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Abstract: In recent years, the Broad Learning System (BLS) has been acknowledged for its potential
to revolutionize traditional artificial intelligence methods due to its short training time, strong
interpretability, and simple structure. In the evolution of BLS, Prof. C. L. Philip Chen’s team
introduced the Fuzzy Broad Learning System (FBLS) by replacing the feature nodes of BLS with
fuzzy subsystems, thereby further reducing the training time. However, the traditional FBLS, with its
straightforward structure, falls short in achieving higher fault diagnosis accuracy when handling raw
vibration signals. This paper presents a bearing fault diagnosis approach employing multi-domain
feature selection and the fuzzy broad learning system (MS-FBLS), aiming to enhance the diagnostic
accuracy of FBLS through multi-domain feature selection. Primarily, a set of 49 features spanning time
domain, frequency domain, time-frequency domain, and entropy values is extracted from the original
vibrational signals. This combination builds a 49-dimensional multidomain feature set that exploits
the information behind the input data as much as possible, thus compensating for the lack of feature
extraction capability in FBLS. Afterward, the Random Forest algorithm assesses the significance of all
features, leading to a reordering of the multidomain feature set based on their respective importance
levels. Ultimately, the reorganized multidomain feature set is then fed into the FBLS, enabling the
identification of various failure states within the bearing. The experimental validation conducted
on the rolling bearing fault simulation test bed showcased that, in comparison to the traditional
FBLS, the MS-FBLS method not only elevates diagnostic accuracy by 23.46%, but also substantially
enhances diagnostic speed. These results serve as comprehensive evidence affirming the effectiveness
of the method.

Keywords: multi-domain feature extraction; random forest; feature selection; fuzzy broad learning
system; bearing fault diagnosis

1. Introduction

Amidst the ongoing evolution of contemporary industrial and technological land-
scapes, an increasing number of intricately designed high-precision rotating machines are
being conceptualized for the betterment of mankind. Bearings serve as crucial support
tools in precision rotating machinery, facilitating relative positioning and load transfer
between machine components [1]. Their pivotal role spans machine operation, mainte-
nance, and overall reliability [2]. By survey statistics, approximately 30% of mechanical
failures across diverse industrial domains can be attributed to issues associated with rolling
bearings [3]. Hence, it has become an urgent and valuable task to study a method of fault
feature extraction and pattern recognition with fast diagnostic speed and high diagnostic
accuracy [4].

Since the vibration of machinery is directly linked to its structure, the vibration sig-
nal detected by sensors serves as a precise reflection of the bearing’s operational state.
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Consequently, vibration signal processing methods have emerged as a widely adopted
technology for the diagnosis and detection of bearing faults. Currently, numerous scholars
have garnered substantial outcomes, employing vibration signals to discern the operational
nuances of rolling bearings. For instance, Zhang et al. [5] introduced an optimal periodic
augmented group sparsity method, leveraging numerical properties of vibration signals
and an ocean predator algorithm for the early extraction of bearing fault features. Zhao
et al. [6] proposed an adaptive multi-band denoising model anchored in a Morlet wavelet
filter and sparse representation, utilizing a Morlet wavelet filter, window envelope spectral
kurtosis, and Hilbert transform to ascertain fault eigenfrequencies. Chen et al. [7] advanced
two synchronized averaging frameworks rooted in instantaneous angular speed (IAS).
The enhanced negative entropy index and the estimation properties of the synchronous
averaging signal are harnessed to refine the characterization of rolling bearing faults. Tian
et al. [8] advocated an adaptive variational modal decomposition (AVMDNS-FSC) method,
incorporating noise suppression and fast spectral correlation. The AVMDNS algorithm
dynamically selects parameters K and alpha to effectively suppress noise in the intrinsic
mode function (IMF), thus facilitating the precise extraction of bearing fault features. Cheng
et al. [9] devised a Sin-periodic modal decomposition (SPMD) method, introducing the
singular value squared difference ratio (SVSDR) spectrum. The determination of the embed-
ding size of the PSM is achieved through the Sin Geometric Similarity Transform, yielding
the Sin Geometric Component Matrix (SGCM). The first Sin Geometric Periodic Component
(SPC) is ascertained by Periodic Impact Intensity (PII), culminating in termination by the
Spectral L2/L1 Paradigm (SNL2/L1) exponent for the accurate extraction of bearing fault
characteristics. However, these methodologies typically necessitate manual extraction of
signal fault characteristics, demanding engineers with extensive experience and expertise.
Nevertheless, with the continuous expansion of data collected from industrial equipment,
signal processing-based fault diagnosis methods are exhibiting limitations.

