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Abstract: The development of efficient and low-cost non-metallic catalysts is of great significance
for the oxygen reduction reaction (ORR) in fuel cells. Heteroatom-doped carbon-based catalysts
are one of the popular candidates, although their preparation method is still under exploration. In
this work, single (CS)-, double (NCS)-, and triple (NBCS)-heteroatom-doped carbon-based catalysts
were successfully prepared by a “cook-off” process. The morphology, elemental composition, and
bonding structure of the catalysts were investigated by SEM, TEM, Raman spectra, BET, and XPS.
ORR catalytic performance measurements suggested an activity trend of CS < NCS < NBCS, and
NBCS demonstrated better methanol resistance and slightly higher stability than the commercial Pt/C
catalyst, as evaluated with both rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE)
systems. The mechanism for the promoted performance was also proposed based on the conductivity
of the catalysts. In this paper, the heteroatoms N, B, and S were co-doped into activated carbon using
a simple, fast, and efficient preparation method with high electrical conductivity and also increased
active sites, showing high electrocatalytic activity and good stability. This work provides a new
approach to preparing highly active non-Pt catalysts for oxygen reduction reactions.

Keywords: metal-free catalyst; “cook-off” process; heteroatom doping; oxygen reduction reaction

1. Introduction

With the increase in global energy consumption and concerns about environmental
pollution, the demand for sustainable, renewable, clean, and environmentally friendly
energy has become urgent. The fuel cell is an efficient and clean energy device that directly
converts chemical energy into electrical energy through chemical reactions, which is one of
the most promising technical approaches to solving energy and environmental problems
and has attracted the attention of the community. The chemical reactions associated with
fuel cell devices consist of an anode reaction and a cathode reaction while the cathodic
reaction is kinetically much more sluggish than the anodic one [1,2]. Therefore, catalysts
with the ability to improve ORR kinetics are required to enhance the efficiency of fuel cells.
Currently, the commercially available precious metal platinum and its alloy catalysts show
excellent ORR activity [3]. However, its expensive price, limited reserves, as well as poor
durability are the concerns regarding their large-scale application. Therefore, new types
of catalysts with cost-effective and durable properties are under development aiming to
replace Pt and Pt-based alloy catalysts [4]. As one of the popular candidates, non-metallic
carbon-based catalysts have been widely investigated and attracted considerable attention
since it was first reported in 2009 that nitrogen-doped carbon nanotubes were active for
ORRs [5]. Generally, based on the number of doping elements, heteroatom-doped carbon
materials could be roughly categorized into single heteroatom doping (e.g., N-, S-, B-, P-,
F-, etc.) [6–12] and multi-heteroatom doping (e.g., N, S-; N, B-; N, P, S-; N, B, P-; N, B,
F-; N, B, S-; etc.), respectively [13–20]. Park et al. reported the synthesis of sulfur-doped
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graphene by a heat treatment method. The limiting current density increases with higher
sulfur content and S acts to increase the catalytic activity [21]. Hu et al. reported unique,
two-dimensional (2D) N, S co-doped graphite flakes with a hierarchical structure of three-
dimensional pores on the surface of the catalyst, which provided abundant active sites and
exhibited good catalytic performance [22]. Li et al. reported N/B/S-doped graphitized-
coated Fe composites, and through this simple and effective strategy, the catalyst attained
a multistage porous structure with good mass transfer properties, high doping levels for
N, S, and B, and significant ORR activity [16]. It is widely accepted that atomic size and
electronegativity differences between heteroatoms and carbon atoms could effectively
change the intrinsic electronic properties of the carbon substrate, which further generates
active sites and improves catalytic performance [23].

A multitude of methods have been reported for doping heteroatoms into carbon ma-
terials such as chemical vapor deposition (CVD), sol–gel, ball milling, and hydrothermal
methods [24,25]. Theoretically, perfect doped structures could be harvested with the CVD
method, but the slow deposition rate, high production cost, long reaction time, and poten-
tially hazardous substances produced during the process limit its application [26]. Being
time-consuming was considered as the obvious drawback of sol–gel method, although
it was widely used [27]. The ball milling method is famous for its simplicity while the
inevitable introduction of impurities during the process may make the investigation more
complicated [28]. The hydrothermal method is well established for doped material prepa-
ration while operation safety and incomplete doping are issues to be solved [29]. There-
fore, methods other than those described above are still required to synthesize superior-
performance heteroatom-doped catalysts.

