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Abstract: This paper presents a comprehensive review of the historical development, the current state
of the art, and prospects of data-driven approaches for industrial process monitoring. The subject
covers a vast and diverse range of works, which are compiled and critically evaluated based on the
different perspectives they provide. Data-driven modeling techniques are surveyed and categorized
into two main groups: multivariate statistics and machine learning. Representative models, namely
principal component analysis, partial least squares and artificial neural networks, are detailed in a
didactic manner. Topics not typically covered by other reviews, such as process data exploration
and treatment, software and benchmarks availability, and real-world industrial implementations, are
thoroughly analyzed. Finally, future research perspectives are discussed, covering aspects related
to system performance, the significance and usefulness of the approaches, and the development
environment. This work aims to be a reference for practitioners and researchers navigating the
extensive literature on data-driven industrial process monitoring.

Keywords: process systems engineering; process monitoring; fault detection and diagnosis;
multivariate statistics; latent variable modeling; machine learning

1. Introduction

The ongoing advancements in society demand continuous improvements in safety,
efficiency, and sustainability within process industries. To tackle these challenges, com-
panies must have a comprehensive understanding of process behaviors, enabling them
to quickly detect, identify and fix malfunctions. The rise in digitalization has provided
access to vast amounts of data collected from various sensors, creating an opportunity for
informed decision making. Research on data-driven process monitoring aims to develop
methods that enable real-time use of process data in the most effective manner, with the
goal of ensuring healthy performance.

Achieving this objective involves various aspects, such as mathematical modeling,
data processing, benchmarking methodologies, software development, and practical im-
plementation in industrial settings. The literature on data-driven process monitoring has
seen significant growth in recent years, with numerous studies addressing these aspects. In
particular, many review articles and overviews have been published, typically focusing
on specific topics. For instance, Yu and Zhang [1] discuss the challenges of deep learning
modeling; Kong [2] explores the application of latent variable models; Zhao [3] examines
non-stationary process monitoring; Peres and Fogliatto [4] review strategies for variable
selection; and Melo et al. [5] analyze open benchmarks for comparing methodologies.

Despite the wealth of existing works, to the best of our knowledge, the literature
lacks a comprehensive survey encompassing at once the following gaps: (i) compiling and
critically analyzing previous reviews related to the topic; (ii) presenting the most popular
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mathematical models in a didactic manner, ensuring the inclusion of most significant mod-
els; (iii) conducting a thorough examination of often overlooked aspects, such as practical
implementation and software development; and (iv) covering the historical progression,
the current state of the art, and future perspectives of the field.

The primary objective of the present paper is to provide a survey of the research field of
process monitoring, specifically addressing the four aforementioned points. By addressing
these points in a single document, this review seeks to offer a holistic understanding of
the field and its fundamental aspects. The next sections of the article are organized as
follows. Section 2 provides a broad overview of the historical development of process
monitoring. Detailed discussions on mathematical modeling techniques are presented,
specifically multivariate statistical models (Section 3) and machine learning approaches
(Section 4). Section 5 focuses on the exploration, characterization, and treatment of process
data. Section 6 reviews computational tools and openly available benchmarks in the
literature. Section 7 addresses the practical implementation of process monitoring in
industrial settings. Section 8 explores future perspectives and challenges in the field.
Section 9 concludes the article. Additionally, Appendixes A and B include a compilation
of relevant resources such as review papers, overviews, comparative studies, books, and
commercial tools related to process monitoring in the field of process systems engineering
(PSE). These resources can serve as references for further exploration of specific topics.

2. Historical Remarks

Process monitoring is a term widely used in both daily application and engineering
practice, encompassing various aspects such as the supervision of production by operators.
However, as industries have evolved, specific methodologies have been developed to
systematize this procedure.

Shewhart [6,7], during his tenure at Bell Telephone Laboratories, introduced the
concept of control charts. These graphical tools, rooted in statistical principles, enable the
monitoring of significant process variables to detect events associated with special cause
variations, distinct from common cause variations that are inherent and expected during
process operation. The development of control charts is widely recognized as a pivotal
moment in the establishment of statistical process monitoring [8].

Another significant breakthrough occurred with the introduction of the T2 statistic
by Hotelling [9]. This statistical tool allowed for the simultaneous analysis of multiple
variables and their interactions, marking the inception of the field of multivariate statistical
process monitoring [10]. This pioneering work enabled a comprehensive approach to
process monitoring by considering the interconnectedness among various variables.

Despite Hotelling’s work in 1947, the widespread adoption of multivariate monitoring
applications occurred primarily in the late 1980s. This can be attributed to two key factors:
(i) the increased accessibility and utilization of computers and (ii) the proposal of applying
latent variable modeling, a particular class of multivariate statistical methodologies, to
process monitoring problems [11]. These methodologies have become the prevailing
approach from the 1990s onwards, marking a paradigm shift that has been extensively
documented in numerous review and overview articles from that era [12–14].

Since the 2000s, the rapid advancement of computational capacity has led to the
growing prominence of machine learning approaches for multivariate process monitoring.
The ability of machine learning algorithms to process and analyze vast amounts of data has
contributed to their increasing relevance in the field of multivariate monitoring, enabling
the identification of complex relationships and patterns that were previously challenging
to detect [15,16].

