3El

i − Kl
e2iC

l
i

)
,

Gl j
ei22 =

 I + sym
(

Zi3Al
i − Kj

e1iC
l
i

)
∗

Pei −
(

Zi3El
i

)T
−
(

Kj
e2iC

l
i

)T
+ Zi3Al

i − Kj
e1iC

l
i I − sym

(
Zi3El

i − Kj
e2iC

l
i

)
.

By adding (28) to (30), it follows that

.
V1i(xi(t)) +

.
V2i(ei(t)) = ξi(t)

ri
∑

l=1
µ2

il

[
G̃

ll
i11 + Gll

ei11 ∗
G̃

ll
i21 Gll

ei22

]

+
r
∑
l<j

µilµij

{[
G̃

l j
i11 + Gll

ei11 ∗
G̃

l j
i21 Gl j

ei22

]
+

[
G̃

jl
i11 + Gll

ei11 ∗
G̃

jl
i21 Gjl

ei22

]}
ξi(t)

T

(31)

By using the Shur complement, we obtain

[
G̃

ll
i11 + Gll

ei11 ∗
G̃

ll
i21 Gll

ei22

]
=



Sym(Θi1) ∗ ∗ ∗ ∗ ∗ ∗
Xl

i21 Xl
i22 ∗ ∗ ∗ ∗ ∗

0 Kl
1i

TBl
i
T Xl

i33 ∗ ∗ ∗ ∗
0 −Kl

2i
TBl

i
T Xl

i43 Xl
i44 ∗ ∗ ∗

ΘT
i3 0 0 0 −I/2 ∗ ∗

ÃkiQi 0 0 0 0 Di ∗
Zi3Ãkii 0 0 0 0 0 Di


(32)

[
G̃

l j
i11 + Gll

ei11 ∗
G̃

l j
i21 Gl j

ei22

]
=



Sym(Θi1) ∗ ∗ ∗ ∗ ∗ ∗
Xj

i21 Xj
i22 ∗ ∗ ∗ ∗ ∗

0 Kj
1i

TBl
i
T Xj

i33 ∗ ∗ ∗ ∗
0 −Kj

2i
TBl

i
T Xj

i43 Xj
i44 ∗ ∗ ∗

ΘT
i3 0 0 0 −I/2 ∗ ∗

ÃkiQi 0 0 0 0 Di ∗
Zi3Ãkii 0 0 0 0 0 Di


(33)

where

Xl
i21 = ΘT

i2 + ΘT
i3 − Al

iQi + El
iΘi1 − Bl

iK
l
1i, Xj

i21 = ΘT
i2 + ΘT

i3 − Al
iQi + El

iΘi1 − Bl
iK

j
1i,

Xl
i22 = I + sym

(
El

iΘi2 + Bl
iK

l
2i

)
, Xj

i22 = I + sym
(

El
iΘi2 + Bl

iK
j
2i

)
,

Xl
i33 = I + sym

(
Zi3Al

i − Kl
e1iC

l
i

)
, Xj

i33 = I + sym
(

Zi3Al
i − Kj

e1iC
l
i

)
,

Xl
i43 = Pei −

(
Zi3El

i

)T
−
(

Kl
e2iC

l
i

)T
+ Zi3Al

i − Kl
e1iC

l
i ,

Xj
i43 = Pei −

(
Zi3El

i

)T
−
(

Kj
e2iC

l
i

)T
+ Zi3Al

i − Kj
e1iC

l
i ,

Xl
i44 = I − sym

(
Zi3El

i − Kl
e2iC

l
i

)
, Xj

i44 = I − sym
(

Zi3El
i − Kj

e2iC
l
i

)
,

Di = −2(N − 1)−1ε, Ãki =
[
AT

1i · · ·AT
ki,k ̸=i · · ·AT

Ni

]
︸ ︷︷ ︸

N−1

T
, ε = diag[Inxi · · · Inxi]︸ ︷︷ ︸

N−1
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Theorem 2 presents sufficient conditions to ensure the stability of the state-unmeasured
T–S IDS based on the decentralized fuzzy control with the observer-based feedback and the
PDFC method. It is easy to see that the new sufficient conditions developed in Theorem 2
are in the LMI form, which can be solved by the Matlab LMI toolbox directly. Furthermore, if
(24) and (25) are satisfied, then