Deep learning methodologies have found extensive application in data-driven me-
chanical fault diagnosis, yielding noteworthy diagnostic outcomes. Furthermore, with
the escalating volume of data, the diagnostic results of deep learning models also show
better results. Sharma R et al. [10] introduced a framework integrating deep learning,
meta-heuristics, and MCDM algorithms to identify thyroid-related abnormalities from
ultrasound and histopathology images. Initially, three advanced deep learning techniques
are employed to extract features from thyroid image datasets. Following this, six feature
transformation techniques are studied to decrease data dimensionality, mitigating potential
overfitting issues. Subsequently, five classifiers are assessed using a five-fold hierarchical
cross-validation method. The first stage focuses on selecting the most effective feature
extraction and classification techniques, while the second stage evaluates the optimal di-
mensionality reduction method using wrapper feature selection. This proposed approach
outperforms current diagnostic methods, offering significant assistance to medical profes-
sionals in thyroid-related diagnostics. Wen et al. [11] introduced a novel Convolutional
Neural Network (CNN) grounded in LeNet-5 architecture for fault diagnosis. This model
automatically extracts diagnostic features by transforming one-dimensional signals into
two-dimensional images, thereby achieving substantial advancements in diagnostic out-
comes, surpassing both traditional and other deep learning methods. Li et al. [12] proposed
a model for rolling bearing fault diagnosis, integrating a dual-level attention Recurrent
Neural Network (DA-RNN) and a Convolutional Block Attention Module (CBAM). This
model demonstrated considerable effectiveness in addressing fault diagnosis for imbal-
anced datasets. Gao et al. [13] presented an optimized Adaptive Deep Belief Network
(SADBN), which significantly enhances the diagnostic accuracy of Deep Belief Networks
(DBN). This improvement is achieved by pre-training the DBN through minimum batch
stochastic gradient descent, followed by comprehensive supervision and fine-tuning of
the entire DBN model. Various other deep learning methods for fault diagnosis, includ-
ing Long Short-Term Memory Networks [14], Deep Residual Networks [15], and Stacked
Autoencoders [16], along with their derivatives, have been explored. Despite the notable
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strides made by deep learning methods in fault diagnosis, the training processes of most
networks are inherently time consuming, attributed to the intricate structure of the network
and the necessity for tuning a substantial number of hyperparameters. Moreover, if the
fault diagnosis is not as accurate as expected, the deep learning network necessitates itera-
tive parameter adjustments or the incorporation of additional network layers to enhance
accuracy. These processes are notably time consuming and labor intensive [17].

In summary, inherent limitations exist in fault diagnosis when employing signal pro-
cessing methods and deep learning techniques. In 2018, C. L. Philip Chen introduced a
Flattened Broad Learning System (BLS) [18]. In contrast to the intricate network structure of
deep learning, BLS comprises solely input and output layers, offering optimization through
an increase in nodes in the augmentation layer, thereby mitigating network complexity.
Unlike deep learning, which necessitates the calculation of weights between each neuron,
BLS requires only the computation of connection weights from the input to output layers.
This distinction effectively alleviates the drawback of prolonged training times [19]. More-
over, BLS allows for the extension of the network structure without necessitating complete
network retraining [20]. Consequently, BLS addresses the challenges of extended training
periods and the interpretability deficit inherent in deep learning, an increasing number
of scholars are employing BLS in the realm of fault diagnosis. Fu et al. [21] proposed a
Task-Incremental Broad Learning System (TiBLS) tailored for multi-component intelligent
fault diagnosis. They introduced a structure-incremental learning capability for TiBLS to
enhance individual tasks without retraining, yielding favorable results in experiments.
Yang et al. [22] introduced a novel Twin BLS (TBLS) for the diagnosis of faults in rotating
machinery. TBLS adeptly identifies two non-parallel hyperplanes to address classification
issues, demonstrating heightened generalization capability in fault diagnosis scenarios
for swift and effective diagnostic outcomes. Zhou et al. [23] proposed a variant of TBLS,
integrating Principal Element Analysis and Singular Value Decomposition (IPS), designed
for infrared fault diagnosis of rolling bearings. Additionally, they introduced a Stacked
BLS (SSDStacked-BLS) model based on a self-selected depth model for expeditious fault
diagnosis in bearings. Wang et al. [24] presented a TSK Fuzzy Broad Learning System
(TSK-BLS), amalgamating the strengths of BLS and fuzzy systems. This model, utilizing
pseudo-inverse and symmetric methods, stands as an efficient means for rapid and accurate
fault diagnosis.

In the above studies of BLS, the traditional approach is to input raw fault data directly
into the BLS for diagnosis. However, owing to the straightforward structure of the BLS,
its feature extraction capability is deemed inadequate, consequently impacting diagnostic
accuracy. Consequently, numerous scholars advocate the preprocessing of fault signals
through multidomain extraction before inputting them into the BLS for bearing diagnosis.
Wau et al. [25] introduced a multidomain feature fusion diagnostic approach for variable
speed bearings, grounded in a generalized learning system. Lu et al. [26] devised an
enhanced BLS fault diagnostic method incorporating data augmentation and multi-domain
feature fusion. In this approach, time domain, frequency domain, and time-frequency
domain features are extracted from vibration signals. The ReliefF algorithm is utilized for
multi-domain feature selection, significantly improving diagnostic accuracy when input
into the BLS. Zhang [27] proposed a robust BLS variant, BLS-QMEE, based on the quantized
minimum error entropy (QMEE) criterion. Comparable to the standard BLS and other
existing variants, BLS-QMEE demonstrates superior performance without substantial time
consumption. Building on these advancements, this paper presents a bearing fault diagnosis
method based on multi-domain feature selection and fuzzy BLS. Initially, the original fault
signal undergoes multidomain feature extraction, encompassing time domain, frequency
domain, time-frequency domain features, and entropy to construct the multidomain feature
set. Subsequently, the importance of each original feature is calculated and ranked using
the Random Forest method, facilitating the selection of the optimal feature subset. Finally,
this feature subset is employed to train the FBLS, achieving efficient and precise intelligent
fault diagnosis. To validate the efficacy of the proposed method, data collected from the
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rolling bearing fault simulation test bed are utilized for validations. The results affirm the
method’s capability to realize efficient and highly accurate fault diagnosis.

