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Abstract: In intelligent process monitoring and fault detection of the modern process industry,
conventional methods mostly consider singular characteristics of systems. To tackle the problem of
suboptimal incipient fault detection in nonlinear dynamic systems with non-Gaussian distributed
data, this paper proposes a methodology named Gap-Mixed Kernel-Dynamic Canonical Correlation
Analysis. Initially, the Gap metric is employed for data preprocessing, followed by fault detection
utilizing the Mixed Kernel-Dynamic Canonical Correlation Analysis. Ultimately, fault identification
is conducted through a contribution method based on the T2 statistic. Furthermore, a comparative
analysis was conducted using Canonical Variate Analysis, Dynamic Canonical Correlation Analysis,
and Mixed Kernel-Dynamic Canonical Correlation Analysis on the Tennessee Eastman process.
Experimental results indicate varying degrees of improvements in the detection rate, false alarm rate,
missed detection rate, and detection time compared to the comparative methods, demonstrating the
industrial value and academic significance of the method.

Keywords: gap metric; canonical correlation analysis; kernel density estimate; fault detection;
Tennessee Eastman process

1. Introduction

Modern process industries are undergoing a transformation from traditional to effi-
cient, large-scale, complex, and integrated systems, adapting to escalating market demands
for a wide variety of high-value-added products with multiple specifications. Within this
developmental trend, process industrial systems in sectors like steel, pharmaceuticals,
and petrochemicals have evolved into highly automated and complex large-scale produc-
tion systems. Nevertheless, with the expansion of scale, the high-intensity operation of
systems may result in minor faults or deviations from the optimal working conditions in
any unit or subsystem. If these faults are not promptly detected and addressed, they could
propagate, worsen, or even trigger chain reactions, causing impacts ranging from compro-
mised product quality to severe consequences such as equipment damage, environmental
pollution, substantial property losses, and even casualties or fatalities in major safety inci-
dents. Historical incidents such as the gas leak at the Carbide Company in India and the
nuclear leakage at the Fukushima Nuclear Power Plant serve as warnings, indicating that
safe, reliable, high-quality, and efficient operation is crucial in modern process industries.
Consequently, providing effective safeguarding for the long-term operation of process
industries through process monitoring technology has emerged as a crucial component of
sustainable development in process industries. It carries strategic significance in enhancing
product quality and ensuring the secure operation of processes, marking it as a current
research focus in the field of process industry control with significant theoretical value and
extensive prospects for engineering applications.

However, the field of intelligent process monitoring and fault detection in process
industries is encountering challenges posed by the complexity and high integration of
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systems. Traditional process monitoring methods appear somewhat inadequate in dealing
with the dynamics, non-linearity, and complexity of process industrial systems. The mutual
coupling of numerous production processes and intricate flow patterns of fluid, energy,
and information render traditional process monitoring methods insufficient in adapting
to the complexity of process industries. The specific characteristics of process industries,
including nonlinearity, time variation, and multimodality, pose additional challenges for
traditional monitoring methods.

The majority of traditional process monitoring methods are rooted in multivariate
statistical analysis techniques, including Principal Component Analysis (PCA), Partial
Least Squares (PLS), Canonical Variate Analysis (CVA), Canonical Variate Dissimilarity
Analysis (CVDA), and Canonical Correlation Analysis (CCA), which have been extensively
researched by a wide range of scholars and have yielded noteworthy research achieve-
ments and a plethora of successful applications [1]. For instance, references [2–7] have,
respectively, investigated and improved the PCA method to varying extents and achieved
successful applications in the industry; Ding et al. applied an enhanced PLS to predict
and diagnose key performance indicators of industrial hot-rolled strip steel mills [8], and a
series of researches were similarly carried out for the PLS method in [9–13]; Ruiz-Cárcel
and colleagues achieved satisfactory experimental results in the process monitoring of mul-
tiphase flow facilities using the CVA method [14]; subsequently, Pilario et al. proposed the
CVDA method and its extended version based on CVA, offering new insights into incipient
fault detection in dynamic systems [15–17]; as for the CCA method, Chen et al. pioneered
the use of data-driven CCA technology for generating residuals based on canonical corre-
lation, applying it to fault detection in both static and dynamic processes [18]; following
this, the CCA method has gradually attracted attention from scholars in the field of process
monitoring and fault detection, undergoing extensive research and improvement [19–28].