.
V1i(xi(t)) +

.
V2i(ei(t)) < 0 from (31). In addition, the closed-

loop system (9) is asymptotically stable because
S
∑

i=1

.
Vi(xi(t)) < 0 from (16). Therefore,

the proof is completed. In the following, the decay-rate performance has been chosen to
enhance the system’s transient response. □

Theorem 3. Given the performance scalar λi, the state-unmeasured T–S IDS (9) can be stabilized
asymptotically by the decentralized fuzzy controller if the existence of controller gains, observer
gains, and positive definite matrices meet the following requirements:

Nll
di < 0 (34)

Nl j
di + Njl

di < 0 (35)

where i = 1, 2, · · · , S, l = 1 · · · ri, l < j = 1 · · · ri,

Nll
di =



Sym(Θi1) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Xl

i21 Xl
i22 ∗ ∗ ∗ ∗ ∗ ∗

0 Kl
1i

TBl
i
T Xl

i33 ∗ ∗ ∗ ∗ ∗
0 −Kl

2i
TBl

i
T Xl

i43 Xl
i44 ∗ ∗ ∗ ∗

ΘT
i3 0 0 0 −I/2 ∗ ∗ ∗

ÃkiQi 0 0 0 0 Di ∗ ∗
Zi3Ãkii 0 0 0 0 0 Di ∗

I 0 0 0 0 0 0 −Qi
γi


,

Nl j
di =



Sym(Θi1) ∗ ∗ ∗ ∗ ∗ ∗ ∗
Xj

i21 Xj
i22 ∗ ∗ ∗ ∗ ∗ ∗

0 Kj
1i

TBl
i
T Xj

i33 ∗ ∗ ∗ ∗ ∗
0 −Kj

2i
TBl

i
T Xj

i43 Xj
i44 ∗ ∗ ∗ ∗

ΘT
i3 0 0 0 −I/2 ∗ ∗ ∗

ÃkiQi 0 0 0 0 Di ∗ ∗
Zi3Ãkii 0 0 0 0 0 Di ∗

I 0 0 0 0 0 0 − 2Qi
γi


,

Xl
i21 = ΘT

i2 + ΘT
i3 − Al

iQi + El
iΘi1 − Bl

iK
l
1i, Xj

i21 = ΘT
i2 + ΘT

i3 − Al
iQi + El

iΘi1 − Bl
iK

j
1i,

Xl
i22 = I + Sym

(
El

iΘi2 + Bl
iK

l
2i

)
, Xj

i22 = I + Sym
(

El
iΘi2 + Bl

iK
j
2i

)
,

Xl
i33 = I + sym

(
Zi3Al

i − Kl
e1iC

l
i

)
, Xj

i33 = I + sym
(

Zi3Al
i − Kj

e1iC
l
i

)
,

Xl
i43 = Pei −

(
Zi3El

i

)T
−
(

Kl
e2iC

l
i

)T
+ Zi3Al

i − Kl
e1iC

l
i ,

Xj
i43 = Pei −

(
Zi3El

i

)T
−
(

Kj
e2iC

l
i

)T
+ Zi3Al

i − Kj
e1iC

l
i ,

Xl
i44 = I − sym

(
Zi3El

i − Kl
e2iC

l
i

)
, Xj

i44 = I − sym
(

Zi3El
i − Kj

e2iC
l
i

)
,
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Di = −2(N − 1)−1ε, Ãki =
[
AT

1i · · ·AT
ki,k ̸=i · · ·AT

Ni

]
︸ ︷︷ ︸

N−1

T
, ε = diag[Inxi · · · Inxi]︸ ︷︷ ︸

N−1

.

Proof. By using the Schur complement, the inequality (34) can be referred as follows
with (31): G̃

ll
i11 + Gll

ei11 + γiP ∗

G̃
ll
i21 Gll

ei22

 < 0 (36)

Multiplying ξT
i and transporting on both sides of (36), one can obtain

ξT
i

G̃
ll
i11 + Gll

ei11 ∗

G̃
ll
i21 Gll

ei22

ξi < −γixT
i (t)Pixi(t) (37)

Following the same method, the condition (35) can be written as:

ξT
i

G̃
l j
i11 + Gll

ei11 ∗

G̃
l j
i21 Gl j

ei22

+

G̃
jl
i11 + Gll

ei11 ∗

G̃
jl
i21 Gjl

ei22

ξi < −γixT
i (t)Pixi(t) (38)

