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Abstract: Model uncertainty creates a largely open challenge for industrial process control, which
causes a trade-off between robustness and performance optimality. In such a case, we propose a
generalized conditional feedback (GCF) system to largely eliminate conflicts between robustness and
performance optimality. This approach leverages a nominal model to design an optimal control in
the virtual domain and defines an ancillary feedback controller to drive the physical process to track
the trajectory of the virtual domain. The effectiveness of the proposed GCF scheme is demonstrated
in a simulation for six typical industrial processes and three model-based control methods, and in a
half-quadrotor system control test. Furthermore, the GCF scheme is open to existing optimal control
and robust control theories.

Keywords: model uncertainty; closed-loop performance; robustness; conditional feedback

1. Introduction

An article [1] published in Nature last year successfully applied deep reinforcement
learning to magnetic control of tokamak plasmas, which causes a sensation. Of course, this
achievement requires overcoming gaps in capability and infrastructure through scientific
and engineering advances; for example, an informed trade-off between simulation accuracy
and computational complexity, a highly data-efficient RL algorithm that scales to high-
dimensional problems, but not the least of which is an accurate and numerically robust
simulator. Unfortunately, such an authentic simulator may not be available in the design
process of any industrial control system [2], considering cost and efficiency, in addition to
ubiquitous uncertainties in models. Model uncertainty is an inevitable aspect of industrial
process control [3].

Generally, model uncertainty may be induced by (1) the neglected nonlinearities,
(2) the unmodeled dynamics, (3) the neglected or incorrectly modeled external disturbances,
and (4) the inescapable measurement error [4]. Without process uncertainties, there is no
need for feedback [5]. In contrast, we can design an optimal open-loop control law if
a precise mathematical model is available. Uncertainties are a key ingredient in process
control, so the robustness of a control system is a fundamental requirement in designing any
feedback control system. This property reflects an ability to maintain adequate performance
and in particular, stability in the face of uncertainties [6].

One significant and fundamental challenge in process control is the trade-off between
the robustness and the performance of the closed-loop system. In particular, the pre-
dominant proportional-integral-derivative (PID) is a compromise in the industry process
control [7], which has limited performance and passable robustness [8]. It gradually cannot
satisfy industrial control demands, because of increasingly difficult control tasks and its
tuning dilemma [9]. Contrarily, model-based systematic control theories provide perfect
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closed-loop performance. For example, in the case of linear systems with full-state informa-
tion, the full-state feedback control (FSFC) achieves the desired closed-loop system [10], and
the linear quadratic regulator (LQR) approach gives a useful and quantitative optimization
solution [11]. Additionally, the model predictive control (MPC) algorithm is a powerful
framework for addressing constrained optimal control problems [12,13]. However, the
above model-based optimal control techniques suffer from robustness deficiency to model
uncertainty [2,14]. They are shaky in the industrial uncertain environment, due to their
reliance on the absolute fidelity of the model used for control design.

Adaptive control [15-17] and robust control [18-20] are two important schools of
thought to deal with model uncertainty. The goal of adaptive control is real-time control
of uncertain parameter systems through an adaptation algorithm online [21]. However,
the adaptive control has a severe lack of robustness in the presence of unmodeled dynam-
ics [22]. Heo control and p-synthesis are the mainstays of robust control methods. They
minimize norm-based sensitivity functions to deal with various uncertainties, and give
simple and systematic state-space solutions [23]. But a key issue, which precludes the
industrial application of robust control, is that mainstays like He and p-synthesis gen-
erally require accurate prior assumptions about uncertainty structure and size, but hard
to know in real time in industrial situations [24]. Moreover, a severe compromise in the
closed-loop performance is needed as a result of conflicts between the robustness and
the performance of the closed-loop system. Such conflicts are inherent to the traditional
feedback control structure because of the intimate relationship between robustness and
closed-loop performance.