In recent years, there has been a growing tendency to classify multivariate statistical
techniques as machine learning algorithms [16,17]. However, despite this trend, in the PSE
literature, they are conventionally categorized separately [10,15,18,19]. This separation
arises from the historical development of multivariate statistical models in fields such as
statistics and chemometrics, along with the association of machine learning methodologies
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with the broader field of computer science. In this study, we present the two approaches
in dedicated sections. Section 3 provides an overview of the main techniques developed
within the framework of multivariate statistics, while Section 4 focuses on the techniques
derived from the machine learning literature. By separating these discussions, we aim to
offer a clear and comprehensive examination of each approach within the context of its
historical development. However, it is important to keep in mind that nuances and gray
areas may emerge: while multivariate techniques can be interpreted as learning algorithms,
many machine learning methodologies inherently possess a statistical foundation.

3. Multivariate Statistics

In multivariate statistics, multiple variables and their interactions are analyzed si-
multaneously. In this context, latent variable modeling stands out as the most popular
multivariate statistical approach for applications in process monitoring [16]. This approach
involves transforming the raw data’s original variables into a new set of variables that
explicitly reveal the underlying, hidden (latent) characteristics present in the data. The
choice of technique depends on the specific characteristics one wishes to uncover. Some
commonly used techniques are principal component analysis (PCA), partial least squares
(PLS) and canonical correlation analysis (CCA) [20–23]. These methods are widely applied
in industrial process monitoring applications because they generate orthogonal latent
variables that eliminate the linear correlations between the original variables, a common
characteristic in industrial data [24].

Latent variable modeling has gained such historical significance that several works
which aimed to present the literature on data-driven process monitoring solely focused
on this methodology [14,18,20,25–28]. These works may suggest two implicit viewpoints:
either the entire process monitoring field is exclusively constituted by these methods, or
these are the only methods worthy of attention.

Only MacGregor and Cinar [26] provided a justification for this preference:

“In this paper, we focus on the proper use of data-driven (empirical) models for the
monitoring, control and optimization of processes. In particular, we focus on latent
variable models because, as we will show, they provide the proper structure to allow them
to be built from plant data and be used for monitoring, control and optimization” [26].

Throughout their article, the authors justified their choice by arguing that latent
variable modeling methods are the only ones that can model both the predictor (X) and
predicted (Y) portions of a dataset. According to the authors, other regression techniques
would solely model the Y space, which would be equivalent to assuming that the X space
has full rank, a hypothesis rarely met in real-world scenarios. As a consequence, latent
variable methods would be the most suitable for handling missing data issues and the only
data-driven monitoring methodology that could provide unique, interpretable, and causal
models.

Several objections can be made to this viewpoint. The shift to the latent variable space
is not the only way to address collinearity in the X matrix. The nonlinearity of some regres-
sion methods can itself mitigate or eliminate this issue, and even in the context of linear
methods, other strategies exist, including subset selection and penalization methods such
as ridge regression and Lasso [29]. Data reconciliation techniques can also be employed,
as they allow for the treatment of fluctuations and uncertainties in both X and Y [30–33].
The aim of these objections is not to diminish the importance of latent variable models
but rather to highlight that their prevalence in the process monitoring literature may be
partially attributed to historical biases. Recognizing this fact can help foster openness to
new opportunities and better understand the shift in discourse towards buzzwords such as
machine learning and artificial intelligence, as discussed in Section 4.

In the remaining part of this section, a detailed account of the main techniques used in
multivariate statistics is presented from a historical and didactic perspective. The theoretical
descriptions emphasize the assumptions that each technique makes regarding the nature of
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the data. While these assumptions are essential in characterizing the use of the techniques,
they are often overlooked by practitioners.

3.1. PCA
3.1.1. Fundamentals

Principal component analysis (PCA) was originally introduced by Pearson [34]; how-
ever, the application in the field of process monitoring was proposed much later by
Wise et al. [11]. PCA is a technique that produces a set of orthogonal linear combina-
tions of the original variables, with the goal of selecting a subset of these combinations that
effectively captures and summarizes the variability of the data. The first assumption of the
technique refers to the approach used for deriving the latent variables:

PCA, Assumption 1. The latent variables can be obtained by performing a linear transformation
on the dataset.

Let X ∈ Rn×m be a dataset, where each row corresponds to an observation and each
column corresponds to a measured variable. The linear transformation performed by PCA
can be represented as a change in basis:

T = XP, (1)

where the columns of P ∈ Rm×m, denoted by {p1, . . . , pm}, are referred to as principal
components. These components represent a new basis for expressing each observation (i.e.,
row) of the matrix X. On the other hand, the columns of T ∈ Rn×m correspond to the latent
variables and constitute projections of the columns of X onto the basis {p1, . . . , pm}.

To select the new basis P, it is necessary to assess which characteristics of the trans-
formed matrix T provide the optimal representation of the data. However, this evaluation
can only be performed by making additional assumptions about the nature of the data:

PCA, Assumption 2. There is a degree of linear dependence between variables, which hinders the
description of the essence of the data due to the presence of redundant and unnecessary information.

PCA, Assumption 3. The data exhibit a high signal-to-noise ratio, indicating that larger variances
carry greater relative importance of information.

Hypothesis PCA-A2 indicates that it is desirable for the columns of T to be linearly
independent. In other words, the empirical covariance matrix CT:

CT =
(T − T)

′
(T − T)

n − 1
, (2)

should only contain diagonal elements. In Equation (2), T denotes the vector of column-
wise means of T. Before proceeding with the mathematical development, it is necessary to
introduce one additional hypothesis:

PCA, Assumption 4. Each variable in the data matrix has a zero mean, i.e., X = T = 0.