The principal innovations of this paper encompass the following;:

(1) A novel fault diagnosis method is introduced, integrating FBLS and multidomain
feature selection. This innovative approach significantly enhances the accuracy of fault
diagnosis within FBLS.

(2) A multi-domain feature extraction method is proposed, incorporating five types of
entropy values, thereby expanding the original features in the multidomain feature set and
establishing the groundwork for constructing features with heightened sensitivity to faults.

(3) A multi-domain feature selection method is proposed, utilizing the out-of-bag
estimation function of Random Forest to identify features with heightened sensitivity to
faults in the multidomain feature set as the optimal feature subset, consequently enhancing
the diagnostic accuracy of the model.

2. Theoretical Background
2.1. Broad Learning System (BLS)

Addressing the prevalent challenges associated with the intricate structures and numer-
ous hyperparameters of most deep learning networks, as well as their prolonged training
processes, C. L. Philip Chen used the Broad Learning System (BLS) as an alternative, as
outlined in his article published in January 2018. Initially applied in the domain of image
recognition, the BLS distinguishes itself by its minimalist architecture comprising only two
layers—namely the input layer A and the output layer Y—connected through weights W. This
streamlined network structure incorporates feature enhancement nodes and output coefficient
matrices, facilitating the rapid extraction of features from new data and minimizing retraining
duration [28]. Consequently, the flat network of the BLS proves to be more efficient in address-
ing classification and regression challenges, obviating the necessity for a deep architecture.
The architectural representation of the BLS is depicted in Figure 1.
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Figure 1. Broad learning system (BLS) architecture diagram.
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2.2. Fuzzy Broad Learning System (FBLS)

Prof. C. L. Philip Chen’s team combined the Takagi-Sugeno (TS) fuzzy system with
the BLS to introduce a novel fuzzy neural network model termed Fuzzy Broad Learning
(FBLS) [29]. FBLS maintains the core structure of BLS while integrating the TS fuzzy
subsystem in lieu of BLS’s feature nodes and eliminating the sparse self-encoder used for
weight fine-tuning in the BLS feature layer, thereby simplifying the architecture [30]. This
modification not only enables FBLS to retain the rapid computational properties of BLS, but
also enhances the model’s classification capability. Its overall architecture and the layout of
the fuzzy subsystem are demonstrated in Figures 2 and 3.

Output};

| - T - - 1
Fuzzy sub-system Fuzzy sub—system .. Fuzzy sub—system Enhancement node Enhancement node o« Enhancement node |
| 1 2 n | Group 1 Group 2 Group n
o |
Inputx
Figure 2. Structure of a fuzzy BLS.
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| Intermediate
| Output Zsi
1 2 K, Fuzzy rules
i i i i i i i i o i
A, dy) 0 (dgy L4y Ayttt L4, Ay Ay 4y Fuzzy sets
Xsl st ...... XSM /nput XS

Figure 3. Structure of the ith fuzzy subsystem in a fuzzy BLS.
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Within the FBLS framework, the inclusion of n fuzzy subsystems and m sets of aug-
mented nodes is assumed. The input data follow this format: X = (x1,x2,...,Xs N)T € RNxM,
where, x5 = (Xs1, Xs2, .-, %sMm),8 = 1,2,...,N.

In the fuzzy subsystem structure, each subsystem is presumed to contain k fuzzy rules
of the following format:

If x4 is A%l, Xgp 1S A§<2 ey XsM 1S A%M, then z;k = f,i(xsl,xsz,. L Xsm), k=1,2,.. k.

The first-order fuzzy subsystem used in FBLS is

lek = fli(xslr Xs2yevns st) = Z a;(txstr (1)
t=1

where D(;(t with its coefficients determined through pseudo-inverse calculation is initially
set as random numbers from a uniform distribution in a range of [0, 1].
Within the fuzzy subsystem, the activation strength of the kth fuzzy rule in the ith fuzzy

. M .
subsystem can be expressed as 7., = [T p},(xst). Hence, the weight of each fuzzy rule can be
t=1

. 1
expressed as follows: w, = <k The chosen Gaussian affiliation function is defined as

1 1

k=1 Tsk
2

t

. —(— . .
follows: iy, (x) =e ‘&, where ¢}, and 0}, represent the width and the center, respectively.
To retain maximal information from the input data, FBLS defines a vector

i
x—c
ki

Zsi = (W Zgy, W Zy, - - -, Weg, Zek, ) 2)

where this vector comprises outputs from all fuzzy rules within the ith fuzzy subsystem,
subsequently aggregated into a singular value representing the defuzzified output of the fuzzy
subsystem. The resulting defuzzified output matrix is Z; = (Zy;, Zy;, - - -, ZNZ')T € RNxK;
i=1,2,...,n. Next, the intermediate vectors from all fuzzy subsystems are directed into the
augmented node layer for further nonlinear transformations.