Nevertheless, traditional CCA methods are unable to meet the requirement of dynam-
ics in modern process industry systems for process monitoring. Hence, Chen et al. extended
it to a dynamic version, proposing the DCCA method [18]. Additionally, the high nonlinear-
ity and non-Gaussian distribution of data in dynamic systems pose significant challenges
to process monitoring and fault detection in process industries. Although Pilario et al. pro-
posed the Mixed Kernel- Canonical Variate Dissimilarity Analysis (MK-CVDA) method, uti-
lizing a mixed kernel to address system nonlinearity [17], its performance in the Tennessee
Eastman Process (TEP) was somewhat inadequate. It failed to investigate dynamic relation-
ships between system inputs and outputs and did not resolve the issue of non-Gaussian
data distribution. To address these concerns, we introduced the Mixed Kernel-Dynamic
Canonical Correlation Analysis (MK-DCCA) method in our previous work, achieving
effective handling of system dynamics and nonlinearity in a simulation model of the Con-
tinuous Stirred Tank Reactor (CSTR) with positive experimental results [29]. However,
the MK-DCCA method still showed unsatisfactory performance in TEP, largely due to the
imperfect handling of system nonlinearity by the mixed kernel method and the unresolved
issue of non-Gaussian data distribution.

To tackle the aforementioned challenges, we propose a novel intelligent fault diagnosis
method based on the Gap metric, MK-DCCA, and Kernel Density Estimation (KDE), named
Gap-Mixed Kernel-Dynamic Canonical Correlation Analysis (Gap-MK-DCCA), with the
objective of addressing fault detection issues in modern process industry systems attributed
to their dynamics, nonlinearity, and non-Gaussian data distribution characteristics. In this
approach, building on MK-DCCA, the Gap metric is introduced as a data preprocessing step,
avoiding the problem of inaccurate feature extraction caused by traditional preprocessing
methods. This enhancement allows for a better representation of the correlation among
system variables in high-dimensional space, effectively avoiding high coupling between
variables and further optimizing the fault detection capability of the method in nonlinear
systems. Moreover, to address the issue of non-Gaussian data distribution, Kernel Density
Estimation is introduced for threshold calculation. Compared to traditional methods,
Gap-MK-DCCA exhibits superior capabilities in handling dynamics, nonlinearity, and non-
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Gaussian characteristics, making it an advanced solution for intelligent process monitoring
and fault detection in modern process industries.

The rest of this paper is organized as follows: in Section 2, a brief exposition of the
fundamental theories related to this method is provided; in Section 3, the Gap-MK-DCCA
method used in this study is introduced and detailed; in Section 4, a case analysis of the
Gap-MK-DCCA method is conducted, comparing it with CVA, DCCA, and MK-DCCA
methods through experiments to validate the superior performance of the proposed method;
in Section 5, a summary of the work in this paper is provided.

2. Preliminary Work

In previous work, we demonstrated the effectiveness of the MK-DCCA method for
diagnosing incipient faults in nonlinear dynamic systems through process monitoring and
fault detection using a simulation model of CSTR [29]. Building upon the foundation of the
previous research, this study aims to further optimize the method to enhance its diagnostic
performance in the face of various complex characteristics of incipient fault diagnosis in
dynamic systems. To accomplish this, we will begin with a brief review of the method.

2.1. Mixed Kernel Method

Kernel methods, widely acknowledged for their effectiveness in handling nonlinearity,
often have their generalization performance influenced by the choice of kernel function.
To bestow the kernel function with proficiency in both interpolation and extrapolation,
namely excellent generalization performance, we choose to employ a combination scheme
based on Kernel Principal Component Analysis (KPCA). This scheme involves combining
the Radial Basis Function (RBF) kernel and the polynomial kernel into a mixed kernel. Here
is a detailed presentation of the related formulas:

KRBF(x, x
′
) = exp(−

∥∥∥x − x
′
∥∥∥2

c
) (1)

Kpoly(x, x
′
) = ((x, x

′
) + 1)

d
(2)

Kmix = ωKpoly + (1 − ω)KRBF (3)

where KRBF represents the Gaussian kernel function, (x, x
′
) denotes a scalar product, and c

is the kernel width, satisfying the Mercer condition for c > 0 [30]. Kpoly is the polynomial
kernel function, d is the kernel parameter representing the polynomial degree, satisfying
the Mercer condition for d ∈ N [31]. Kmix denotes the mixed kernel function, ω ∈ [0, 1] is
the mixing weight, the mixed kernel transitions into the polynomial kernel and the RBF
kernel at ω = 1 and ω = 0, respectively.

Jordaan et al. demonstrated that the weighted sum of the linear polynomial kernel
(d = 1) and the RBF kernel can optimize the generalization performance of kernel meth-
ods [32]. Therefore, the polynomial kernel with d = 1 and the RBF kernel are chosen for
combination. Furthermore, in our previous work, through the grid search method, it was
demonstrated that c = 4.5 is the optimal kernel width for RBF, with the optimal weight
being ω = 0.95 [29].

Once the kernel function and its parameters are determined, applying the KPCA
method to the sampled data enables the transformation of a non-linear data matrix into a
linear data matrix.