In this work, we reported a novel “cook-off” process to prepare both single heteroatom
(S-) and multi-heteroatom (N, S- and N, B, S-)-doped ORR catalysts. The reactants were
rapidly heated to a high temperature so that the combustion occurred in a short time, which
led to the release of a large amount of heat. As a result, the system reached extremely high
temperatures. It further resulted in the generation of a certain degree of graphitization on
the surface of the carbon substrate, which improved the electrical conductivity of obtained
catalysts [30]. The morphology, elemental composition, and bonding structure were inves-
tigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM),
Raman spectra (Raman), Brunauer–Emmett–Teller specific surface area (BET), and X-ray
photoelectron spectroscopy (XPS). A systematic investigation of ORR catalytic performance,
including activity and stability, was carried out by employing LSV, K-L plots, Tafel plots,
methanol resistance, and long-term operation. The mechanism for the promoted perfor-
mance was also proposed based on the conductivity measurement. This work provides
a new perspective on preparing superior-performance heteroatom-doped carbon-based
ORR catalysts.

2. Experimental
2.1. Preparation

Three heteroatom-doped carbon-based catalysts were prepared with activated carbon
as a carbon source, sublimated sulfur as a sulfur source, urea as a nitrogen source, and boric
acid as a boron source, while potassium nitrate was employed for deflagration purposes.
Based on the chemicals used and their mass ratio, the sublimation sulfur-doped activated
carbon was named CS (C:S = 0.15:0.1), the urea and sublimation sulfur co-doped activated
carbon was named NCS (N:C:S = 0.6:0.15:0.1), and the urea, sublimation sulfur, and boric
acid co-doped activated carbon was named NBCS (N:B:C:S = 0.6:0.1:0.15:0.1). Typical
amounts of the raw materials are listed in Table S1, while the preparation procedure is
shown in Figure 1. The crucible with pre-ground raw materials inside was quickly put into
a melting furnace, which was preheated to 700 ◦C. A slight smoke began to come out after
about 2 min, and it became bigger as the fire spouted out of the furnace after about 5 min.
The power was then turned off, and the crucible was immediately taken out to cool down
to a normal temperature. The residual material was then collected from the crucible, which
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was further washed five times using deionized water with a vacuum filtration system.
Finally, the desired sample was obtained by drying at 60 ◦C for 10 h.
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2.2. Characterizations

X-ray photoelectron spectrometry (XPS) was used to establish the apparent con-
stituents of the compounds and the form in which they existed based on binding energies
(model AXIS Supra+, Shimadzu, Kyoto, Japan). The extent of graphitization and disorder
on the surface of the carbon material was analyzed using a Raman microscope (inVia™
type, Renishaw, Wotton-under-Edge, UK). A surface area and porosity analyzer (BET) were
used to perform isothermal adsorption and desorption analysis using the principle of gas
adsorption to determine the specific area and pore size distribution of the sample (model
ASAP020, MICROMERITICS). SEM and TEM were used to observe the morphology and
microstructure of the catalysts using models SU8010 and HT7700, Hitachi, Tokyo, Japan,
respectively. The conductivity of the catalysts was detected with a four-probe powder
resistivity tester (model ST2722, Suzhou Jingge Electronic Co., Ltd., Suzhou, China).

2.3. Electrochemical Measurements

A three-electrode system was used to characterize the catalytic performance on a
Shanghai Chenhua CHI760E electrochemical workstation. Ag/AgCl was employed as
the reference electrode (RE), a platinum wire coil was the counter electrode (CE), and the
working electrode (WE) was a polished rotating disk electrode (RDE, ALS Co., Ltd., Tokyo,
Japan) with dispersed catalysts on it. The dispersed catalyst was prepared by adding
20 mg of catalyst to a mixture of 2 mL of DMF and 50 µL of Nafion (5 wt%). It was then
ultrasonically dispersed for 30 min to form a homogeneously dispersed solution, while
3 µL of this solution was pipetted onto the RDE for ORR testing. The electrolyte (0.1 M
KOH) was saturated with oxygen while the data were collected from −0.9 V to 0.2 V using
linear scanning voltammetry (LSV). The scanning rate was set as 10 mV s−1 while the
rotation speed of the RDE was 400–2500 rpm. An LSV test was also performed under the
saturating condition of nitrogen, while the final current was obtained by subtracting the
oxygen data from the nitrogen data, which were further fitted for kinetic analysis. Based
on the experimentally determined boundary conditions, the Levich Equation (1) and the
Koutecky–Levich Equation (2) were employed for the kinetic analysis, and the details of
both equations are reported in the literature [31]:
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In addition, rotating ring-disk electrode (RRDE, ALS Co., Ltd., Tokyo, Japan) measure-
ments were also performed with a scan rate was 10 mV s−1 and a ring electrode potential
of 0.1 V. The yield of H2O2 and the number of transferred electrons (n) were calculated by
Equations (3) and (4):