Based on the characteristics of the membership function
ri
∑

l=1
µl

i = 1 and 0 ≤ µl
i ≤ 1,

one can know

ξT
i

ri
∑

l=1
µ2

il

[
G̃

ll
i11 + Gll

ei11 ∗
G̃

ll
i21 Gll

ei22

]
+

ri
∑
l<j

µilµij

{[
G̃

l j
i11 + Gll

ei11 ∗
G̃

l j
i21 Gl j

ei22

]
+

[
G̃

jl
i11 + Gll

ei11 ∗
G̃

jl
i21 Gjl

ei22

]}
ξi

< −2γixT
i (t)Pixi(t)

(39)

If the inequality (39) is satisfied, then the state-unmeasured T–S IDS is quadratically
stable with a decay rate constraint. The proof of Theorem 3 is complete. In the following,
some examples are given to show the application of the proposed fuzzy control method. □

Remark 4. Due to the complexity of the system, the conditions obtained when conducting system-
stability analysis are usually in the form of BMIs. Therefore, we cannot use the Matlab LMI toolbox
for conditional solving during the simulation. However, through the free-weighing matrices method,
we can increase the possibility of converting the BMIs to LMIs. In addition, the LMI toolbox
provides various solvers to handle different types of LMI problems. However, the toolbox may
not be able to solve the problem due to poor conditions or being too complex. The LMI conditions
(Theorems 2 and 3) proposed in this paper are complex conditions. In order to increase the feasibility
of the solution, we increase the flexibility of the optimization problem through the free-weighing
matrices. This additional flexibility may help in finding solutions.

Theorem 1 uses the Lyapunov function and free-weight matrix to prove the stability
condition of the system. However, this article uses the Matlab LMI toolbox to solve
the conditions, and Theorem 1 cannot be solved. In this regard, Theorem 2 introduces
a conversion process to convert Theorem 1 into an LMI form. By solving Theorem 2,
a fuzzy controller for the state-unmeasured T–S IDS can be derived. Furthermore, we
know the importance of performance for control systems, so we propose the decay-rate
performance in Theorem 3, and then combine it with the conditions in Theorem 2 to pursue
enhanced overall system performance. Obviously, the conditions proposed in Theorem 2
and Theorem 3 belong to LMI problems, and this problem can be easily solved by using
the MATLAB LMI toolbox to search for feasible solutions.
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However, considering the decay rate, Theorem 3 may cause: 1. over-damping, result-
ing in a longer system settling time; 2. a potential increase in the possibility of oscillation or
overshooting; 3. an excessively strong recession rate, which may make the system unstable.
Based on the above reasons, users can choose the required stability conditions according to
the needs of the system. In order to determine the feedback gain conveniently and clearly,
we propose the following design method, and use Theorem 2 or Theorem 3 to calculate the
feedback gains and observer gains.

Controller Design Procedure:
Step 1: Check the satisfactions of the definitions and remarks for the system.
Step 2: Users can choose theorem according to the system requirements (Theorem 2 or

Theorem 3) to obtain the variables Qi, Θi1, Θi2, Zi3, Kl
1i, Kl

2i, Kj
1i, Kj

2i, Kl
e1i, Kl

e2i, Kj
e1i, and

Kj
e2i by using the MATLAB LMI toolbox.

Step 3: According to Kl
1i = Fl

isQi − Fl
idΘi1, Kl

2i = Fl
idΘi2, Kj

1i = Fj
isQi − Fj

idΘi1,

Kj
2i = Fj

idΘi2, Kl
e1i = Zi3Ll

si, Kl
e2i = Zi3Ll

di, Kj
e1i = Zi3Lj

si, and Kj
e2i = Zi3Lj

di, one can

find the feedback gains Fl
is, Fl

id, Fj
is, and Fj

id, and the observer gains Ll
si, Ll

di, Lj
si, and Lj

di.
Step 4: Using the gains acquired in Step 3, one can design the corresponding controller.
Before giving the example, the following steps are given to determine the stability of

the systems.

(1) Identify the Equilibrium Points: Determine the equilibrium points of the intercon-
nected system by finding the values of the state variables at which the system remains
unchanged. These points are obtained by setting the time derivatives of all state
variables to zero.

(2) Simulate the System: Use mathematical modeling or simulation techniques to obtain
the state trajectories of the interconnected system. This involves solving the system’s
equations of motion or employing numerical methods to simulate its behavior.