2.2. Dynamic Canonical Correlation Analysis Method

Due to the inability of traditional CCA methods to meet the requirements of modern
process industries for system dynamics, Chen et al. proposed extending it to the dynamic
version, DCCA, by introducing lag and lead parameters [18]. Assuming p and f are lag
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and lead parameters, respectively, and u ∈ Rl and y ∈ Rm are input and output vectors,
we initially define the data matrix and set as follows:

up(i) =

u(i − p)
...

u(i − 1)

 (4)

yp(i) =

y(i − p)
...

y(i − 1)

 (5)

u f (i) =

 u(i)
...

u(i + f )

 (6)

y f (i) =

 y(i)
...

y(i + f )

 (7)

Here, up(i) and yp(i) represent the past input matrix and past output matrix, while
u f (i) and y f (i) denote the future input matrix and future output matrix, respectively.
The new input and output matrices are constructed using the following formulas:

zp(i) =
[

yp(i)
up(i)

]
(8)

Zp = [zp(1), · · · , zp(N)] ∈ R(p(m+l)×N) (9)

U f = [u f (1), · · · , u f (N)] ∈ R( f+1)l×N) (10)

Yf = [y f (1), · · · , y f (N)] ∈ R( f+1)m×N) (11)

Z =

[
Zp
U f

]
;

Y = Yf

(12)

where N represents the number of samples, and Z and Y are the new input and output
matrices, respectively. Subsequently, by applying the CCA method to Z and Y, the moni-
toring statistic indicator T2 is calculated, and the formula for the corresponding threshold
is as follows:

T2
UCL =

k(N2 − k)
N(N − k)

F1−α(k, N − k) (13)

Here, α represents the confidence level, k is the number of retained singular values
chosen, and N is the number of samples. After acquiring the threshold value, the procedure
of process monitoring is carried out in accordance with the subsequent logic: T2 > T2

UCL
indicates a fault; otherwise, the system is considered normal.

3. Gap-Mixed Kernel-Dynamic Canonical Correlation Analysis Method

In this section, we extensively present the Gap-Mixed Kernel-Dynamic Canonical
Correlation Analysis (Gap-MK-DCCA) method proposed in this paper, which mainly
includes the data preprocessing method based on the Gap metric, the fault detection
method based on MK-DCCA, and the fault identification method based on the contribution
of the T2 statistic. Figure 1 provides a detailed description of these three parts of the
Gap-MK-DCCA method.
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Figure 1. Detailed flowchart of the Gap-MK-DCCA approach.

3.1. Gap-Metric-Based Data Preprocessing

Traditional data preprocessing methods tend to overlook the correlation between
different variables in Euclidean space, resulting in inaccurate feature extraction. However,
the Gap-metric-based data preprocessing method provides a better reflection of the correla-
tion among various system variables in high-dimensional space while effectively avoiding
high coupling situations between variables and improving issues related to nonlinear
data to different degrees. Therefore, in this study, we choose the Gap-metric-based data
preprocessing method as a replacement for traditional z-score and max–min preprocess-
ing methods.

Initially, we assume the data matrix Xn ∈ RN×n for the multidimensional variable
system is as follows.

Xn =


x1(1) x1(2) · · · x1(n)
x2(1) x2(2) · · · x2(n)

...
...

. . .
...

xN(1) xN(2) · · · xN(n)

 (14)

where n represents the number of system variables, and N represents the number of
samples. Subsequently, the matrix Xn is subjected to mean normalization using the follow-
ing procedure:

bn =
1
N

lN Xn (15)
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Here, lN = [1, 1, · · · , 1] ∈ R1×N , and bn denotes the sample mean vector for each
variable in Xn. Subsequently, raw data are projected onto the Riemannian sphere, and the
Gap metric of the sample distance of each variable from its sample mean is calculated.
The transformed matrix is denoted as X∗, and the relevant equation is shown below:

X∗ =


δ(x1(1), bn(1)) δ(x1(2), bn(2)) · · · δ(x1(n), bn(n))
δ(x2(1), bn(1)) δ(x2(2), bn(2)) · · · δ(x2(n), bn(n))

...
...

. . .
...

δ(xN(1), bn(1)) δ(xN(2), bn(2)) · · · δ(xN(n), bn(n))

 (16)

where

δ(xi(j), bn(j)) = ∥φ(xi(j)− φ(bn(j))∥ =
|xi(j)− bn(j)|√

1 + (xi(j))2
√

1 + (bn(j))2
(17)

3.2. Process Monitoring and Fault Detection Based on the MK-DCCA Method
3.2.1. MK-DCCA Methodology

The process monitoring and fault detection using preprocessed data matrix X∗ are
primarily divided into two stages: offline training and online monitoring. In the offline
training stage, the preprocessed data matrices are firstly divided into input matrix Ztrain
and output matrix Ztrain. Then, the self-covariance matrix and cross-covariance matrix
are calculated for each and used to generate the Hankel matrix H. Following the singular
value decomposition (SVD) of the matrix H to obtain left and right singular vectors u and
v and singular value matrix s, the projection matrices J and L, maximizing correlation
between input and output matrices, can be computed using the following formulas:

H = Σ−1/2
ZZ ΣZYΣ−1/2

YY (18)

J = Σ−1/2
ZZ u(:, 1 : k) (19)

L = Σ−1/2
YY v(:, 1 : k) (20)

Here, ΣZZ and ΣYY are self-covariance matrices of input and output matrices, ΣZY
is a cross-covariance matrix between input and output matrices, and k represents the
number of retained singular values; its value can be determined using the Cumulative
Percentage Value (CPV) method [33]. Once projection matrices J and L are obtained,
they are transferred for backup to the online monitoring stage. Simultaneously, they are
employed for calculating residual r and monitoring statistic T2:

r1(i) = JTz(i)− sLTy(i)

r2(i) = LTy(i)− sT JTz(i)
(21)

T2(i) = (N − 1)rT(i)(I − s2
k)

−1
r(i) (22)

where i represents the data at the i-th sampling instant, s denotes the singular value matrix,
I is the corresponding identity matrix, and k is the number of retained singular values.
Based on the two residuals r1(i) and r2(i), Equation (24) can be used to calculate the two
statistics T2

in and T2
out, which are employed for achieving optimal fault detection for faults

occurring in input subspace and in output subspace, respectively.
Ultimately, threshold calculation based on the statistic T2 using the KDE method will

be elaborated on in Section 3.2.2.
In the online monitoring stage, preprocessed data matrices are similarly partitioned to

obtain the input matrix Ztest and the output matrix Ytest. Afterward, utilizing projection
matrices J and L obtained in the offline training stage through Formulas (23) and (24),
we calculate the residual r and the statistic T2 during the online monitoring stage. Fault
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detection is then carried out following the logic below: T2 > T2
UCL indicates a fault, and

further fault identification is performed for accurate fault localization; otherwise, the system
is considered normal.

3.2.2. KDE-Based Threshold Calculation

Most traditional threshold calculation methods assume that data follow a Gaussian
distribution. However, processes in modern process industrial systems are generally
non-Gaussian, which renders the thresholds calculated from Equation (13) unsuitable for
real-time monitoring. To address this issue, we choose to directly estimate the Probability
Density Function (PDF) of the statistic through non-parametric methods [34,35].

Among various PDF estimation methods, the Kernel Density Estimation (KDE) method
exhibits stronger adaptability and flexibility in handling complex, multi-modal, high-
dimensional data and anomaly detection. Hence, the KDE method is chosen for the
threshold calculation in this paper. Suppose x is a random variable with a density function
denoted by p(x), which means

P(x < b) =
b∫

−∞

p(x)dx (23)

Thus, as long as p(x) is known, (25) can be utilized to determine appropriate control
limits for a specific confidence interval α. The estimation of the probability density function
p̂(x) at point x through the kernel function K(·) is defined as follows:

p̂(x) =
1

Mh

M

∑
k=1

K(
x − xk

h
) (24)

where xk, k = 1, 2, · · · , M is a sample from x, h is the bandwidth, and a radial basis function
is chosen, expressed as follows:

K(x) =
1√
2π

exp(− g2

2
) (25)

By replacing xk with the statistic T2
k , the above KDE method can estimate the PDF of

the indicator T2. Subsequently, given a confidence level α, the corresponding control limits
can be obtained from the PDF of the indicator by solving the following equation:

T2
UCL(α)∫
−∞

p(T2)dT2 = α (26)

where the confidence limits α = 99%.

3.3. Fault Identification Based on the Contribution of T2 Statistic

According to the definition of variable contribution based on CVA proposed by
Jiang et al. [36], T2-based variable contribution can be obtained using the following formula:

CT2 = T2 = dTd = dTKŷp,k =
n

∑
i=1

q

∑
j=1

djKj,i ŷp,i =
n

∑
i=1

Ci,T2 (27)

Here, Ci,T2 represents the contribution of variable ŷi to monitoring statistic T2, and djKj,iŷp,i
denotes the contribution of variable ŷi to the j-th typical state variable zj. Ultimately,
by utilizing the contribution of each variable ŷi to T2, and dividing it by the sum of
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contributions CT2 , the percentage of each contribution can be calculated, thereby identifying
the variables related to the fault.

Pi,T2 =
Ci,T2

CT2
(28)

4. Case Study

In this section, to validate the superiority of the proposed method in the diagnosis
of incipient faults in nonlinear dynamic systems, the Gap-MK-DCCA method is used for
process monitoring and fault detection on the Tennessee Eastman Process (TEP). Addition-
ally, the experimental results are compared with those of CVA, DCCA, and MK-DCCA to
highlight excellent fault diagnosis performance of the Gap-MK-DCCA method.