To maintain notation consistency, we represent the intermediate output matrix of
the n fuzzy subsystems as Z" = (Z1,Zs,...,Z,) € RN*(KitKet-+Ki) - Gubsequently, it
is forwarded to the augmentation nodes for nonlinear transformation. Assuming there
are L; neurons in the jth enhancement node group, we denote the output matrix of the
enhancement layer as

H™ = (Hy, Hy, ..., Hy) € RN*(LitlattLn) 3)

where H; = §;(Z"Wy; + Byj) € RN*Li s the output matrix of the jth augmented node
group, and Wj,; and B are the randomly generated weights and biases. Hence, the output
of FBLS can be expressed as

Y = F" + H"W,, (4)

where W, is the weight between the enhancement layer and the output layer and Y is the
output matrix.

2.3. Random Forests (RF)

Random Forests (RF) have emerged as a prevalent integration method in machine
learning for addressing classification and regression problems [31]; its specific architecture
is shown in Figure 4. Random Forests possess the ability to compute feature importance,
thereby offering feature ranking [32]. While the average decrease in the Gini coefficient is a
commonly employed metric for assessing feature importance, it has been acknowledged to
possess certain limitations. In recent years, scholars have proposed a new feature ranking
model: comparing mixed multi-criteria decision making (MCDM) to rank features [33].
Many scholars have also turned to the importance of substitution of variables, i.e., reflecting
the importance of features by substituting the individual feature values of all samples. This
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is achieved by calculating the average difference between accuracy rates on all trees before
and after the substitution of eigenvalues for the Out of Bag (OOB) samples. The steps are
as follows:

In the first stage, the OOB sample is placed on the jth tree and its accuracy is computed,
denoted as A?,]' =1,2,..., ntree.

In the second stage, for the ith feature, the values of OOB samples are replaced and
the replaced samples are assessed on the jth tree to calculate its accuracy, denoted as
A;:,i =1,2,...,nandj=1,2,...,ntree.

In the third stage, the importance score for the ith feature, denoted as S;, is obtained
using the following equation:

1 ntree 0 .
;= AY — AD).
5= e 1 (4]~ 4) 9

In the fourth stage, a descending list of feature importance score {S;,,S4,,...,54,}
is generated, where the vector represents the ranking of the features. A higher rank
corresponds to greater feature importance.

Input Data

!

Bootstrap Resampling

Sample 1 Sample 2 ®cccoe Samplen

Result 1 Result 2 ®eccece Result n

Vote on the
best outcom

Figure 4. Random Forests (RF) architecture diagram.

2.4. Multidomain Feature Extraction

Through the application of statistical methodologies, 16 time-domain features and
13 frequency-domain features are derived from the original signals, and their nomencla-
ture and mathematical expressions are delineated in the accompanying Tables 1 and 2.
Notably, pe , p16 and p13 denote the kurtosis, peak, and pulse indicator, respectively; they
are more sensitive to shock-type faults, especially when the fault occurs early, and they
have a significant increase, but they are less stable. Concurrently, p, and p7 represent
the standard deviation and variance, respectively, serving as indices of data dispersion or
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concentration. Additionally, ps, pg, and p1p correspond to the maximum value, minimum
value, and peak-to-peak value, elucidating the amplitude fluctuation range within the
signal. Furthermore, p17 signifies the magnitude of vibration energy within the frequency
domain. Subsequently, parameters pys to pag signify the degree of dispersion or concentra-
tion within the frequency spectrum, while parameter up to pys encapsulate variations in
the positioning of the principal frequency band.

Table 1. Terminology and mathematical expressions for 16 time-domain features.

Feature Name Formula Feature Name Formula
N LN 2
Average P =43 x(n) Root mean square p2=1\/n§ L [x(n) —pi]
n=1 n=1
: N 2 1y
Root mean square amplitude ps = % Zl x(n)]] Absolute averages pa = Nn§1|x(n)|
n—=
N . 1 N 4
Skewness ps = 4 Zl [x(n)]? Kurtosis Pe = Nn§1 [x(n)]
n=
2
. N . -
Variance pr =14 Zl [x(n) — p1] Maximum values ps = max|x(n)|
n=
Minimum values p9 = min|x(n)| Peak-to-peak ratio P10 = P8 — P9
Form factor P11 = % Peaking factor P12 = %
Pulse factor p13 = % Clearance factor pld = %
Skewness coefficient P15 = ( \/’; 7 Kurtosis coefficient Pl = ( :; 6)2
Table 2. Terminology and mathematical expressions for 13 frequency-domain features.
Feature Name Formula Feature Name Formula
K o g 1 K 2
Average frequency Py=1 % y(k) Frequency Standard deviation P18 = Fkgl [y(k) — p17]
- ¢ W -pe]
K s L ly(k)—p
L (k) —pv] P =
— k=1 — K(p]g)
P19 = K(pis)
K
- £ Ry _ |
Center of gravity frequency = Root mean square frequency Poa = e
P23 = "% X (fity(k))
X y(k) k=1
Kk:l
L (fity(k)) s
o Pas = ———
4y (k k
wk; (fity( ))][Zly( )] pa6 = %
K
L [(fe—pa)'y(k
f () - [(fe=p21)"y (k)]
o p7 =" T K(p»)"
. K(p22)
L L [V fi=pxly()] L L
P29 = =—xym

Given that the original vibration signals typically exhibit nonlinearity and nons-
moothed characteristics, and recognizing the heightened efficacy of time-frequency domain
analysis methods in extracting fault features from nonsmoothed signals [14], the wavelet
packet transform (WPT) is applied to the original vibration signals for the extraction of
wavelet energy indicators across distinct frequency bands. The specific computational steps
for extracting the time-frequency domain features are as follows:
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In the first stage, the WPT is employed to decompose x(n) into multiple sub-signals.
Subsequently, the wavelet packet coefficients are defined as [33]

]

Sl‘ = [Sllj/szljl"'rsglj]/ (6)

where [ signifies the number of layers in the wavelet packet and j denotes the number
of sub-signals.