H2O2 = 200 ×
Iring

N

Idisk +
Iring

N

(3)
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n = 4 × Idisk

Idisk +
Iring

N

(4)

See the Supporting Information for the specific parameters.
The durability and methanol resistance of the catalyst were characterized using the

timed-current method (i–t curve) at a stable voltage (−0.4 V) for 10,000 s to test its durability
performance, and the methanol resistance was tested by adding 3 M CH3OH to an oxygen-
saturated electrolyte at a stable condition for 100 s of operation.

The Tafel slope is calculated from the LSV curve measured by ORR. The formula for
the Tafel slope is given below:

η = a + blog|J| (5)

η denotes overpotential; a denotes the Tafel constant; b denotes the Tafel slope; J
denotes measured current density.

3. Results and Discussion
3.1. Characterizations of Heteroatom-Doped Carbon-Based Catalysts

The morphologies of the prepared catalysts (NBCS, NCS, and CS) were characterized
by SEM. NBCS demonstrated uniform surface distribution with particles of similar sizes, as
shown in Figure 2a. It provided sufficient active sites, which made the oxygen molecules
easy to adsorb and promoted the oxygen reduction reaction over NBCS. In addition, the
homogeneous surface could also provide a platform for fast electron transport, resulting in
the enhancement of the electrical conductivity of NBCS, which would benefit the increase
in the reaction rate [32]. Compared with the case of NBCS, the uneven surface distribution
of NCS in Figure 2b and CS in Figure 2c, with obvious particle aggregation as well as holes
produced the during “cook-off” process, was observed. This may lead to the obstruction of
electron transport which further decreases electron conductivity and affects the electron
conduction efficiency. Moreover, some active sites may be covered or destroyed due to the
aggregation or holes, which may finally decrease the ORR reaction rate and catalytic activity.
Since activated carbon is an amorphous carbon with no obvious ordered crystal structure,
no useful information was collected with transmission electron microscopy (TEM), as
indicated in Figure S1.
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Figure 2. SEM images of (a) NBCS; (b) NCS; (c) CS.

Raman spectroscopy was further used to feature the heteroatom-doped carbon-based
catalysts to study the level of internal defects and graphitization of the prepared samples.
As demonstrated in Figure 3, two distinct characteristic peaks at positions near 1350 cm−1