4.1. Process Description
4.1.1. Model Introduction

TEP, created by the Eastman Chemical Company, serves the purpose of providing a
realistic industrial process for the evaluation of process monitoring and fault detection
methods. It has been extensively utilized as a benchmark dataset for comparing various
methods in the field of process monitoring. The test process is a simulation based on a real
industrial process initially proposed by Downs and Vogel [37]. The simulation experiment
model and data used in this paper can be found at http://depts.washington.edu/control/
LARRY/TE/download.html (accessed on 11 November 2023). The process consists of five
main units: reactor, condenser, compressor, separator, and stripper tower. The reactants in
the entire chemical process are mainly composed of four gaseous materials, namely A, C, D,
and E; G and H are two products generated in the reaction, accompanied by a byproduct
F; in addition, a small amount of inert gas B is present in the product feed. The reaction
equation for the whole process is as follows:

A(g) + C(g) + D(g) → G(liq),

A(g) + C(g) + E(g) → H(liq),

A(g) + E(g) → F(liq),

3D(g) → 2F(liq)

(29)

The reaction is irreversible, exothermic, and approximately first-order with respect to
reactant concentrations, and the reaction rate is a temperature-dependent function.

4.1.2. Process Variables

The sample data of TEP includes two types of variables: measurement variables
represented by XMEAS, a total of 41 variables, as shown in Table 1; and manipulated
variables denoted by XMV and a total of 11 variables, as shown in Table 2. In our study,
inputs (u) are manipulated variables and outputs (y) are measured variables and system
output variables. In addition, all samples were obtained under a 48 h simulation run with
3 min sampling intervals, and faults were introduced after 8 h of model operation, with a
total of 960 observations and the first 160 observations being normal data. It is worth
mentioning that all process measurements contain Gaussian noise.

Table 1. Measurement variables of TEP.

Variable Description Unit

XMEAS(1) A feed (stream 1) km3/h
XMEAS(2) D feed (stream 2) kg/h
XMEAS(3) E feed (stream 3) kg/h
XMEAS(4) Total feed (stream 4) km3/h
XMEAS(5) Recirculation flow rate (stream 8) km3/h
XMEAS(6) Reactor feed rate (stream 6) km3/h

http://depts.washington.edu/control/LARRY/TE/download.html
http://depts.washington.edu/control/LARRY/TE/download.html
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Table 1. Cont.

Variable Description Unit

XMEAS(7) Reactor pressure kPa
XMEAS(8) Reactor level %
XMEAS(9) Reactor temperature ◦C
XMEAS(10) Discharge rate (stream 9) km3/h
XMEAS(11) Product separator temperature ◦C
XMEAS(12) Product separator level %
XMEAS(13) Product separator pressure kPa
XMEAS(14) Product separator bottom flow rate (stream 10) m3/h
XMEAS(15) Stripper tower level %
XMEAS(16) Stripper tower level pressure kPa
XMEAS(17) Stripper tower bottom flow rate (stream 11) m3/h
XMEAS(18) Stripper tower temperature ◦C
XMEAS(19) Stripper tower flow rate kg/h
XMEAS(20) Compressor power kW
XMEAS(21) Reactor cooling water outlet temperature ◦C
XMEAS(22) Separator cooling water outlet temperature ◦C
XMEAS(23) Component A (stream 6) mol%
XMEAS(24) Component B (stream 6) mol%
XMEAS(25) Component C (stream 6) mol%
XMEAS(26) Component D (stream 6) mol%
XMEAS(27) Component E (stream 6) mol%
XMEAS(28) Component F (stream 6) mol%
XMEAS(29) Component A (stream 9) mol%
XMEAS(30) Component B (stream 9) mol%
XMEAS(31) Component C (stream 9) mol%
XMEAS(32) Component D (stream 9) mol%
XMEAS(33) Component E (stream 9) mol%
XMEAS(34) Component F (stream 9) mol%
XMEAS(35) Component G (stream 9) mol%
XMEAS(36) Component H (stream 9) mol%
XMEAS(37) Component D (stream 11) mol%
XMEAS(38) Component E (stream 11) mol%
XMEAS(39) Component F (stream 11) mol%
XMEAS(40) Component G (stream 11) mol%
XMEAS(41) Component H (stream 11) mol%

Table 2. Manipulated variables of TEP.

Variable Description Unit

XMV(1) D feed flow rate kg/h
XMV(2) E feed flow rate kg/h
XMV(3) A feed flow rate km3/h
XMV(4) Total Feed flow rate km3/h
XMV(5) Compressor recirculation valve %
XMV(6) Discharge valve %
XMV(7) Separator tank liquid flow rate m3/h
XMV(8) Stripper tower liquid product flow rate m3/h
XMV(9) Stripper tower water flow valve %
XMV(10) Reactor cooling water flow rate m3/h
XMV(11) Condenser cooling water flow rate m3/h

4.1.3. Process Faults

The TEP simulation model includes 20 pre-set faults, where faults 1–15 are known
faults, and the remaining 5 are unknown faults.