In practice, the validity of this assumption is ensured through a process called central-
ization, where the mean of each variable is subtracted. In this case, the covariance matrix
of T can be expressed as:

CT =
T

′
T

n − 1
. (3)

Using Equation (1), Equation (3) can be rewritten in terms of the principal component
matrix P as follows:

CT = P
′
CXP. (4)
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According to the Spectral Theorem [35], a symmetric matrix such as CX can be decom-
posed into eigenvalues and eigenvectors as follows:

CX = EΛE
′
, (5)

where E is the matrix containing the eigenvectors of CX as columns, and Λ is a diagonal
matrix containing the eigenvalues of CX in descending order of magnitude.

To obtain a diagonal matrix CT, the matrix P can be conveniently chosen as P = E.
This is because substituting Equation (5) into Equation (4) yields:

CT = Λ. (6)

If Assumptions PCA-A2 and A3 are satisfied, selecting P = E results in a transformed
matrix T that is advantageous for data analysis in two ways. Firstly, it eliminates the
redundancy caused by the linear dependence between the variables. Secondly, it organizes
the variables in decreasing order of importance according to the variance values present in
the diagonal matrix CT.

It is useful to interpret the PCA technique from an optimization perspective. In this
context, the first principal component p1 should maximize the variance of the latent variable
t1 = Xp1:

p1 = arg max
∥p∥2=1

{
(Xp)

′
Xp
}

= arg max
∥p∥2=1

{
p

′
X

′
Xp
}

= arg max
∥p∥2=1

{
p

′
CXp

}
= arg max

{
p

′
CXp

p′p

}
. (7)

In the last equality, the unit norm constraint is relaxed by dividing the objective
function by ∥p∥2

2. The remaining principal components can be found in the successive
orthogonal spaces by deflating the matrix Cx with respect to p [36].

The objective function represented by Equation (7) takes a mathematical form known
as the Rayleigh quotient:

r(A, B, w) =
w

′
Aw

w′Bw
. (8)

It can be shown that the critical points of r(A, B, w) correspond to the solution of the
generalized eigenvalue problem [22,37]:

Ae = λBe. (9)

Since B = I in the objective function, Equation (9) simplifies to an eigenvalue problem,
which is consistent with the derivation of Equation (6). It can be demonstrated that the
eigenvalue decomposition of the covariance matrix Cx is equivalent to the singular value
decomposition of the data matrix X [38]. In fact, the latter approach is computationally
more efficient and stable, as it eliminates the need to calculate Cx.

3.1.2. Dimensionality Reduction

In order to perform dimensionality reduction, a certain number a of principal compo-
nents is selected such that they account for a certain percentage of the explained variance
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(usually 90%), resulting in a reduced matrix Pa ∈ Rm×a. The reduced matrix of latent
variables Ta ∈ Rn×a is obtained through the equation:

Ta = XPa. (10)

Based on Assumption PCA-A3, the most informative variables are those that exhibit
more variability in the multivariate space under study. Therefore, the matrix Ta would be a
more effective and suitable representation of the data, as it excludes the variables associated
with smaller variances (which, according to the assumption, correspond to measurement
noise). This matrix can be projected onto the original variables as follows:

X̂ = TaP
′
a = X(PaP

′
a). (11)

By doing so, the original variables can be reconstructed in the matrix X̂, which includes
only the primary variation in the dataset, corresponding to the a leading principal compo-
nents. In this sense, the PCA technique can be viewed as a filter, as the transformation from
X to X̂, in theory, reduces the noise level of the dataset.

The difference between X and X̂ is represented by the residual matrix E:

E = X − X̂ = X(I − PaP
′
a). (12)

The subspaces generated by X̂ and E are known as principal space and residual space,
respectively, [20].

Several discussions regarding selection methods for the parameter a can be found in
the literature [39–44]. In particular, Saccenti and Camacho [43] conducted a comparison of
different techniques, including statistical-based methods, cross-validation methods and
methods based on numerical approximation. The authors offered recommendations for se-
lecting the most suitable methods based on the specific characteristics of the analyzed data.

Figure 1 illustrates the application of the PCA procedure to a bidimensional dataset.
In the first plot, the red arrows depict the two principal components, with the larger
arrow indicating the first principal component, associated with the direction of higher
explained variance. The second plot demonstrates the linear transformation from X to T.
The third plot demonstrates the dimensionality reduction step, where the bidimensional
data is transformed into a unidimensional representation. Finally, the last plot presents the
reconstructed data in the original bidimensional space, now with variation only along the
direction of the principal component.

2 0 2
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2

0

2

x 2

2.5 0.0 2.5 5.0
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4
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0
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x1

4

2
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Figure 1. Schematic illustration of the PCA procedure: the identification of principal components
(depicted by red arrows), the subsequent projection to a latent space, the dimensionality reduction
step and the resulting reconstruction in the original space.
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3.1.3. Process Monitoring

In the context of process monitoring, the data matrix X is often derived from a time
series. The aim of applying the PCA technique in this scenario is to identify the structure
of the principal subspace during a normal operating period and use it as a reference to
evaluate new observations in order to determine whether the structure is maintained.

When the process that generates the time series exhibits dynamic behavior, i.e., tem-
poral dependence, the PCA technique may not be able to accurately identify the structure
of the principal subspace. In such cases, the latent variables may be autocorrelated and
potentially exhibit cross-correlation [45]. Hence, to utilize PCA for process monitoring
purposes, the following assumption needs to be considered:

PCA, Assumption 5. The data matrix is obtained from a steady-state process.