There is, in addition, one notable point to make: from an engineering perspective,
probabilistic robustness control [25-28] is developed, using random analysis and Monte
Carlo trial. This method aims to meet the robustness requirement of industrial process
control in probability, thus partly reducing the practice difficulty and conservatism of
He control. However, it does not eliminate the inherent conflict and still is a trade-off of
aggressiveness versus robustness.

As previously mentioned, model uncertainties of practical industrial processes can
severely compromise the resulting control design. Generally, model-based control is rarely
utilized in industrial process control because it only satisfies specified closed-loop perfor-
mance, but no guarantees on robustness are provided. Robust control sacrifices closed-loop
performance to overcome the robustness challenges. Thus, this article explores an effective
control scheme that simultaneously guarantees closed-loop performance and robustness.

Statement of Contributions: In this article, we present a generalized conditional feedback
(GCF) system for controlling industrial processes with model uncertainty. The proposed
GCF scheme is defined by a control problem that leverages a nominal model and an
ancillary feedback controller. Theoretical guarantees on the performance robustness of the
closed-loop system and its relationship with conditional feedback (CF) are analyzed. An
effective practice procedure is also provided. Furthermore, simulation experiments on six
typical industrial processes and a physical half-quadrotor system control test are carried
out. The main contributions are summarized as follows:

(1) A GCF scheme is proposed to control industrial processes with model uncertainty
that simultaneously guarantees closed-loop performance and robustness.

(2) The effectiveness of the proposed GCF scheme is validated by case studies and a
half-quadrotor system control test.

Organization: In Section 2, the control problem is defined. Section 3 introduces the
basic idea and structure of the proposed GCF scheme, and then theoretical guarantees
on the performance robustness of the closed-loop system and its relationship with CF
are analyzed. An effective practice procedure is also provided. Section 4 is dedicated to
demonstrating the effectiveness of the GCF scheme through case studies of six processes
and three model-based control methods. In addition, a half-quadrotor system control
experiment is presented in Section 5. Finally, Section 6 concludes this article.
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2. Problem Formulation

This section defines the model uncertainty, the mathematical formulation for the
control problem, and the nominal model used to design the GCF scheme.

2.1. Model Uncertainty

Generally, model uncertainty can be roughly classified as parameter uncertainty and
dynamic uncertainty. Parameter uncertainty, denoting the perturbation of the model
parameters, affects the transmission of low and middle-frequency signals in the system.
Dynamic uncertainty, which refers to the change in the model structure, mainly affects the
high-frequency characteristics of the system [29].

Because signals in industrial processes are almost low and middle-frequency, this
article considers a single-input and single-output (SISO) process with norm-bounded
time-varying parameter uncertainty, depicted as

{ % = [Ag+ AA(q)]x + [Bo + AB(q)]u (1)
y = [Co + AC(q)]x + [Do + AD(q)]u *

where x € R" is the state, u € R is the control input, y € R is the measured output,
Y(Ag € R™™, By € R, Cy € R'™, Dy € R) is the known nominal model (NM), {AA(-),
AB(+), AC(-), AD(-)} are the continuous real-matrix functions with suitable dimensions, and
q € R is the time-varying vector of uncertain parameters.

Assumption 1. g(t) is Lebesgue measurable and satisfies the bound [6]

qTq < I )

This assumption guarantees the model uncertainty of (1) is norm-bounded.

2.2. Control Problem

Performance constraints can be defined by

z=F(y,u,t)
{ z€Z ! )

where z is the performance variable, F(-) denotes the performance function, and Z: = {z| F(y,
u, t) < b,} is the performance constraint set with the bound b,. In industrial processes, Z
usually is assigned as [30]

0 <0, Ts < Tp e <ep,up <u <y, (4)

where ¢ is the relative overshoot, T; is the settling time, e« is the steady-state error, and the
subscript ‘y denotes the acceptable bound. u, u;, and u,, are the control input, its low limit,
and upper limit, respectively.

The control problem is to find a general control scheme that guarantees that the
uncertain model (1) satisfies the performance constraints (4). That is to say, the issue of how
to improve the performance robustness of the model-based control method is raised.