Among the known faults, faults 1–7 are caused by step changes in process variables,
faults 9–12 are closely related to the stochastic variation in process variables, fault 13
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represents a slow drift in reaction dynamics, while faults 14 and 15 are associated with
sticking of the valve. Detailed information about these faults is provided in Table 3.

Table 3. Fault information of TEP.

Fault ID Fault Description Fault Type

1 A/C feed ratio, component B is constant (stream 4) Abrupt
2 Component B, A/C feed ratio is constant (stream 4) Abrupt
3 Feed temperature of D (stream 2) Abrupt
4 Reactor cooling water inlet temperature Abrupt
5 Condenser cooling water inlet temperature Abrupt
6 feed losses of A (stream 1) Abrupt
7 Pressure loss in C - reduced availability (Stream 4) Abrupt
8 A, B, C feed components (stream 4) Random variable
9 Feed temperature of D (stream 2) Random variable
10 Feed temperature of C (stream 2) Random variable
11 Reactor cooling water inlet temperature Random variable
12 Condenser cooling water inlet temperature Random variable
13 Reaction dynamics Incipient
14 Reactor cooling water valves Sticking
15 Condenser cooling water valves Sticking
16 unknown /
17 unknown /
18 unknown /
19 unknown /
20 unknown /

4.2. Process Monitoring and Fault Detection

In this subsection, we evaluate the fault detection performance of the Gap-MK-DCCA
method by using samples collected under the normal operation state of the model men-
tioned in Section 4.1 as the training set, selecting samples collected under fault conditions
of the model as the test set, and using manipulated variables and measurement variables as
system inputs and outputs, respectively. For two common types of faults, namely abrupt
faults and incipient faults, we choose Fault 2 and Fault 13, respectively, for specific case
studies. The specific details are shown in Table 4.

Table 4. Fault details for detection.

Fault ID Fault Variable Introduction Time (h) Fault Type Subspace

Fault 2 XMV(6) 8th (160th Sampling Point) Abrupt Input
Fault 13 / 8th (160th Sampling Point) Incipient Output

In addition, in order to better evaluate the performance of the proposed method,
this study utilizes four metrics—Fault Detection Rate (FDR), False Alarm Rate (FAR),
Missed Detection Rate (MDR), and Fault Detection Time (FDT)—for quantification. Fault
Detection Time (FDT) represents the sampling moment corresponding to three consecutive
statistical indicators exceeding the control limits after a fault occurs. The remaining three
indicators are defined as follows:

FDR =
TP

TP + FN
(30)

FAR =
FP

FP + TN
(31)

MDR =
FN

TP + FN
(32)
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Here, TP represents the number of faults correctly detected, TN is the number of
normals correctly detected, FP denotes the number of normal samples falsely reported as
faults, and FN is the number of faults missed and reported as normal.

4.2.1. Abrupt Fault Detection

In the experimental session, considering the commonality of abrupt faults in modern
process industries and their relatively lower detection difficulty, we initially select an
abrupt fault (Fault 2) for process monitoring and fault detection experiments, and the
comparative methods are CVA, DCCA, and MK-DCCA, respectively. These methods
employ the traditional z-score data preprocessing method, while Gap-MK-DCCA uses the
Gap metric method for data preprocessing. Additionally, all methods use KDE to calculate
the corresponding thresholds. The detailed detection results for Fault 2 are presented in
Figure 2.

(a) (b)

(c) (d)

Figure 2. Detection results for Fault 2 with different methods: (a) Detection results of CVA. (b) Detection
results of DCCA. (c) Detection results of MK-DCCA. (d) Detection results of Gap-MK-DCCA.

As can be seen from Figure 2, all four methods can be used to describe the system
operation status as well as fault development trends through monitoring indicators for
abrupt fault scenarios. Among them, CVA, MK-DCCA, and Gap-MK-DCCA methods can
quickly issue warning signals after the fault occurs, while the DCCA method struggles when
calculating thresholds for monitoring tasks in nonlinear dynamic systems where the data do
not follow a Gaussian distribution, rendering it ineffective for fault detection. This is largely
attributed to the inability of the DCCA method to deal with complex system properties, such
as non-linearity and non-Gaussianity. Meanwhile, from Figure 2c, it can be observed that the
robustness of the MK-DCCA method is poor, being severely affected by process noise and
measurement noise. Although the CVA method produces good detection results, it is unable
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to explain the dynamic characteristics between system inputs and outputs. However, the
Gap-MK-DCCA method achieves a description of dynamic characteristics between system
inputs and outputs by separately categorizing process variables into inputs (manipulated
variables) and outputs (measured variables). Simultaneously, this method employs the
Gap metric for data preprocessing, mitigating various noise interferences by mapping data
onto the Riemannian sphere. It also addresses the issue of non-Gaussian data distribution,
achieving satisfactory fault detection performance under abrupt fault scenarios.

Simultaneously, to better compare the four methods, the detection performance is
quantified using FDT, FAR, MDR, and FDT indicators. Table 5 presents detailed information
on the performance indicators for all methods.