The monitoring procedure utilizing PCA can be carried out in two distinct stages. The
first stage, referred to as training, involves applying PCA to a dataset collected from normal
operation, which is commonly known as the training set. The outcome of the training
process includes two matrices: the projection matrix Pa and the explained variances matrix
Λa. In the second stage, known as testing, new observations x are subjected to monitoring
using statistical indices. The most frequently employed indices for monitoring are the T2

and Q indices, which are described below.
In the context of PCA, the T2 statistic is computed by applying the confidence ellipse

of the normal distribution to the latent variable ta, which is the projection of the observation
vector x onto the first a principal components [27,46]:

T2 = t′aΛa
−1ta = x′PaΛa

−1P′
a.x (13)

The T2 statistic provides a global measure of the variability captured by the PCA model
in the first a principal components, which is associated with the systematic variations in
the process being monitored [20]. During the monitoring phase, an increase in the T2 value
for new observations indicates the occurrence of disturbances with a similar nature to the
variations identified by the PCA model, that is, disturbances in the directions of the plane
described by the model [47].

The Q statistic is defined as the Euclidean distance between an observation vector x
and its projection onto the principal subspace x̂ = (PaP′

a)x:

Q = ||x − x̂||2 = ||(I − PaP′
a)x||2 = (x − x̂)′(x − x̂) = x′(I − PaP′

a)x. (14)

The Q statistic is the squared norm of the prediction errors (residuals) of the PCA
model and is often referred to as SPE (square prediction error). It provides a global
measure of variability that is not captured by the PCA model, i.e., variability present
in the residual space, which is associated with unusual or unexplained variations in
the process being monitored [20]. During monitoring, an increase in the Q value for
new observations suggests a change in the relationships between the variables, such as a
violation in correlations, resulting in a break in the structure captured by the model during
training. In other words, the plane described by the PCA model does not include the
direction of the disturbance [47]. Due to the form of Equation (14), establishing a detection
limit using the Q statistic is equivalent to delimiting a hypersphere as a confidence region
in the residual space [48].

The PCA procedure is illustrated in the present paper through the application of
the Tennessee Eastman Process (TEP) dataset. This dataset is widely used in the process
monitoring literature and originates from a chemical process simulation developed by
Eastman Chemical Company [49]. The TEP comprises five units: reactor, condenser, vapor–
liquid separator, stripper, and recycle centrifugal compressor. It involves four reactants
and one inert being fed into a reactor, which generates two products and one byproduct
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through exothermic and irreversible reactions. For a comprehensive critical analysis of the
TEP dataset, readers are referred to Melo et al. [5].

Figure 2 displays the application of the PCA training procedure to the TEP dataset.
The first plot shows the growth in accumulated explained variance as the number of
components increases. The second plot presents the control chart for the Q index when
normal data are used.
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0 1000 2000
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Figure 2. Illustration of the PCA training procedure for process monitoring: explained variance and
Q control chart.

The use of the T2 statistic, which is derived from the normal distribution, requires the
formulation of an additional hypothesis:

PCA, Assumption 6. The dataset X follows a normal distribution.

In some cases, the T2 statistic can be used even when Assumption PCA-A6 is violated,
since the latent variables are linear combinations of the original variables. In this case, one
may assume that the latent variables approximately follow a normal distribution due to
the Central Limit Theorem [50]. This theorem establishes that the sum of random variables
asymptotically approaches a normal distribution as the number of variables increases.

Some references consider normality as an intrinsic requirement for applying the PCA
technique and not as a requirement for the use of the T2 statistic, as considered in the
present text. This happens because these references apply and interpret PCA in the context
of statistical (in)dependence, while in the present text, the discussion involved the less
rigorous concept of linear (in)dependence (see Assumption PCA-A2). To ensure that linear
independence between the latent variables is equivalent to statistical independence, some
hypotheses about the probability distribution of the data must be enunciated. It can be
shown that assuming that the data follows a normal distribution is a sufficient condition to
guarantee this equivalence [51].

This issue is subtle and often a source of conceptual confusion. For instance, Jonathon
Shlens included the normality assumption in the early versions of his excellent tutorial
on PCA [52] but removed it in later versions [38]. To support the understanding of this
topic, it is worth consulting a concise and elucidative comparison between the terms linear
independence, orthogonality, and uncorrelatedness presented by Rodgers et al. [53].

The Q and T2 statistics are applicable to the two primary activities conventionally
associated with process monitoring, namely fault detection and diagnosis.

3.1.4. Fault Detection

To carry out fault detection, control limits must be established for the statistics T2 and
Q. Considering a confidence level α, the most commonly used limits are [47,54]:

T2
α =

a(n2 − 1)
n(n − a)

Fα(a,n−a), (15)
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Qα = θ1

[
h0cα

√
2θ2

θ1
+ 1 +

θ2h0(h0 − 1)
θ2

1

]1/h0

, (16)

where:

• Fα(a,n−a) is the upper limit of the α percentile of the Fisher-Snedecor F distribution,
with a and n − a degrees of freedom;

• θi = ∑m
j=a+1 λi

j;

• h0 = 1 −
(

2θ1θ3

3θ2
2

)
;

• cα = 1.645 is the z-score corresponding to the (1− α) percentile of the standard normal
distribution.

Equation (15) is derived directly from statistical theory, while Equation (16) is based
on the approximation of the distribution of quadratic forms and was first proposed by
Jackson and Mudholkar [55]. When the underlying normality assumptions are not met,
Equations (15) and (16) may not perform well, and alternative control limits based on
specific statistical properties of each dataset need to be developed.

Figure 3 presents the Q control chart for one of the faults in the Tennessee Eastman
Process dataset. The fault event is indicated by the vertical line at sample 160. Following the
occurrence of the fault, the data points exceed the horizontal dashed line, which represents
the Qα control limit. This triggers an alarm, indicating a deviation from the expected
behavior of the process.