In the second stage, wavelet energy metrics are calculated for each frequency band,
which is defined by equation

2771]
E, =Y ‘sklj‘. )
K=1
In the third stage, E;; is normalized as defined below:
— E;;
El]‘ = ol . 8)
Y. Eim
m=1

In this study, [ is set to three, and j is eight. The wavelet energy values are arranged
in a descending order, and the first four wavelet energy indicators are selected as the
time-frequency domain features psy ~ ps3, which encapsulate a substantial volume of
fault-related information.

To capture the maximum information embedded within the original vibration signal,
Variational Mode Decomposition (VMD) is applied to the original vibration signal for
calculating the energy entropy, fuzzy entropy, alignment entropy, and sample entropy
of each Intrinsic Mode Function (IMF). Taking the entropy on energy as an example, the
specific steps are as follows:

In the first stage, VMD decomposition of the original vibration signal x () is performed
to obtain m IMF:

m
VMDIx(n)] = Y IME(t) + ry. ©)
i=1
In the second stage, the energy of each Intrinsic Mode Function (IMF) is computed
using the following expression:

+oo 2
Ei = / [IME(1)| dt, (10)

where IMF;(t) represents the ith obtained post VMD, withi =1,2,...,m.
In the third stage, given the orthogonality of VMD, implying that the sum of energies
across all IMF components equals the total energy of the original vibration signal,

E=)YE, (1)

p = (12)

where P; is the ratio of the energy IMF;(t) to the total energy of the original signal E.
In the third stage, the entropy of energy is calculated using the following expression:

m
HEN = —Z Pi IOgP,'. (13)
i=1



Processes 2024, 12, 369

10 of 19

The primary fault information tends to reside within the initial IMF components of the
original signal [15], this study selectively employs the first four sub-signals for computing
various entropy measures. Specifically, it calculates energy entropy: pszs ~ p3y, fuzzy
entropy pss ~ p41, arrangement entropy pap ~ pas, sample entropy pse ~ pago. These
16 entropy values collectively encompass a substantial amount of fault-related information.

Ultimately, the multi-domain feature dataset from each data sample is amalgamated
to formulate the High-Vitae Feature Set (HFD)

[P1 P8 P15 P22 P29 P36 P43 |
P2 P9 Pie P23 P30 P37 P
P3 P10 P17 P24 P31 P38 P45

HFD = |ps pu1 P18 P25 P32 P39 Pae (14)
Ps P12 P19 P26 P33 P40 P47
Pe P13 P20 P27 P34 P41 P48

LP7 P14 P21 P28 P35 P42 P49-d

3. Proposed Program

Rolling bearings, being susceptible components in machinery, pose a significant risk of
economic losses and, in severe instances, casualties upon failure. Therefore, it is an urgent
task to study a fault diagnosis method with fast diagnostic speed and high diagnostic
accuracy. This section introduces the MS-FBLS model, showcasing its general framework
illustrated in Figure 5. In order to filter the raw data for features that are more sensitive
to faults, a multidomain feature pool is constructed by selecting 49 features from the time
domain, frequency domain, time-frequency domain, and entropy value, and the optimal
subset of features is selected from the multidomain feature pool using the Random Forest
method, and it is inputted into the FBLS prediction model to improve the accuracy of the
model. It is specifically divided into three steps:

(1) Acquisition of Vibration Signals: Vibration signals of distinct fault types are ac-
quired, originating from the same rotational speed, employing accelerometers.

(2) Feature Extraction and Selection Across Multiple Domains for Vibration Signals: A
comprehensive multi-domain feature extraction is executed for each sample, encompassing
49-dimensional features from the time domain, frequency domain, time-frequency domain,
and entropy values to construct a comprehensive multi-domain feature set, therefore en-
hancing FBLS capability in feature extraction. In this investigation, Random Forest feature
selection was employed to eliminate redundant information. Through the assessment of
feature importance, the high-dimensional feature set underwent reorganization based on
the individual significance levels of each feature.

(3) FBLS-Based Fault Classification: The 49-dimensional features are systematically
inputted into the FBLS model, adhering to feature weights in descending order, thereby
effectuating the fault classification of rolling bearings.
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Step 1: Acquisition of vibration signals

Faulty Bearings Rotating Machinery Signal Acquisition Vibration Signal
Acquisition of Vibration Signals

Step 2:Multi-Domain Feature Extraction and Selection
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Multi-Domain Feature Extraction and Selection

Step 3: Troubleshooting and Analysis of Results

iy /
_—F " foroutput later
Fasy sbamt| (st o oo | Pusy baute || Bhamet md | Bhneet sk o oo Bhasent sk >
1 2 5 s 1 oo 2 ey

' @

Tmut ¥

Diagnosis saccuracy(%)

50 L L L L

o0 10 20 30 40 50

Feature dimension selected by RF algorithm

Fault Diagnosis Analysis of Results

Figure 5. General architecture of the MS-FBLS.