(D peak) and 1580 cm−1 (G peak) were observed for all three samples [33,34]. The D
peak represents the internal imperfection and disorder of the carbon material structure,
while the G peak represents the degree of graphitization of the carbon material structure.
Moreover, the strength (ID/IG) ratio of the D and G peaks represents the disorder in the
structure of the carbon material. A larger ratio usually indicates a higher degree of defects
in the material [35,36]. The intensity ratios (ID/IG) of the peaks of NBCS, NCS, and CS
were determined to be 1.03, 0.94, and 0.97, respectively, which indicated that the high
temperature generated instantaneously during the “cook-off” process increased the extent
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of graphitization on the surface of the carbon materials, as in the cases of NCS and CS.
However, the synergistic effect produced by ternary doping hindered graphitization as
demonstrated by NBCS (ID/IG > 1) [37]. Therefore, it further broke the original carbon
material structure and increased the internal defects and disorder, which may enhance the
activity of NBCS for ORR [38]. In addition, the above results also show that the “cook-
off” process ensures that the heteroatoms are doped while maintaining a certain degree
of graphitization, which provides a new idea for the future development of a process
that maintains both doping and a high level of graphitization at the same time. Raman
data showed that NCS was the most graphitized, CS was the second most graphitized,
and NBCS was the least graphitized, which is consistent with the data obtained by SEM.
Scanning electron microscopy images show that NCS is highly crystalline, agglomerated,
and graphitized, CS is the second most crystalline, and NBCS is the least crystalline with
the largest degree of looseness.
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The specific surface area and porous structure of the resulting catalysts were further
characterized by N2 adsorption/desorption measurements. As can be seen from Figure 4a,
the adsorption isotherms and desorption isotherms of the three catalysts do not overlap
and form hysteresis returns at different relative pressures, which are typical characteristics
of type IV adsorption isotherms. The specific area of CS is 100.14 cm2 g−1, that of NCS is
280.08 cm2 g−1, and that of NBCS is 144.28 cm2 g−1. These data indicate that the reason
for the larger specific surface area from single to double doping is that the heteroatoms
are doped on the carbon material, which increases the specific surface area of the carbon
material. On the other hand, triple doping has a larger specific surface area than single
doping and a smaller one than double doping. This can be attributed to the fact that an
excessive amount of heteroatoms blocked the pores of the activated carbon, resulting in
a decrease in the specific surface area [39]. In addition, it can be seen from Figure 4b
that there are many mesopores and macropores in the pore size distribution of NBCS,
where mesopores are beneficial for generating more structural defects and transporting
reaction intermediates, and macropores are beneficial for facilitating the mass transfer and
increasing the mass transfer rate of the reaction [40]. The pore size distribution of CS and
NCS is approximately the same as that of NBCS, as detailed in Figure 4b.
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The elemental (N, B, C, S) composition and the corresponding chemical states of the
prepared catalysts were identified using XPS, as shown in Figure 5. The full spectra and
specific elemental composition contents of NBCS, NCS, and CS are depicted in Figure 5a and
Table S2. Five characteristic peaks, S 2p, B 1s, C 1s, N 1s, and O 1s, located at 164 eV, 186 eV,
284.4 eV, 377 eV, and 533 eV, respectively, were observed, which suggested that the N, B, and
S elements were successfully incorporated into the carbon matrix [41]. Moreover, the sulfur
element (S) was contained in all three samples, even though the doping amounts were
different (3.7, 2.3, and 1.7%, respectively), which may be due to the different formulations
of raw materials used in NBCS, NCS, and CS, resulting in different levels of deflagration.
The high-resolution O 1s spectrum of NBCS, NCS, and CS (Figure 4b) showed that C–O
and C=O were observed in all three samples [42]. This can be ascribed to the large amount
of oxygen generated from KNO3 during the “cook-off” process, which reached an oxygen-
rich state leading to the doping of the oxygen element into the carbon substrate under
high-temperature conditions. B–O was also observed over NBCS, indicating the successful
insertion of boron. Moreover, the obvious peak shift of both C–O and C=O was displayed
for all three samples (Figure 5b), which indicated the different micro-environment of these
two bonds in the three catalysts. This may be attributed to the different kinds of doping
(i.e., single-, double-, and triple- doping). The high-resolution C 1s spectrum of NBCS,
NCS, and CS (Figure 5c) clearly recorded C–C, C–O, C–S, C–N, and C–B [43,44], which
further demonstrated that heteroatoms N, B, and S were doped into the carbon substrate.
Moreover, the successful detection of O=C–O (π–π*) demonstrated the presence of graphite
structures in the prepared catalysts [45]. Figure 5d showed the high-resolution S 2p spectra
of three catalysts, consisting of S-C (thiophene S), SOx 2p 1/2, and SOx 2p 3/2 (oxidized
S) [46], and thiophene S is widely considered to have a positive effect on increasing ORR
activity [47]. A peak shift was also observed in the bonding energy of these structures due to
the different doping types. The high-resolution N 1s spectrum of NBCS and NCS (Figure 5e)
demonstrated three characteristic nitrogen peaks: pyridinic N, pyrrolic N, and graphitic
N [48,49]. Pyridinic N was reported as a donator to provide a p-electron to the π-system
and further form a lone pair of electrons, leading to a neighboring carbon atom with high
activity for ORR [50]. Graphitic N favors electron conduction, benefitting electron transfer
and onset potentials as well as suppressing current density. Therefore, there is a need to
balance these two types of N, which would be useful to improve the ORR electrocatalytic
performance of N-doped carbon-based catalysts [51,52]. As listed in Table S2, a higher
percentage of pyridinic N was observed in NBCS (0.258% of 0.6%) compared to that of NCS
(1.289% of 3.4%), which definitely affected their ORR performance. The high-resolution
B 1s spectrum of NBCS is illustrated in Figure 5f. It could be deconvoluted into two
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characteristic peaks, BC2O and BCO2, respectively [53]. The B-N structure, which was
not observed within NBCS, favors the maintenance of high N contents [54]. As a result,
relatively low N was recorded in NBCS, as shown in Table S2. Moreover, due to the absence
of B–N, boron would preferentially react with oxygen to form boron oxides, which further
immobilize oxygen to prevent nitrogen fixation during the “cook-off” process. Therefore,
the nitrogen content of NBCS is much lower than that of NCS.
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The best ORR catalytic performance of NBCS can be attributed to the structure benefit-
ting the ORR. The homogeneous surface distribution of NBCS, as demonstrated in SEM,
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accelerated the electron transfer rate. The degree of graphitization exhibited in NBCS,
as shown in Raman spectra, improved the conductivity. The large specific surface area
and abundant porous structure of NBCS as measured by BET provided it with more ac-
tive sites, which promoted the mass transfer and accelerated the reaction kinetics. The
high percentage of pyridinium N of NBCS as confirmed by XPS effectively modulated the
electrocatalytic performance.