0 200 400 600 800 1000
Sample

101

102

Q

Figure 3. Illustration of the PCA Q control chart for a fault of the Tennessee Eastman Process dataset.

3.1.5. Fault Identification and Diagnosis

There exists a certain degree of confusion in the process monitoring literature re-
garding the precise definitions of the terms identification and diagnosis. For instance,
Chiang et al. [20] defined identification as the act of indicating the most relevant variables
for performing diagnosis, which was in turn defined as the determination of the root cause
of the abnormal state. In contrast, Qin [18] proposed a different definition, in which the
meanings of the terms are reversed: identification was defined as the process of identifying
a fault from a set of possible known faults, while diagnosis referred to the identification of
the variables that contributed to the occurrence of the fault. The latter definition is adopted
in the present text.

There are several diagnostic methods in the context of PCA, among which the most
popular are the contribution methods [20,50,56–58]. These methods are based on analyzing
the contribution of each variable to the detection index. In order to apply these methods,
an additional hypothesis must be assumed:
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PCA, Assumption 7. At the time of fault, the magnitude of the contribution of a variable to the
increase in the detection rate is proportional to the influence of the variable on the occurrence of the
abnormal event.

The contribution methods used in PCA can be broadly classified into three categories [56]:

• Decomposition contributions: These methods decompose the detection index into the
sum of contributions from individual variables.

• Reconstruction-based contributions: These methods consider the contribution of a
variable to be the magnitude of the reconstruction of the detection index along the
direction of that variable.

• Diagonal contributions: In multiblock problems, similar variables are grouped into
blocks based on domain knowledge, which simplifies the scenarios with many vari-
ables. Diagonal contributions keep only the block terms in the detection index.

The formulation of the most widespread technique, the method of decomposition
contributions, will be presented as an illustration. The indices T2 and Q can be written in
the form of a generalized index, idx:

idx = x′Mx, (17)

where:

• M = PaΛa
−1P′

a for idx = T2;
• M = I − PaP′

a for idx = Q.

The decomposition contribution of variable i to the generalized index is denoted as
cdi and expressed as [56]:

cdi = x′M1−βIiI′iM
βx, (18)

where Ii constitutes the ith column of the identity matrix and 0 ≤ β ≤ 1. According to
the choice of the β parameter, different degrees of decomposition can be defined. In the
literature, β = 0 or β = 1 are used under the name “partial contribution” and β = 1/2 is
used under the name “complete contribution”.

Figure 4 displays a partial contribution heatmap for a fault in the Tennessee Eastman
Process dataset. This heatmap provides insights into the variables that contribute to the
detection index at each moment in time, enabling the diagnosis of the variables that are
associated with the evolution of the fault.
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Figure 4. Illustration of the PCA diagnosis partial contributions for a fault of the Tennessee Eastman
Process dataset. The red dashed line indicates the occurrence of the fault.
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Despite their widespread use, the contribution methods mentioned above may suffer
from a problem known in the literature as the smearing-out effect. This occurs when
contributions from variables affected by the fault increase contributions from unaffected
variables [59]. A detailed analysis of this effect was reported by Kerkhof et al. [60], who
concluded that it is more pronounced along the principal components. The authors rec-
ommended applying contribution methods only in cases where there is a clear physical
interpretation of the principal components. If such an interpretation is not available,
they suggest using the deviation of each variable in relation to the expected value as
an alternative for diagnosis (this procedure is equivalent to performing univariate diag-
nosis). In this context, a methodology to address the smearing-out effect was recently
proposed by Alakent [61], which involves the application of a non-linear dimensionality
reduction method.

Figure 5 illustrates the flowchart of the complete process monitoring pipeline described
in this section, including the following steps: data collection, model training, threshold
setting, fault detection, fault diagnosis, fault identification, and process recovery.

Collect data

Train model

Set threshold

Fault detected?

Diagnose and identify fault

Recover process

Yes

Figure 5. Process monitoring flowchart.

3.1.6. Evolution and Recent Trends

Among the multivariate monitoring techniques, PCA has received the most attention
in both simulated and real systems. Nevertheless, in its fundamental form, as outlined in
earlier sections, it may not be adequate for a multitude of significant industrial applications.
As a result, there have been several suggestions for enhancing its efficacy, which can be
summarized as follows.

• Batch processes: Since the early 1990s, when PCA was first applied, adaptations
have been made to utilize the model for batch processes through the implemen-
tation of multi-way PCA [62,63]. This technique transforms the data matrix of di-
mension n × m × b (where the third dimension b refers to multiple batches) into a
two-dimensional matrix through dimension reduction, which can be achieved either
by time or by batch [18]. To compare the effectiveness of monitoring batch processes
using multi-way PCA with other strategies such as parallel factor analysis and trilinear
decomposition, it is recommended to refer to comparison articles [64–66], as well as



Processes 2024, 12, 251 12 of 75

review articles [67,68]. A promising technique that has not been discussed in these
reviews is 2D-PCA [69,70], which enables the separate monitoring of the dynamics
associated with variables and batches.