2.3. Nominal Model

With an uncertain model (1), the resulting control design may be severely compro-
mised. An alternative is to use a nominal model (NM) to design an optimal control system.
NM is a key element in the design and analysis of a control system, which is quantitative
and has a certain fidelity [10].

In this work, we consider a wide range of NMs, such as transfer functions, state—space
equations, differential equations, or even neural network structures. They can be derived
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using mechanism analysis, typical system identification theories, and data-driven methods.
Nevertheless, for clarity, the NM is defined, corresponding to (1), as
{ xo9 = Agxo + Boug 5)

yo = Coxo + Doug *

where xp € R", ug € R, and y € R are the state, the control input, and the output of NM.
Y(Ap € R*™, By € R™, Cy € R, Dy € R) are the dynamic matrices of NM.

Assumption 2. The pair (Ag, By) is controllable and the pair (Ay, Cy) is observable.

This assumption is required to guarantee the performance optimality of the proposed
control scheme.

3. Generalized Conditional Feedback

In this work, the NM (5) is leveraged, not only in the simulation design stage (offline)
but also in the industrial application stage (online), to design an efficient generalized condi-
tional feedback (GCF) scheme that can simultaneously guarantee closed-loop performance
and robustness.

3.1. Control Algorithm

The GCF scheme consists of the virtual domain and the deviation correction part. In
the virtual domain, a primary controller is designed to optimize the trajectory of the virtual
NM, depicted as,

design Ko
ug = Ko (7, Yo, o)
subject to
{ xo = Aoxo + Bouo (6)
Yo = Coxo + Douyg

zp = F(yo, uo, to)
zg € Zy

where Kj denotes the controller designed in the virtual domain, and the constraint set Zj is a
tightened version of the original constraint set (3) such that Zy C Z. The tightened constraint
is used to ensure performance robustness and is defined in Section 3.3. Assumption 2
guarantees the performance of the controller K.

In the deviation correction part, another ancillary controller is designed to drive the
physical process to track the trajectory of the virtual domain, depicted as,

design Ky
uy = Kl (]/0/ Yy, up, ul)
U = Uy + Uy
subject to (7)

y = [Co+AC(q)]x + [Do + AD(q)]u
e=1yo—y=0fort >t

{ x = [Ag + AA(q)]x + [Bo + AB(q)u

where K; denotes the ancillary correction controller, also designed based on the only known
NM, and t; is the specified time scale, such that the deviation correction controller efficiently
drives the physical process to track the trajectory of the virtual domain. Assumption 1
guarantees that such an ancillary correction controller K; can be designed.

For additional clarity, the architecture of the proposed GCF control scheme is shown
in Figure 1. This diagram highlights the following facts:

I.  There are two systems being controlled: the NM (5) is virtual, and the controlled
process (1) is physical.
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robustness, CF can be regarded as an example of GCF acting for inverse system control.

However, their original intentions are different. GCF aims to simultaneously guaran-
tee closed-loop performance and robustness for industrial processes with model uncer-
tainty, while CF focuses on removing conflict between the input-output response and dis-
turbance—output response under the assumption of no model uncertainty. Moreover, CF
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Figure 2. The basic configuration of a linear conditional feedback system.
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8: = H(0y,6ut)

10
= F(]/O+5yzu0+5u/t) _F(yO/uO/t)/ ( )

where H(') is the defined performance error function that denotes the performance variable
of the deviation correction controller driving the uncertain process.
Since the considered model is norm-bounded, it follows that

5, < A, (11)

which means the performance error is bounded by the worst-case bound A,. The value
of A; depends on the performance robustness of the deviation correction controller and
model uncertainty. Then, the constraint set Zj of the virtual domain can be designed as

Zo == {z0|F(yo, uo, to) < bz — A}, (12)

which is a tightened version of Z. With this tightened performance constraint set, the
nominal trajectory optimized by the virtual domain will account for the tracking error and
ensure performance constraint satisfaction.