(3) Plot the State Trajectories: Plot the state trajectories on a graph, with each state
variable represented on a separate axis. Ensure that the graph captures the dynamics
of the system over time.

(4) Evaluate the Convergence: Examine the behavior of the state trajectories over time.
If the trajectories converge to the equilibrium points identified in Step 1, it suggests
stability. Specifically, if the trajectories approach the equilibrium points and remain
within a certain range, it indicates stable behavior.

It is important to note that the stability analysis can be complex and may require
advanced mathematical techniques and system-specific considerations. The steps provided
here provide a general approach that can help the user determine the system stability and
whether the observer is functioning.

4. Numerical Examples

Example 1. To showcase the aforementioned findings, we will consider a numerical-state-
unmeasured T–S IDS (9) that consists of two subsystems with singular matrices. Based on the mem-
bership function from Figure 1, the system parameters are given as follows for subsystem 1 and 2:

El
i =

[
1 0
0 0

]
, A1

1 =

[
−2 3
1.5 −2.2

]
, A2

1 =

[
−4 3
3 −2

]
, A1

2 =

[
−3 1
4 −2

]
, A2

2 =

[
−2 1
3 −1

]
,

Bl
i =

[
0

0.5

]
, A1

12 =

[
0.5 0
0 0.8

]
, A2

12 =

[
0.2 0
0 0.5

]
, Cl

i =
[
0 1

]
.

By leveraging the capabilities of the MATLAB LMI toolbox, the feedback gains can be
determined by solving the conditions stated in Theorem 2.
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Proposed controller gains:
F1

s1 =
[
−18.3004 −3.3043

]
F1

d1 =
[

5.4687 0.7234
]

F2
s1 =

[
−20.0691 −3.4900

]
F2

d1 =
[

5.2827 0.7439
] and


F1

s2 =
[
−10.4559 38.7377

]
F1

d2 =
[
−5.3042 −1.5130

]
F2

s2 =
[
−9.0856 35.1656

]
F2

d2 =
[
−4.9484 −1.4912

]
Proposed observer gains:

L1
s1 =

[
−0.7318 14.6767

]T
L1

d1 =
[
−4.8137 20.9192

]T
L2

s1 =
[
−0.5579 14.5102

]T
L2

d1 =
[
−4.9398 20.7697

]T
and



L1
s2 =

[
−1.8350 8.0180

]T
L1

d2 =
[
−3.9521 12.9199

]T
L2

s2 =
[
−1.7179 8.4633

]T
L2

d2 =
[
−3.6494 12.2393

]T
In order to illustrate the decay-rate performance given by Theorem 3, we solve

Theorem 3 and obtain the following control gains.

Proposed controller gains with λi = 10:


F1

s1 =
[
−25.1432 3.5924

]
F1

d1 =
[

3.9124 0.1934
]

F2
s1 =

[
−25.8865 2.9717

]
F2

d1 =
[

3.5096 0.1907
] and


F1

s2 =
[
−10.6480 −12.5421

]
F1

d2 =
[

3.7753 7.6723
]

F2
s2 =

[
−9.6832 −13.7627

]
F2

d2 =
[

4.0862 7.7453
]

Proposed observer gains with λi = 10:
L1

s1 =
[

101.4593 196.9289
]T

L1
d1 =

[
119.7565 242.6620

]T
L2

s1 =
[

98.3611 190.7698
]T

L2
d1 =

[
114.2724 231.7306

]T and


L1

s2 =
[
−1.7730 13.0360

]T
L1

d2 =
[
−3.9791 19.2681

]T
L2

s2 =
[
−1.7217 13.5023

]T
L2

d2 =
[
−3.8199 18.8954

]T
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Figure 1. Membership function for Example 1. 

Let us consider the system with the following initial conditions ( ) [ ]T
1 0 0.2 0x =  , 

( ) [ ]T
2 0 0 0 3x .= , and ( ) ( ) [ ]T

1 20 0 0 0ˆ ˆx x= = . The state trajectory of the system is plotted 
using the above gains, as shown in Figures 1–5. It can be seen from the simulation results 
that the controller designed based on Theorem 2 and Theorem 3 can effectively control 
the system. In addition, compared with Theorem 2, Theorem 3 shortens the stabilization 
time of the system because it considers the decay-rate performance. The error trajectory is 
shown in Figure 6. When the error converges to 0, it means that the designed observer 
successfully estimates the system state, and it also means that the observer can effectively 
observe the system state. Therefore, we know that, through the observer-based control 
method, we can effectively use the PDFC method to develop a decentralized fuzzy con-
troller for Example 1. 