• Dynamics: When the process being analyzed does not meet the assumption of being
in a steady state, exhibiting dynamic characteristics such as temporal dependence and
autocorrelation, the confidence regions from the PCA monitoring statistics become
too large, resulting in high rates of undetected faults [18]. To address this problem,
the data matrix can be expanded by incorporating the lagged values of the original
variables [45]. However, this approach increases the number of parameters and
principal components, which contradicts the dimensionality reduction benefit of
PCA, lacks an explicit representation of the relationship between latent and original
variables, and fails to establish a connection between latent variables and the dynamic
content of the data [71]. To mitigate these drawbacks, recent methods have been
proposed to explicitly create dynamic principal components [71–73]. For example,
DiPCA (dynamic-inner PCA) [71,74] separates the latent variables into two groups:
a set of principal time series and a residual with little or no autocovariance. The
latter group can be treated as a static dataset by traditional methods, such as PCA.
DiPCA was recently applied to assemble a sequential structure for extracting and
modeling dynamic and non-linear characteristics of data [75] and to solve the time
series segmentation problem [76], which involves generating subsequences based
on changes in the dynamics. Adaptive algorithms are another strategy to deal with
dynamics by automatically adjusting to changes in mean, variance, and/or correlation
structures in the data [18]. This strategy is especially useful for processes with drifts
or changes in operating points. Examples of such algorithms include RPCA (recursive
PCA), MW-PCA (moving window PCA), and EWMA-PCA (exponentially weighted
moving average PCA) [46,77–80]. A review of recent advances in monitoring dynamic
processes was presented by Aldrich [81].

• Nonlinearity: There are two main strategies for incorporating nonlinearity into PCA.
The first involves the use of neural networks, as proposed by several researchers:
(i) Kramer [82], who developed an approach based on associative networks; (ii) Dong
and McAvoy [83], who combined neural networks using the principal curves algo-
rithm [84]; (iii) Jia et al. [85], who applied a network called IT-net [86] to process
monitoring; and (iv) Liu et al. [87], who combined networks with the SVDD (support
vector data description) technique, a machine learning method described in Section 4.
The second strategy is the use of the kernel-PCA (KPCA) technique, developed by
Scholkopf et al. [88], applied in process monitoring by Lee et al. [89] and Choi et al. [90]
and further developed in several works [91–98]. A kernel is a function that maps
data points into a higher-dimensional space, where nonlinear representations can be
captured using linear relationships [99]. In addition to these two main strategies, there
are other approaches for adapting PCA to nonlinearity, such as the use of the genetic
algorithm [100]. Recent reviews on applications of the kernel technique in process
monitoring have been published [99,101,102].

• Multimodality: To address multimodality, clustering algorithms can be utilized to
distinguish between operation modes [103]. One straightforward approach involves
identifying clusters based on prior knowledge about the process or specialized algo-
rithms. Subsequently, individual PCA models are constructed for each cluster [18].
Another effective approach is the application of Gaussian mixture models, as pro-
posed in several works [104–108], which enable the automatic identification of clusters
during the PCA training process. A comprehensive review of multimodal process
monitoring has been presented by Quiñones-Grueiro et al. [103].

• Multiple time scales: Bakshi et al. [109] conducted the pioneering work of analyzing
process data across different time scales, utilizing the methodology proposed by Rioul
and Vetterli [110], which involves the application of wavelets for data processing.
Kosanovich and Piovoso [111,112] used this approach to pre-process data before
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applying PCA for monitoring. Bakshi [113] integrated PCA and wavelets into a single
method, called MSPCA (multiscale PCA), which works by generating a PCA model
for each of the time scales of interest and then joining the models to create a single
multiscale model. Since this work, several applications have been reported using
or adapting this approach, involving: extension to the diagnostic problem [114,115],
theoretical analysis [116], generation of contribution plots [117], analysis of data with
multiresolution characteristics [118], and combination with the kernel technique for
modeling nonlinearity [119]. Recent works include the application in multi-unit and
batch processes [120], the integration with the generalized likelihood ratio test [121]
and the use in conjunction with kernel techniques to deal with non-linearities [122].
Extensive reviews on the application of multiscale methods in process data analysis
have been published [123,124].

• Multiple units and/or stages: To address the issue of multiple units and/or stages
in a decentralized manner, multiblock methods such as CPCA (consensus PCA) and
HPCA (hierarchical PCA) have gained widespread use [18]. These techniques in-
volve dividing the data matrix into several blocks simultaneously to obtain local and
global information. An important contribution was the demonstration of the algo-
rithmic equivalence between regular and multiblock methods [125]. Recently, fully
data-driven approaches for partitioning units/stages have gained attention [126]. No-
table examples of these approaches include: the proposal of constructing sub-blocks
along the principal components [127]; the combination of spectral clustering based
on mutual information, Bayesian inference, and KPCA to handle non-linearity [128];
the combination of KPCA with SVDD to determine the independent variables of
the process [126]; and the development of a hybrid method for variable categoriza-
tion [129]. Comprehensive reviews on plant-wide/distributed monitoring have been
published [130,131].

• Error handling: When errors are not independent and identically distributed, incorpo-
rating information on the probability density of variables can enhance the modeling
of the residual space and improve effectiveness [132,133]. Probabilistic PCA [134],
Bayesian PCA [135], and MLPCA (maximum likelihood PCA) [90,136–139] are some
of the approaches used to address this issue. It is noteworthy that MLPCA [132]
or principal component regression [140] can handle heteroskedastic data (i.e., data
with variance dependent on time or operating conditions). An interesting proposal
in this regard is the integration of PCA methodology with data reconciliation [141].
Ge [142] provided a tutorial review on the application of probabilistic modeling on
latent variables for process data analysis.

• Poor data quality: To address problems related to poor data quality, such as missing
or spurious observations, a class of techniques called robust PCA has been developed.
Pioneering work by Walczak and Massart [143] and Xie et al. [144] laid the foundation
for this field, which was further developed with applications and extensions [145–151].
It is interesting to note that robust PCA is widely used in computer vision, image
processing, and video monitoring applications [152]. Severson et al. [153] published a
review of PCA applications to process data with missing observations. Zhu et al. [154]
provided an informative discussion comparing PCA to other robust methods from a
big data perspective.