Performance Robustness. Suppose that the deviation correction controller is performance robust.
Then, under the proposed control structure (GCF), the uncertain process (1) will robustly satisfy
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the performance constraints (3). The closed-loop performance robustness of GCF depends on the
performance robustness of the deviation correction controller.

The requirement that the deviation correction controller is performance robust is
natural and is satisfied by properly choosing and tuning a non-model-based controller.

3.4. Practice Procedure

The practice procedure of the GCF scheme is now summarized as Algorithm 1. In the
online portion, it is suggested that the deviation correction controller is used as a “startup”
controller to satisfy basic requirements (e.g., stability, safety). Then, GCF takes over to drive
the physical process to guarantee performance constraint satisfaction.

Algorithm 1: Practice procedure of the GCF scheme.

1: system identification (offline)
get a nominal model
2: simulation design (offline)
Ko < Equation (6)
Kj + Equation (7)
3: practice (online)
startup control
u < Ky (r,y,u)
Uy < u
then
ug < Ko (r, yo, o)
uy < Ki (y, yo, uo, u1)
U<— Uy + Uy

Additionally, when the “startup” controller is applied to the physical process, the
virtual domain is in a tracking stage, such that the simulated NM is controlled by

uy =u = Ky(r,y,u), (13)

which ensures a reasonable initial condition when the GCF scheme takes control of the
physical process.

4. Simulation Illustration

In this section, several model-based control methods are computed as illustrative
examples, based on MATLAB R2023a. Please note that PID control tuned by the Skogestad
internal model control (SIMC-PID) [35] is selected as the deviation correction controller in
all simulation experiments, expressed as

1
Ky =Ky + Ki +Kgs (14)

Six typical industrial processes are depicted in Table 1 [27] and three model-based
control methods, namely full-state feedback control (FSFC), linear quadratic regulator
(LQR), and model prediction control (MPC), are simulated to illustrate the effectiveness of
the proposed GCF scheme.

The concern of simulation experiments is the tracking performance robustness. First,
norm-bounded model uncertainties of six typical industrial processes in the simulation
experiments are assumed in Table 2. All tuned controller parameters are listed in Table 3.
In particular, the details of the controller design are explained as follows:

I.  State observers are designed when FSFC and LRQ are applied to uncertain models.
The observer estimation speed is selected to be 3~5 times the closed-loop response.

II.  For processes, G1(s)~Ga(s), the state-space models are all expressed as the second
controllable canonical form.
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III.  The pole placements and the cost functions are listed in Table 4.
IV.  For the time-delay process, G5(s), the standard Smith predictor [36] is used.

Table 1. Six typical industrial processes as a benchmark test set.

Process Types Process Models
High-order process Gi(s) = (54}71)4
Integral process Go(s) = m
Low-order process Gs(s) = m
Unstable process Ga(s) = S(Sl_l)
Time-delay process Gs(s) = (205+1%(25+1) S
Nonminimum-phase process Ge(s) = (—sisj)}

Table 2. Model uncertainties of six typical industrial processes, where the model uncertainty matrix
denotes the limit of model parameters varying near nominal values defined in Table 1, i.e., Aa;
denotes ay €[a1g — Aaq, aig + Aaq], where ayg is the nominal value of a7 in Table 1.

Process Models Model Uncertainties [Aaq Aay, .. .]
_ 1
Gi(s) = T T [0.25 0.25 0.25 0.25]
Ga(s) = ey ) [0.25 1.5 3]
Gs(s) = W [111]
Gy(s) = e [0.25 0.25]
— 1 —
Gs(s) = We 4 [0.52.510.5]
— _ms
Go(5) = (er1)? [0.50.4]

Table 3. Tuned controller parameters.