This paper chooses the mean square error (MSE), integrated absolute error (IAE), and 
integral time absolute error methods (ITAE) [29,30] to judge the controller performance. 

According to [29], we can define the following MSE performance indicator: 

( )2

1

1MSE n

i
ˆy y

n =
= −  

where y   is real output value, ŷ  is predicted output value, and n   is number of data 
points. 

Figure 1. Membership function for Example 1.

Let us consider the system with the following initial conditions x1(0) =
[
0.2 0

]T,

x2(0) =
[
0 0.3

]T, and x̂1(0) = x̂2(0) =
[
0 0

]T. The state trajectory of the system is
plotted using the above gains, as shown in Figures 1–5. It can be seen from the simulation
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results that the controller designed based on Theorem 2 and Theorem 3 can effectively
control the system. In addition, compared with Theorem 2, Theorem 3 shortens the
stabilization time of the system because it considers the decay-rate performance. The error
trajectory is shown in Figure 6. When the error converges to 0, it means that the designed
observer successfully estimates the system state, and it also means that the observer can
effectively observe the system state. Therefore, we know that, through the observer-based
control method, we can effectively use the PDFC method to develop a decentralized fuzzy
controller for Example 1.

This paper chooses the mean square error (MSE), integrated absolute error (IAE), and
integral time absolute error methods (ITAE) [29,30] to judge the controller performance.

According to [29], we can define the following MSE performance indicator:

MSE =
1
n∑n

i=1(y − ŷ)2

where y is real output value, ŷ is predicted output value, and n is number of data points.
The IAE is the integral of the absolute value of the error, and its mathematical expres-

sion is:
IAE =

∫ ∞

0
|e(t)|dt

where e(t) is the output error.
The ITAE is defined as the integral of the absolute error multiplied by the time

differential, and its mathematical expression is:

ITAE =
∫ ∞

0
t|e(t)|dt

According to Table 1, we can know that the MSE, IAE, and ITAE obtained by Theorem 3
are smaller than Theorem 2, which means that the decay-rate performance considered in
Theorem 3 can reduce the average squared difference between the actual value and the
expected value. In addition, Theorem 3 can also reduce the system output error value.
Furthermore, we give the overshoot, settling time, and rise time for Example 1.
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Table 1. MSE, IAE, and ISE error results for Example 1.

MSE IAE ITAE

Theorem 2 for Subsystem1 0.00010 0.05194 0.06959
Theorem 3 for Subsystem1 0.00002 0.01877 0.01785
Theorem 2 for Subsystem2 0.00698 0.44087 0.59330
Theorem 3 for Subsystem2 0.00302 0.23586 0.23497

From the comparison results in Table 2, it can be seen that the fuzzy controller with
decay-rate performance proposed in Theorem 3 can effectively stabilize the system quickly
and reduce the settling time and rise time. Therefore, through Example 1, it can be proved
that the controller with the decay rate can provide better performance.

Table 2. Comparison results for Example 1.

Max Overshoot Settling Time Rise Time

Theorem 2 for x11 0.2 7.2 0
Theorem 2 for x12 0.0375 7.8 0.1722
Theorem 2 for x21 0.0747 8.3 1.0778
Theorem 2 for x22 0.3 7.6 0
Theorem 3 for x11 0.2 3.7 0
Theorem 3 for x12 0.0179 5.8 0.0039
Theorem 3 for x21 0.0538 7.2 0.6254
Theorem 3 for x22 0.3 5.7 0

Example 2. In Example 2, we demonstrate the effectiveness of the proposed control method by
analyzing a nonlinear double-inverted pendulum system (Figure 7). The nonlinear double-inverted
pendulum system is a widely recognized and frequently used example by many experts [27,31,32].
The nonlinear system is described as follows.