3.2. PLS/CCA
3.3. Fundamentals

PLS (partial least squares) and CCA (canonical correlation analysis) are two techniques
with similar objectives, which are to generate two sets of linear combinations of the original
variables (one for each category of variables, predictor and predicted) with the goal of
selecting the combinations that best summarize the linear relationship between the two
categories [22,36,37]. CCA was introduced by Hotelling [155], while PLS was first proposed
by Wold [156]. Although PLS is widely used in chemometrics, which may explain its preva-
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lence in process monitoring research, the preference for PLS over CCA in chemometrics has
been recently challenged [157]. It is worth noting that PLS is also popular in other fields,
such as the biopharmaceutical sector, where it is the most commonly used data-driven
model [158].

The following assumptions about the nature of the data are shared by both techniques:

PLS/CCA, Assumption 1. The latent variables can be obtained by performing a linear transfor-
mation on the dataset.

PLS/CCA, Assumption 2. The dataset can be pre-classified into two distinct categories, namely
the predictor set X and the predicted set Y.

PLS/CCA, Assumption 3. Within each set X and Y, there is a degree of linear dependence among
the variables, which hinders the description of the essence of the data due to the presence of redundant
and unnecessary information.

PLS/CCA, Assumption 4. There is a latent linear relationship between the set X and the set Y,
which is of interest to be made explicit.

The difference between PLS and CCA lies in the way of obtaining the latent linear
relationship mentioned in PLS/CCA-A4: while PLS seeks the directions that maximize
the covariance between X and Y, CCA seeks the directions that maximize the correlation
between X and Y [22].

PLS, Assumption 5. The latent linear relationship stated in Assumption 4 is better represented by
the directions that maximize the covariance between X and Y.

CCA, Assumption 5. The latent linear relationship stated in Assumption 4 is better represented
by the directions that maximize the correlation between X and Y.

Finally, another shared assumption is that it is necessary for the mathematical devel-
opment of both techniques:

PLS/CCA, Assumption 6. Each variable in the data matrices has a zero mean, i.e., X = Y = 0.

Just like PCA, PLS and CCA problems can be formulated as the maximization of the
Rayleigh quotient.

For PLS:

p1,x, p1,y = arg max
∥p∥2=1

 pT
x Cxypy√

pT
x px

√
pT

y py

. (19)

For CCA:

p1,x, p1,y = arg max
∥p∥2=1

 pT
x Cxypy√

pT
x Cxpx

√
pT

y Cypy

. (20)

This allows the problems to be solved using the framework of generalized eigen-
value problems, as presented in Equation (9) [37]. The monitoring statistics T2 and Q are
formulated similarly to those of PCA [20,131].

There is currently no consensus on the appropriate situations to use partial least
squares (PLS) or canonical correlation analysis (CCA). Some studies suggest using CCA
to model input–output relationships and PLS to monitor quality variables, which are
typically more challenging to measure than process variables, resulting in issues such as
delays [131,159,160]. Zhang et al. [160] also noted that CCA is typically applied at a local,
process-specific level, whereas PCA and PLS are applied at a global level, encompassing
the entire plant. In the field of computer science, Taylor and Cristianini [36] argued that
PLS is appropriate for establishing relationships between input and output representations,
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while CCA is suitable for finding relationships between different representations of the
same dataset. Another approach for comparing PLS and CCA involves investigating their
mathematical relationship. Barker and Rayens [161], for instance, view PLS as a penalized
CCA, where the penalties are represented by a PCA model in the space X and a PCA model
in the space Y.

Confusion in the literature exists regarding the nomenclature of these techniques.
For example, the acronym PLS can have two meanings: the original name, partial least
squares, or a reinterpretation, projection to latent structures [162]. Moreover, there are
many variants of PLS [163], and it is often unclear which variant is being referred to when
using the acronym. The term canonical correlation analysis (CCA) is used synonymously
with canonical variate analysis (CVA) in some references [20,164]. However, CVA is better
understood and accepted in the literature as the application of CCA methodology for
identifying subspaces to find a linear combination of past inputs and outputs that is more
predictive of future outputs [165,166]. Therefore, CVA has a more restricted meaning
since nothing in the CCA technique mathematically imposes its application in this specific
context. The confusion increases when analyzing literature from other domains. For
example, in a book on ecology, Gittins [167] defines CVA as an application of CCA in
which variables with arbitrary values are added to the dataset, to which the analyst assigns
meanings artificially to include some data characteristic in the analysis (such as information
on classes). This definition of the term is entirely unrelated to what is discussed in the fields
of chemometrics and process monitoring.

The history and trends of PLS/CCA techniques, especially PLS, follow the same
lines as the development of PCA. Works have been developed for applications concerning
batch processes [168–174], dynamics [169,175–192], nonlinearity [119,185,193–198], mul-
timodality [199–202], multiple time scales [119,203–205], multiple units and/or stages
[125,170,193,206–213], error handling [214–217] and poor data quality [216,218–222]. In
addition, new topics have emerged, such as the study of the effect of dataset size on model
structure [223]. For a comprehensive review of the CCA technique, the reader is referred to
Yang et al. [224].