4. Experiment and Analysis

To substantiate the efficacy of our proposed method, we meticulously devised a rolling
bearing fault simulation test bed. This allowed for a comparative analysis between the
MS-FBLS, the original vibration signal + FBLS, and multi-domain feature extraction + FBLS,
demonstrating the superiority of our approach.

4.1. Experimental System Description and Data Collection

To validate the efficacy of the proposed methodology, we conducted a simulated experi-
ment on artificial bearing failure utilizing the HZXT-DS-003 double-span double-rotor rolling
bearing test stand, depicted in Figure 6. The experimental setup comprised a bearing housing,
a radial loader, a speed torque meter, and a motor. HZXT-DS-003 featured a basic table size of
2000 x 800 mm. The drive system consisted of a 7.5 KW inverter motor operating at 380 V
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with a speed range of 0-3000 R/min. Additionally, a vectorized three-phase inverter rated at
380 V 10 KW was utilized. The experimental apparatus comprised a bearing housing, a radial
loader, a speed torque meter, and a motor. The rolling bearing model employed is denoted
as radial ball bearings—6205-2RS, detailed data, as shown in Table 3, featuring nine distinct
categories of bearing faults, as depicted in the accompanying Figure 7. Among these, three
variations of inner ring faults, each characterized by different fault sizes (0.2 mm, 0.6 mm,
1.2 mm), are designated as OR1, OR2, and OR3, respectively. Similarly, three types of outer
ring faults, with varying fault sizes (0.2 mm, 0.6 mm, 1.2 mm), are identified as IR1, IR2, and
IR3. Furthermore, three categories of pitting faults—manifesting in the inner ring, outer ring,
and rolling element—are recorded as OR4, IR4, and B1, respectively. Specific fault dimensions
and labels are shown in Table 4. Accelerometers were employed to capture bearing data
from the housing, resulting in the acquisition of nine distinct faulty vibration signals and one
normal vibration signal. The nomenclature and labels for these faults are elucidated in Table 3.
Throughout the experimental regimen, the rotational speed of the shafts was maintained at
1500 r/min, with all vibration signals recorded at a consistent sampling frequency of 1.2 KHz.

Radical loader 1,2 Motor

Bearing pedestal Speed torque meter

(a) (b)

Figure 6. (a) HZXT-DS-003 double-span double-rotor rolling bearing test bench; (b) Location of
vibration sensors.

Table 3. Detailed data of radial ball bearings—6205-2RS.

Bearing Type

Inside Diameter Sized Outer Diameter Size Roller Diameter Number of Rollers

6205

25 mm 52 mm 7.938 mm 9

Table 4. Dimensions and labels for 10 fault types.

Fault Type Fault Size/mm Label
0.2 IB1
Inner ring failure 06 1B2
12 IB3
0.17 1B4
0.2 OB1
. 0.6 OB2
Outer ring fault 12 OB3
0.17 OB4
Rolling element fault 0.17 Bl

Normal 0 N
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Figure 7. (a) Outer ring, 0.2 mm; (b) Outer ring, 0.6 mm; (c) Outer ring, 1.2 mm; (d) Inner ring,
0.2 mm;(e) Inner ring, 0.6 mm; (f) Inner ring, 1.2 mm; (g) Pitting of rolling element, 0.17 mm; (h) Pitting
of outer ring, 0.17 mm; (i) Pitting of inner ring, 0.17 mm.

To capture sufficient fault information within each sample from the original vibration
signal, the sample length surpasses the number of sampling points in one cycle of bearing
rotation. The sampling frequency is 12 KHz, meaning that the acquisition card captures
12,000 vibration signals from the bearing per second. With the bearing rotating at a speed
of 1500 r/min (equivalent to 25 revolutions per second), the calculated number of sampling
points within one cycle of rotation is 480. To incorporate a more extensive range of fault-
related data, the sample length is chosen to encompass the number of sampling points derived
from two cycles, totaling 1024. Each fault type consists of 400 samples, summing up to
4000 samples in total. From each fault sample, 70 samples are randomly selected for training,
while 30 samples are designated for testing, resulting in 2800 training samples and 1200 test
samples. The FBLS model configuration encompasses 100 feature nodes and 100 enhancement
nodes. Given the randomly generated weights within the FBLS, 50 experiments are conducted
for each fault sample to generate outcomes from these 50 experiments.

4.2. Results of Feature Extraction and Feature Selection

To confirm the substantial enhancement in accuracy facilitated by the MS-FBLS model,
three comparative experiments were conducted within the study:
(1) Inputting ten types of raw vibration signals directly into FBLS for fault diagnosis.
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(2) Application of multidomain feature extraction to the original vibration signals to
formulate high-dimensional feature sets, subsequently input into the FBLS for fault diagnosis.
(3) Performing multi-domain feature extraction on the original vibration signal, fol-
lowed by RF calculation of feature importance within the multi-domain feature set, then
inputting these features from highest to lowest importance into FBLS for fault diagnosis.
The experimental results are shown in Table 5 and Figure 8.

Table 5. Results of three comparative experiments.