Table 5. Detection performance indicators for Fault 2 with various methods.

Fault ID Method Statistics FDR(%) FAR(%) MDR(%) FDT (Sampling Point)

Fault 2

CVA T2 97.88 0 2.12 167th

Q 100 22.52 0 153rd

DCCA T2
in 100 100 0 1st

T2
out 100 100 0 1st

MK-DCCA T2
in 97 0.66 3 161st

T2
out 96 1.32 4 160th

Gap-MK-DCCA T2
in 98.5 0 1.5 161st

T2
out 98.25 3.31 1.75 159th

Since Fault 2 belongs to faults occurring in the input subspace, as explained in
Section 3.2, statistic T2

in has been identified as the best for detecting faults within the input
subspace. Therefore, in this analysis, we choose the results of statistic T2

in for comparison.
As for the CVA method, due to the high false alarm rate of 22.52% in the detection results
of the Q statistic, we choose the results of the T2 statistic for comparison. In addition, due
to the ineffective detection of the DCCA method, it is not included in the discussion here.

It is evident that the proposed method achieves the highest fault detection rate of
98.5% in the detection of abrupt faults (fault 2), while the CVA and MK-DCCA methods
achieve 97.88% and 97%, respectively. As for the false alarm rate, the proposed method is
0%, lower than the MK-DCCA method (0.66%) and the same as the CVA method (0%). The
fault detection time for the Gap-MK-DCCA and MK-DCCA methods are both at the 161st
sampling point, while the CVA method is slightly later at the 167th sampling point. Finally,
the proposed method maintains the lowest missed detection rate for abrupt faults at 1.5%;
the CVA method is next at 2.12%, and MK-DCCA performs the worst in this aspect at 3%.

In summary, in the detection of abrupt faults, the best performance is achieved by
the proposed Gap-MK-DCCA method. Therefore, it is reasonable to apply this method to
abrupt fault detection in modern process industrial systems.

4.2.2. Incipient Fault Detection

To further evaluate the fault detection performance of the Gap-MK-DCCA method, this
study also conducted an experimental analysis on another challenge in the field of process
monitoring and fault detection—incipient fault detection. All methods and parameter
settings used in this case are identical to those in Section 4.2.1, and the detailed detection
results for Fault 13 are shown in Figure 3.

As can be seen from Figure 3, the threshold calculation issue present in the DCCA
method under abrupt fault scenarios still exists, and the other three methods can also issue
warnings after some time following the occurrence of a fault. In addition, under incipient
fault scenarios, all methods can describe the operating status of the system and fault
development trends, but the description provided by the Gap-MK-DCCA method is clearer
and more intuitive.
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(a) (b)

(c) (d)

Figure 3. Detection results for Fault 13 with different methods: (a) detection results of CVA. (b) Detection
results of DCCA. (c) Detection results of MK-DCCA. (d) Detection results of Gap-MK-DCCA.

To further analyze and compare the performance of the four detection methods in
incipient fault scenarios, FDT, FAR, MDR, and FDT indicators are also used here for
quantification. Detailed information on the performance indicators of all methods is shown
in Table 6.

Table 6. Detection performance indicators for Fault 13 with various methods.

Fault ID Method Statistics FDR(%) FAR(%) MDR(%) FDT (Sampling Point)

Fault 13

CVA T2 94 0 5.25 192nd

Q 96.5 13.91 3.5 155th

DCCA T2
in 100 100 0 1st

T2
out 100 100 0 1st

MK-DCCA T2
in 95.5 0.66 4.5 172nd

T2
out 93 1.99 7 172nd

Gap-MK-DCCA T2
in 95 2.65 5 187th

T2
out 94.5 0.66 5.5 182nd

Since fault 13 belongs to a fault that occurs in the output subspace, the results of statistic
T2

out are selected for analysis and comparison. As for the CVA method, the detection result
based on the Q statistic has a high false alarm rate of 13.91%, so the results based on statistic
T2 are chosen for comparison. In addition, due to the ineffective detection of the DCCA
method, it is not included in the discussion.
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From Table 6, it can be seen that in incipient faults scenarios, the MK-DCCA method
takes the shortest time to detect faults at the 172nd sampling point, followed by the Gap-
MK-DCCA method, which issues a warning signal at the 182nd sampling point, and the
CVA method takes the longest at the 192nd sampling point. Thanks to the longest fault
detection time, the CVA method achieved zero false alarms, and the false alarm rate of
the Gap-MK-DCCA method is 0.66%, much lower than 1.99% of the MK-DCCA method.
In addition, in terms of missed detection rate, the CVA method maintains the lowest rate,
followed by the Gap-MK-DCCA method, and the MK-DCCA method has the highest
missed detection rate at 7%; Finally, in terms of fault detection rate, the Gap-MK-DCCA
method still achieves a satisfactory performance, at 94.5%, slightly higher than 94% of the
CVA method and 93% of the MK-DCCA method.