Control Parameters
Processes
Methods Virtual Domain {Kp, K;, Kz} State Observer
FSEC G1(s) [3641] {5/6,1/3,0.5} [6100 —21]
Go(s) [740 142 6] {1404, 2592, 180} [27 217 —975]
LOR G3(s) [13.1774 2.8879] {5.5,55/8, 0} [10 15]
Gy(s) [14.1421 7.2677] {12.5, 4.8, 7.8} [21 146]
MPC Gs(s) Ts=02s,p=50,m=2 {12.5,1.25, 20} -
Ge(s) Ts=01s,p=50,m=2 {0.5,0.2,0.3} -

Table 4. Placed poles and cost functions.

Control Placed Poles

Processes
Methods Closed-Loop State Observer
FSEC G1(s) [-1+f, —1—j, -1 -2] [—2+2j, —2—-2j, —2 —4]
Go(s) [-7+5j, =7—-5], —10] [—15+10j, —15—10j, —15]
LOR G3(s) Cost function: [—8+4j, —8—4j]
G4 (s) ] = [y (20x3 4 x% + 0.1u?)dt [—10+5j, —10-5]]

Tracking responses and Monte Carlo trials [37] are carried out to quantify the perfor-
mance robustness of original control methods and GCF schemes. The statistical results are
summarized in Table 5. Obviously, the control scheme, designed based on NM, cannot
make the uncertain process behave as expected. Nevertheless, the orange part is closer to
the red line than the cyanic part, which means the GCF schemes try to buffer the actual
response against model uncertainties. Moreover, in the Monte Carlo trials, the performance
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by an open-loop step test. In this test, a step voltage of 20 V is added at 1 s, and a genetic
algorithm (GA) [40] is used for parameter optimization. Figure 5 shows the results of the
identification test. Finally, the transfer function between the voltage and the yaw angle is
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5.3. Experiment Results AW %l parameters, tined based on (17), are listed i Table 6. The desired yaw

All control parﬁi&%% t
angle is a rectangular wave w
the control voltage pnge is ]Petw en 124%

uned contro

apguiar wave with an amplitude of 45 deg and a fiequeney of 6:05 Hz, and
Ry y

egand d frequency of 0.05 Hz, and

V.
ler parameters.

Table 6. Tuned contro(ftyiashSéiemes Parameters
Control Schemes -~QRParameters we=45¢c=0.8 Q= diag ([100 0]), R=0.1
GCF-LQR Pliaswgtg.g?ﬁ%%,akg=§6ﬁ? the cut-cigf érfgf%a%qédiﬁbﬁd the damping ratio of the second-

UWwW dOoO TITITL, TCTOSPTTLIVTT

Please note that the we and & are the cut-off fre uency {rad/s) and the damping ratio of the second-
order low-pass filter, respectively.
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Table 6. Tuned controller parameters.
Control Schemes Parameters
LQR w:=45,=08 Q =diag ([100 0]), R =0.1
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There is, in addition, one further point to make: the half-quadrotor system is insensitive
to a low control voltage, which means the system has no integration effect on the low




Processes 2024, 12, 65

14 of 15

References

voltage. This causes LQR-based GCF to still have a steady-state error in the presence of an
integral correction function.

6. Conclusions

In this article, a GCF scheme is proposed for controlling industrial processes with
model uncertainties. Its basic concept and practical implications are elaborated. The ap-
proach leverages nominal models and defines an ancillary feedback controller to guarantee
closed-loop performance constraints and robustness simultaneously. This scheme is open,
such that based on a nominal model, any existing optimal control theory can be designed
in the virtual domain, and any robust control algorithm is used as an ancillary feedback
controller to drive the physical process to track the trajectory of the virtual domain. The
effectiveness of the proposed GCF scheme is validated by numerous case studies and a
half-quadrotor system control test.

Future work: There are some additional considerations in terms of both theoretical and
practical significance related to this work. First, a further theoretical analysis is necessary.
Second, the optimality of an ancillary feedback controller and uncertainty size could be
considered. Third, under physical constraints, such as actuator constraints, the limit of the
controller in the virtual domain should be considered. Fourth, extensions to reinforcement
learning control or digital-twin-enabled smart control are of significant interest.
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