.
xi1 = xi2

.
xi2 = − kr2

4Ji
xi1 +

kr2

4Ji
sin(xi1)xi2 +

2
Ji

xi2 +
1
Ji

ui +
2

∑
j=1,j ̸=i

kr2

8Ji
xj1

where xi1 is the angle from the vertical reference and xi2 denotes the angular velocity. The
system parameters are: masses of pendulums: m1 = 2 kg and m2 = 2.5 kg; gravity constant:
g = 9.8 m/s2; length of the pendulum: r = 1 m; constant of the connecting torsional spring:
k = 8 N/m; moments of inertia: J1 = 2 kg · m2 and J2 = 2.5 kg · m2.
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The double-inverted pendulum system can be described by the T–S IDS form (9) with
two rules (Figure 8) and the following system matrices:

El
i =

[
1 0
0 1

]
, A1

1 =

[
0 1

8.81 0

]
, A2

1 =

[
0 1

5.38 0

]
, A1

2 =

[
0 1

9.01 0

]
, A2

2

[
0 1

5.58 0

]
,

Bl
i =

[
0

0.5

]
, A1

12 =

[
0 0

0.25 0

]
, A2

12 =

[
0 0

0.2 0

]
, Cl

i =
[
0 1

]
.
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Figure 8. Membership function for Example 2.

The control and observer gains can be obtained by harnessing the computational
prowess of the MATLAB LMI toolbox with Theorem 3 and λi = 10.

Controller gains :


F1

s1 =
[
−271.3941 −39.9179

]
F1

d1 =
[

51.0972 19.3552
]

F2
s1 =

[
−244.3718 −36.2366

]
F2

d1 =
[

46.9955 17.6009
] and


F1

s2 =
[
−139.6467 −21.7707

]
F1

d2 =
[

30.8544 9.9469
]

F2
s2 =

[
−120.8752 −19.1308

]
F2

d2 =
[

27.7695 8.6986
]

Observer gains :


L1

s1 =
[

19.1149 198.7567
]T

L1
d1 =

[
18.9302 206.8705

]T
L2

s1 =
[

20.2031 211.0884
]T

L2
d1 =

[
18.0634 194.2403

]T and


L1

s2 =
[

20.6393 188.3686
]T

L1
d2 =

[
19.7443 191.1715

]T
L2

s2 =
[

21.0737 195.5453
]T

L2
d2 =

[
19.1339 185.2329

]T
Figures 9 and 10 present the simulation results with the initial conditions x1(0) =[

1 0.5
]T, x2(0) =

[
1 −0.5

]T, and x̂1(0) = x̂2(0) =
[
0 0

]T. We additionally give state-
space trajectories (Figure 9) to demonstrate that the respective interconnected subsystems
can be effectively controlled through a decentralized control approach. The system
response parameters for Example 2 are given in Table 3. This comprehensive examination
not only confirms the feasibility of the decentralized control but also highlights its ability
to ensure the stability of all systems. Therefore, the proposed decentralized fuzzy control
scheme can effectively stabilize Example 1 and Example 2 with decay rate constraints.
Furthermore, observers can perfectly estimate the state of the system even when it cannot
be measured.
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potential to be extended to time-delay systems, which could be a potential direction for 
future research. Exploring the application of the proposed approach to time-delay systems 
could offer valuable insights and contribute to the development of advanced control strat-
egies for more complex systems. 
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Figure 10. The error trajectories for Example 2.

Table 3. System response parameters for Example 2.

Max Overshoot Settling Time Rise Time

Theorem 3 for x11 1.0486 6.7 0
Theorem 3 for x12 0.6072 7.2 0.0019
Theorem 3 for x21 1 3.7 0.3451
Theorem 3 for x22 0.7696 4.2 0.6723
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5. Conclusions

This paper contributes to the control synthesis for the nonlinear-state-unmeasured
IDS by the decentralized fuzzy control, observer-based feedback, the PDFC method, the
FWLF method, and leveraging them to derive sufficient stability conditions. The design
of the observer-based feedback for the state-unmeasured IDS is essential to ensure that
the derivative feedback signals are measurable for the PDFC method. Additionally, the
regularity and impulse-free properties of the IDS can be easily derived through the PDFC
method. This paper provides two examples, along with simulation plots, to demonstrate
the effectiveness and advantages of the proposed results. The simulation results show the
proposed method is highly effective in accurately estimating the control system using the
observer, and the proposed method successfully addresses the challenges of the estimation
accuracy and system stability, validating its effectiveness in practical applications. Further-
more, it needs to be emphasized that the systems discussed in this paper have the potential
to be extended to time-delay systems, which could be a potential direction for future re-
search. Exploring the application of the proposed approach to time-delay systems could
offer valuable insights and contribute to the development of advanced control strategies
for more complex systems.
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