0 = = NN
o

7
5
3
2

x| 9 R 0 3 0

Model Training Testing Training

Accuracy Accuracy Time

Raw vibration signal + FBLS 80.8% 75% 0.21s

Multidomain feature extraction + FBLS 97.3% 86.9% 0.15s

Multi-domain feature extraction + RF + FBLS 100% 98.46% 0.11s
0 1 0 0 0 1 IBL 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 B2{ 0 0 0 0 0 0 0 0 0
2 1 0 0 0 m3{ 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1B4 0 0 0 0 0 0 1 0 0
1 0 ——é 0 0 0 —_% L4 0 0 1 0 BEEN O 0 0 1 0
Y 5 Z:: 2 1 0 Té oz4 0 0 0 0 0 W 0 0 0 0
] 3 - 1 0 0 - 083 0 0 0 0 0 0 0 0 0
0 7 o144 0 0 0 0 0 0 0 1 0
10 9 Bl 0 1 0 0 1 0 0 % 0

1 0 0 0 0 0 0 7 9 N 1 0 0 0 0 0 0 0 0

By g by By % B By

Predicted label

(a)

y By B B %y

Predicted label

(b)

Ly by By B By By WA
Predicted label

(©)

Figure 8. (a) Raw vibration signal + FBLS; (b) Multidomain feature extraction + FBLS; (c) Multi-
domain feature extraction + RF + FBLS.

In the first model, the test accuracy registers at 75%, and the training time stands at 0.21 s.
While the diagnostic speed of FBLS demonstrates a significant improvement compared to
that of deep learning, the accuracy of the model directly inputting raw vibration signals into
FBLS is not optimal. Hence, the implementation of multi-domain feature extraction on the
raw vibration signals, leading to the construction of a high-dimensional feature set, emerges
as one of the effective methodologies for enhancing the diagnostic accuracy of FBLS.

In the second model, a set of 49-dimensional multidomain features is extracted for
each sample, and the resulting high-dimensional feature set is directly input into the FBLS
for fault diagnosis. The average of 50 experimental results indicates an impressive test
accuracy of 86.09%, and the training time is 0.15 s. In comparison to the first model, this
demonstrates a substantial enhancement in diagnostic accuracy coupled with a significant
reduction in training time, validating the efficacy of the multi-domain feature extraction
method. Nevertheless, the application of feature selection to the multi-domain feature set using
Random Forest (RF) becomes imperative due to the extended training time and diminished
test accuracy arising from redundant information within the high-dimensional feature set.

In the third comparative model, the significance of each feature within the multidomain
feature set is evaluated through Random Forest (RF), resulting in feature ranking; the im-
portance of features is shown in Figure 9. The horizontal coordinates, ranging from 1 to 49,
correspond to the features p1 through p49, while the vertical coordinates denote the respective
feature importance. Following this, the multidomain feature set is rearranged based on feature
importance, organizing them from highest to lowest in the following sequence:

P25 > P40 > P36 > P30 > P9 > P21 > P42 > P35 > P44 > P34 > P27 > P12 > P19 > P47 > P23 > P1
> P49 > Pae > P18 > P4g > P20 > P45 > P38 > P24 > P41 > P1e > P14 > P13 > P32 > P11 > P43 > P3
> P31 > Pe > P39 > P28 > P15 > P10 > P4 > P8 > P17 > P5 > P2 > P7 > P37 > P22 > P33 > P26 > P29
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Observing the results, it becomes evident that feature p25 holds the highest importance,
while feature p29 exhibits the lowest importance within RF algorithm analysis. In RF
algorithms, features with higher importance are more advantageous for model training and
thus should be preserved. Conversely, the lower the feature importance, the more useless
or redundant the feature, and it needs to be eliminated.

1 T T T T T T T T T

=3
@

Feature importance
o
=]

0.4

0.2

0 5 10 15 20 25 30 35 40 45 50
Feature

Figure 9. Importance ranking of features.

Currently, there is no established systematic method for determining the optimal subset
of features to input into the FBLS. To select the best subset of features that are sensitive to faults,
redundant features are eliminated. Hence, the features, sorted by descending importance, are
sequentially fed into the FBLS following their respective order of significance, arranged from
highest to lowest importance. The evolution in diagnostic accuracy is depicted in Figure 10.
Notably, at a feature dimension of 1, the accuracy stands at 54.642%. This suggests a limitation
due to the fewer useful features available, resulting in decreased accuracy in fault classification
due to reduced information inclusion. When expanding the feature dimension to 13, the test
accuracy peaks at 98.462%, marking the point of maximum diagnostic precision. However,
as feature dimensions gradually increase, they incorporate redundant information, leading
to a subsequent decline in accuracy. Eventually, as the feature dimension hits 49, the fault
diagnosis accuracy settles at 86.09%.

To further validate the effectiveness of the RF algorithm for feature selection, a compar-
ative analysis is conducted with two widely employed feature selection algorithms: ReliefF
(RL) and Laplacian Score (LS). In the RL algorithm, varying weights are assigned to features
based on their relevance to the respective categories. Features with weights falling below a
certain threshold are subsequently removed. The LS algorithm assesses the local retention
capability of features to gauge their importance. Figure 11 illustrates the accuracy of the
three feature selection methods across different feature dimensions. According to the re-
sults, when the feature dimension is below 15, the RF algorithm exhibits significantly higher
accuracy compared to RL and LS. Notably, LS attains the highest accuracy (96.36%) with
a feature dimension of 13, RL achieves peak accuracy (97.67%) with a feature dimension
of 17, while the RF algorithm attains its highest diagnostic accuracy (98.46%) at a feature
dimension of 13. The RF feature selection algorithm outperforms the other algorithms in
terms of test accuracy. Additionally, at the point of achieving the highest test accuracy, RF
and LS share identical feature dimensions. The relationship between feature dimensionality
and classification time is widely acknowledged—an increase in feature dimension prolongs
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the classification process. Taking into consideration both feature accuracy and diagnosis

time, RF feature selection proves to be the most efficient approach.
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Figure 10.
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Figure 11. The accuracy of the three feature selection methods.