In a comprehensive comparison, the performance of the Gap-MK-DCCA method
proposed in this paper is still more satisfactory. In conclusion, this method can provide a
new perspective for process monitoring and fault detection in incipient fault scenarios.

4.2.3. Other Faults Detection

In addition, in order to further enhance the persuasiveness of the proposed method
in terms of fault detection performance, we also conducted fault detection experiments
with one randomly selected fault from each of the two types of random variable faults and
unknown faults. The specific results of the detection are shown in Figures 4 and 5.

(a) (b)

(c) (d)

Figure 4. Detection results for Fault 8 with different methods: (a) detection results of CVA. (b) Detection
results of DCCA. (c) Detection results of MK-DCCA. (d) Detection results of Gap-MK-DCCA.

The specific performance metrics associated with these two faults are shown in
Tables 7 and 8.
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(a) (b)

(c) (d)

Figure 5. Detection results for Fault 18 with different methods: (a) detection results of CVA. (b) Detection
results of DCCA. (c) Detection results of MK-DCCA. (d) Detection results of Gap-MK-DCCA.

Table 7. Detection performance indicators for Fault 8 with various methods.

Fault ID Method Statistics FDR (%) FAR (%) MDR (%) FDT (Sampling Point)

Fault 8

CVA T2 96.75 1.32 3.25 176th
Q 98.5 17.88 1.5 161st

DCCA T2
in 100 100 0 1st

T2
out 100 100 0 1st

MK-DCCA T2
in 95.63 1.32 4.37 162nd

T2
out 91 3.31 9 170th

Gap-MK-DCCA T2
in 97.13 5.96 2.87 170th

T2
out 96.5 7.28 3.5 178th

Table 8. Detection performance indicators for Fault 18 with various methods.

Fault ID Method Statistics FDR (%) FAR (%) MDR (%) FDT (Sampling Point)

Fault 18

CVA T2 89.5 0 10.5 234th
Q 92.25 19.21 7.75 160th

DCCA T2
in 100 100 0 1st

T2
out 100 100 0 1st

MK-DCCA T2
in 88.13 0 11.87 245th

T2
out 88.75 0.66 11.25 156th

Gap-MK-DCCA T2
in 89.88 2.65 10.12 171st

T2
out 88.13 2.65 11.87 176th
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4.3. Fault Identification

In the previous section, the performance of the proposed method in fault detection
has been verified. In this section, we mainly analyze the accuracy of the fault identification
method based on the contribution of the T2 statistic. Since the variable related to Fault 13
is not clear, here we initially identify Fault 2, and the contribution of relevant variables is
shown in Figure 6.

Figure 6. Contribution of relevant variables for Fault 2.

It is evident that variable XVM(6) has the highest contribution to fault statistics,
accounting for 23.95%, which is consistent with the corresponding fault information in
Table 4, successfully verifying the effectiveness of the fault identification method used in
this research. Subsequently, we further carried out fault identification for Fault 13, and the
specific results are shown in Figure 7.

Figure 7. Contribution of relevant variables for Fault 13.
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It is clear that for Fault 13, variable XMEAS(23) contributes the most to fault statistics,
suggesting that it may be the process variable causing the fault, which can be localized to
the fault site based on the location of the corresponding sensor.

5. Conclusions

This paper emphasizes the importance of fault detection in modern process industrial
systems and proposes an intelligent process monitoring and fault detection method based
on Gap-MK-DCCA. By employing the Gap metric for data preprocessing, it overcomes the
problem of unsatisfactory detection performance of traditional methods when the process
data do not follow the Gaussian distribution. This approach inherits the capability of the
MK-DCCA method in handling complex characteristics of the system, such as nonlinearity
and dynamics in modern process industry fault diagnosis. Simultaneously, it introduces
the KDE method for threshold computation, addressing the challenge that statistics do not
follow the Gaussian distribution, reducing model parameters, and improving the adaptabil-
ity of thresholds. Finally, a case study is conducted on the industry-recognized Tennessee
Eastman Process benchmark dataset. Comparative experiments with CVA, DCCA, and
MK-DCCA methods validate the proposed approach for effective fault detection in pro-
cess monitoring of modern process industrial systems, particularly in scenarios involving
abrupt and incipient faults.

Nevertheless, there are some limitations in this study. Although the use of the KDE
method for threshold calculation partially reduces the parameters of the fault detection
model, the detection performance still significantly depends on the selection of the kernel
function and kernel parameters in the kernel method. Furthermore, the choice of the
lead parameter f , lag parameter p, and the number of singular values n also plays a vital
role in influencing detection performance. Although grid search can identify optimal
parameters, it undoubtedly increases workload and computational complexity, leading
to poor generalization of the method to different detection objects. Consequently, how
to adaptively choose optimal parameters to achieve a lightweight detection model and
enhance generalization performance remains a pressing issue for future work.
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