3.2. Catalytic Performance

The LSV curves of NBCS, NCS, CS, and Pt/C at 1600 rpm are demonstrated in
Figure 6a, and the current densities of NBCS, NCS, and CS were −4.98, −4.71, and
−3.94 mA cm−2, with the trend of NBCS > NCS > CS. The loadings and initial poten-
tials Eonset and half-wave potentials E1/2 of the resulting catalysts are shown in Table 1.
Moreover, the LSV at different rotational speeds (400–2500 rpm) of NBCS is shown in
Figure 6b. The current density increased with increasing speed due to enhanced electrolyte
diffusion [55,56]. A good linear relationship was achieved based on LSV obtained at dif-
ferent rotational speeds (see Figure 6c), indicating the presence of a first-order response
to dissolved oxygen over NBCS [57–59]. The slopes of the fitting lines were further calcu-
lated using the K-L equation, while the numbers of electrons transferred (n) at different
potentials during the reaction were then determined as listed in Figure 6c. The numbers
were in the range of 3.82 to 3.96, a typical four-electron pathway. Similarly, the number
of transferred electrons of Pt/C and NCS was calculated to be 3.93~3.99 and 3.88~3.97,
respectively (Figure 6d), which indicated that both also predominantly went through a four-
electron transfer process. However, the electron transfer number of CS was determined to
be between 3.2 and 3.34, which is intermediate between the two-electron and four-electron
oxygen reduction processes. This indicates that CS was involved in both two-electron and
four-electron reactions. The Tafel slope can affect the rate and efficiency of a catalytic reac-
tion. The smaller the Tafel slope is, the faster the reaction rate is and the higher the catalytic
activity is [60]. The Tafel diagram of NBCS, NCS, CS, and Pt/C is shown in Figure 6e.
The Tafel slope of NBCS (86.74 mV dec−1) was lower than that of Pt/C (87.86 mV dec−1),
NCS (98.45 mV dec−1), and CS (102.96 mV dec−1), which further indicated that NBCS
exhibited the fastest kinetics for ORR. The electrocatalytic performance of NBCS, NCS, CS,
and Pt/C was further studied using the RRDE technique. The Iring and Idisk of the catalysts
at 1600 rpm were shown in Figure 6f, while H2O2 yield (%) and the number of transferred
electrons (n) during the ORR process was calculated using Equations (3) and (4), as listed
in Figure 6g. The number of transferred electrons for NBCS was 3.89 while H2O2 yield was
4.65%. The result (3.89) is consistent with the number of transferred electrons calculated by
the K-L equation (3.82–3.96). This indicated that the electrocatalytic process with NBCS was
dominated by four-electron transfer, with water as the main product and a small amount
of hydrogen peroxide as a byproduct, which further suggested that NBCS was a good
candidate for ORR [61]. NCS also demonstrated a four-electron pathway (3.93) while the
amount of byproduct (6.22%) was higher than that of NBCS (4.65%). Byproducts accounted
for around 14% in the case of CS, suggesting it is not suitable for ORR applications.