20

To further assess the effectiveness and superiority of the MS-FBLS model, a compara-
tive experiment is conducted with different methods. Leveraging the multi-domain feature
extraction algorithm outlined in Section 2.3, 49 multi-domain features, alongside 16 time-
domain features, 13 frequency-domain features, 4 time-frequency-domain features, and
16 entropy-value features, are extracted, forming five distinct feature sets. These sets are
then individually input into four classifiers for fault classification. The diagnostic results,
as depicted in Table 6, highlight that the accuracy of multi-domain features surpasses that
of features extracted from other domains. Specifically, the average accuracy achieved by
combining multi-domain features with different classifiers is 98.06%. This substantiates
the richer feature information offered by multi-domain features, contributing significantly
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to the overall improvement in classification accuracy. Indeed, the comparison of accuracy
reaffirms the superiority of multi-domain feature extraction.

Table 6. Diagnostic results graphs for the 5 models.

Time Frequency Time-Frequency

Multidomain Domain Domain Domain Entropy

FBLS 98.46% 89.33% 93.55% 89.73% 92.76%
SVM 97.00% 86.67% 93.36% 86.89% 87.23%
RNN 97.53% 88.52% 96.74% 95.25% 94.51%
ELM 98.25% 88.69% 97.55% 93.26% 89.43%
Average 98.06% 88.30% 95.30% 91.28% 90.98%

accuracy (%)

5. Discussion

Rolling bearings, among the most vulnerable components in machinery, can incur
substantial economic losses and, in severe cases, result in casualties if they fail. Therefore,
the fault diagnosis of bearings needs to study both diagnostic accuracy and diagnostic
speed. In this paper, the MS-FBLS model is proposed to address the limitations of existing
fault diagnosis methods.

To validate the efficacy of the MS-FBLS model, a comparison was made between the
model and the original vibration signal + FBLS model. It was observed that while FBLS
offers rapid diagnosis, its accuracy remains relatively low. Therefore, the construction of
a multidomain feature set emerges as an effective approach to enhance FBLS. Similarly,
comparing MS-FBLS with a multidomain feature extraction + FBLS model, it was noted that
the multidomain feature set contains excessive redundant information, affecting diagnostic
accuracy. Hence, employing RF for feature importance calculation proves to be an effective
means to eliminate such redundancy. Subsequently, all features in the multidomain set
are input into the FBLS model based on their importance, leading to fault diagnosis
characterized by both high accuracy and swift diagnosis. To further substantiate the
effectiveness of the RF algorithm in feature selection, this study conducts a comparative
analysis between RF and other algorithms such as RL and LS. The results distinctly favor
the RF algorithm as the most effective. Additionally, the study investigates the efficacy of
multidomain features by extracting 49 multidomain features, including 16 time-domain
features, 13 frequency-domain features, 4 time-frequency-domain features, and 16 entropy-
value features from vibration signals to form five distinct feature sets. These sets are
input into four classifiers for fault classification. The findings reveal that multidomain
features encompass richer information compared to single-domain features, consequently
enhancing classification accuracy.

While the paper experimentally validates the efficacy of the proposed method, it also
underscores certain limitations. The MS-FBLS model’s effectiveness, demonstrated through
experiments on the HZXT-DS-003 test bed, relies on a dataset primarily focused on common
simulated faults in rolling bearings. This dataset is clear, singular, sufficiently standardized,
and optimized for better experimental results. However, real-world operational conditions
entail complexities and significant noise interference. Our forthcoming focus aims to adapt
this model to real production environments.

6. Conclusions

To enhance the operational efficiency and dependability of machinery and equipment,
the paper introduces an MS-FBLS fault diagnosis method that addresses the low-accuracy
issue in FBLS fault diagnosis through multi-domain feature extraction and selection, and
tackles the low diagnostic efficiency problem of depth learning by employing FBLS. The
validation of the proposed MS-FBLS model is conducted using a rolling bearing fault
simulation test bed, yielding the following conclusions from the experiments:
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(1) High Efficiency of FBLS: Compared to deep learning methods, FBLS exhibits
significantly shorter training times, showcasing its high efficiency.

(2) Advantages of Multi-Domain Features: In contrast to traditional single feature-
based fault classification methods, multidomain features comprehensively reflect fault
information, leading to superior recognition results.

(3) Random Forest’s Superiority in Feature Selection: The Random Forest algorithm
excels in feature selection, effectively removing redundant or irrelevant features in bearing
fault classification and enhancing fault diagnosis computational capabilities.

In summary, the proposed MS-FBLS method shows substantial promise in bearing
fault diagnosis, especially in enhancing diagnostic accuracy and reducing computational
costs. Randomly generating weights in FBLS poses a challenge as the model lacks au-
tonomous capacity to determine the optimal structure. There’s potential for improvement
in optimizing the structure search for achieving better results. Our forthcoming efforts will
be dedicated to enhancing this aspect.
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