Methanol resistance was further measured by chronoamperometry (Figure 6h), and
3 M CH3OH was introduced into oxygen-saturated 0.1 M KOH electrolyte. As expected,
a dramatic decrease in current was observed on Pt/C (49.5%), as reported by the litera-
ture [62,63]. Interestingly, a slight change (3.3%) was recorded for NBCS, indicating its
superior methanol resistance compared to Pt/C. Stability tests were carried out by using a
timed-current methodology approach with a fixed potential at −0.4 V (Figure 6i). After
a duration of 10,000 s, NBCS still maintained 93.89% of the initial current density, while
that of Pt/C was 89.78%, indicating that NBCS showed slightly better stability than Pt/C.
Based on the above electrochemical measurements and analysis including LSV, K-L plots,
the number of transferred electrons, Tafel plots, H2O2 yields, methanol resistance, and
stability tests, it can be concluded that the N, B, and S triple co-doped carbon-based catalyst
(NBCS) prepared through the “cook-off” process showed comparable or better catalytic
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performance for ORR as compared with commercial Pt/C. By recording the data related to
heteroatom-doped carbon materials for ORR with Table S3, it can be concluded that the
catalysts prepared in this work showed close performance with the literature.
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Figure 6. (a) LSV curves of NBCS, NCS, CS, and Pt/C; (b) LSV curves of NBCS at different rotational
speeds; (c) K-L plots and the calculated number of transferred electrons of NBCS at various potentials;
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Table 1. Mass loading, half-wave potentials (E1/2), and current densities of the catalysts.

Catalysts Mass Loading
(mg cm−2) Eonset (V) E1/2 (V) Current Densities

(mA cm−2)

CS 0.414 −0.199 −0.465 −3.94
NCS 0.414 −0.203 −0.491 −4.71

NBCS 0.414 −0.148 −0.393 −4.98
Pt/C 0.204 0 −0.151 −5.21

3.3. Promotion Mechanism

Electrical conductivity showed an important influence on electron transport and
reaction rate for ORR [64,65]. The measurement of electrical conductivity may help to
understand the promotion mechanism of catalysts. In this work, the conductivity of the
samples with pressure from 2 MPa to 20 MPa was analyzed and the results are shown in
Figure 7. Generally, the electrical conductivity of all three samples increased with increasing
pressure. More importantly, NBCS has the best conductivity, followed by NCS, while CS
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shows the worst conductivity. This suggests that the electronic structure and energy band
properties of carbon materials changed to different extents with single (the case of CS),
double (the case of NCS), or triple (the case of NBCS) heteroatom doping, and the latter
enhanced the conductivity, although the detailed mechanism is still under investigation.
The increase in conductivity promotes electron transfer and increases the reaction rate,
which ultimately improves the catalytic activity of NBCS.
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4. Discussion

In summary, the triple-doped catalyst (NBCS) exhibits better ORR catalytic perfor-
mance, excellent methanol resistance, and long-lasting stability compared to double-doped
and single-doped (-NCS and -CS). This can be attributed to the following reasons: (1) the
uniform surface distribution, large specific area, and abundant porous structure of NBCS,
which help to improve the mass transfer effect; (2) the high electrical conductivity of NBCS,
which accelerates the electron transfer process and is conducive to the improvement of the
reaction rate; and (3) the ternary co-doping of N, B, and S on the activated carbon, which
disrupts the structure of the activated carbon and alters the electronegativity around the
carbon atoms, forming more active sites and enhancing the catalytic performance. The
preparation of heteroatom-doped carbon-based catalysts by using the steaming process,
the drastic combustion effect, the rapid reaction process, and the successful doping of
heteroatoms along with a certain degree of graphitization are of great significance for the
enhancement of catalytic performance. The feasibility of the cooking process is further
demonstrated through continuous research and exploration.

5. Conclusions

In this work, single (CS)-, double (NCS)-, and triple (NBCS)-heteroatom-doped carbon-
based catalysts were prepared using a novel “cook-off” process for oxygen reduction
reaction applications. NBCS showed a uniform distribution of particles with similar sizes,
while the ternary doping resulted in a micro-structure with internal defects and disorder,
leading to the exposure of more active sites. Furthermore, it had a larger percentage of
active pyridinic N. Therefore, it demonstrated as having the best ORR catalytic performance
with the trend of CS < NCS < NBCS. Moreover, it showed much better methanol resistance
and slightly higher stability than the Pt/C catalyst. The improved performance may be due
to the excellent electrical conductivity of NBCS, although further investigation is required
to reveal the mechanism. With further optimization and deep investigation, it may lead to
the discovery of an excellent candidate to replace Pt/C.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr12020264/s1, experimental material. Specific values for the
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RDE and RRDE parameters. Figure S1: (a) TEM images of NBCS; (b) TEM images of NCS; (c) TEM
images of CS. Table S1: Different contents of raw materials in the samples. Table S2: Elemental
composition of catalysts measured by XPS (at. %). Table S3: Performance of heteroatom-doped
carbon materials as ORR catalysts. Refs. [66–70] are cited in the Supplementary Materials.
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