3.4. Other Techniques

As previously mentioned, PCA and PLS/CCA are multivariate statistical techniques
widely used in the field of process monitoring. However, it is important to note that there
are other alternative methodologies available, which are worth considering. Some of these
methodologies include:

• Fisher discriminant analysis (FDA): Introduced by Fisher [225], this technique assumes
the a priori division of variables into two categories and aims to generate an orthogonal
set of linear combinations of the original variables that effectively separate these
categories. FDA is particularly valuable when data is available for both normal
operation and multiple fault cases [18]. Various examples of FDA applications in
monitoring problems have been proposed [226–240]. For more detailed information
on this technique, please refer to Chiang et al. [20].

• Independent component analysis (ICA): Introduced by Jutten and Herault [241],
ICA generates a set of linear combinations of the original variables to maximize the
independence statistic between these combinations. ICA is considered an alternative
to PCA when the data distribution is not assumed to be normal [242]. The application
of ICA in process monitoring is relatively recent, with the initial works proposed
in the early 2000s [243–248]. Subsequent advancements have been proposed in the
recent literature [249–259]. Notably, Zhang et al. [260] proposed an interesting method
that automatically selects between the exclusive or mixed application of PCA and
ICA techniques, with or without using kernel functions to incorporate nonlinearity.
For more detailed information on the technique, please refer to Tharwat [261] or
Comon [262]. For a comprehensive review of ICA’s application in process monitoring,
it is recommended to consult Palla and Pani [263].
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• Slow feature analysis (SFA): Proposed by Wiskott and Sejnowski [264], this technique
is based on a non-linear optimization formulation that aims to extract a set of indepen-
dent variables that exhibit slow variations over time. The underlying hypothesis is that
slow variations are more relevant and informative compared to fast variations. SFA has
gained significant popularity in the recent literature on process monitoring [265–282].
For more detailed information on the technique, please refer to Song and Zhao [283].

4. Machine Learning

Artificial intelligence (AI) is a rapidly evolving interdisciplinary field of science and
engineering that has gained significant prominence in recent years. It is considered one of
the most promising domains, alongside biotechnology, in terms of potential advancements,
innovation, and societal impact [284–286]. The term “artificial intelligence” was first
introduced in 1956 by J. McCarthy, M. L. Minsky, H. Simon, and A. Newell as:

“(. . . ) the ability of machines to understand, think, and learn in a similar way to human
beings” [286].

Kaplan and Haenlein [287] proposed a more specific definition:

“We define AI as a system’s ability to interpret external data correctly, to learn from
such data, and to use those learnings to achieve specific goals and tasks through flexible
adaptation” [287].

From these definitions, the significance of the learning process within AI becomes
apparent. The subfield of AI that focuses on learning is commonly referred to as machine
learning. Although the terms are occasionally used interchangeably, it is essential to
emphasize that AI extends beyond machine learning. It encompasses various aspects,
including data perception, knowledge representation, and the implementation of intelligent
devices [284,287]. For an extensive discussion on the impact of AI in chemical engineering,
we recommend reading Venkatasubramanian [285]. Regarding the specific impact of
machine learning, several works have been published [16,288–295].

To gain a deeper understanding of the nature of machine learning methods, it is
beneficial to examine some proposed definitions of the term [296]:

“A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with
experience E” [297].

“Machine learning is essentially a form of applied statistics with increased emphasis
on the use of computers to statistically estimate complicated functions and a decreased
emphasis on proving confidence intervals around these functions” [298].

The first definition, which takes a pragmatic approach, focuses on understanding the
concept of “learning” within the term “machine learning”. It highlights the operational
aspects of running a computer program in a manner that can be considered learning. The
second definition, taking a more theoretical perspective, provides a framework to visualize
the relationship between machine learning and statistics. In this interpretation, machine
learning is seen as an application of statistics, with the primary difference lying in the
approach used. The use of the term “increased” is particularly intriguing as it captures a
historical trend in the definition. As computational processing power continues to advance,
learning algorithms increasingly rely on this capacity to estimate unknown functions, often
sacrificing the interpretability of the underlying mechanisms and results for humans. This
trend has witnessed significant growth, particularly with the emergence of deep neural
network models [285,298].

Machine learning techniques are primarily classified based on the type of learning
they employ. Supervised learning involves training models using a labeled training dataset,
where each sample is associated with a desired solution or outcome. Conversely, unsuper-
vised learning involves training models on an unlabeled training dataset, where the desired
solution is unknown. Semi-supervised learning combines aspects of both supervised and
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unsupervised learning, as it utilizes a training dataset containing both labeled and unla-
beled data. Another significant type of learning is reinforcement learning, in which an
algorithm interacts with an environment by observing its state, selecting and executing
actions, and subsequently receiving rewards or penalties. By exploring the environment
and adjusting actions according to its consequences, the algorithm aims to maximize the cu-
mulative reward it obtains over time. Supervised and unsupervised learning algorithms are
widely used in process monitoring applications, while semi-supervised learning is gaining
traction [230,299–301]. Within the context of PSE, reinforcement learning is predominantly
used in automatic process control applications [302–305], although a few applications in
process monitoring have been proposed [306–308].

The application of approaches from the machine learning literature to process mon-
itoring problems can be traced back to the late 1980s when neural networks were first
utilized [309–311]. However, during that time, such applications were limited to a few
studies, with the predominant focus in the field centered around latent variable models
from the perspective of multivariate statistical theory. In recent years, there has been a
notable shift in the process monitoring community, driven by the development of data
science and the successful application of machine learning methods, particularly deep
learning, across various domains. This shift has resulted in an increasing emphasis on data
science and machine learning approaches, taking precedence over traditional multivariate
statistics, starting in the 2010s.

The analysis of key works by Joe Qin, a prominent researcher in the field, provides a
clear illustration of this historical evolution. His important reviews on process monitoring
techniques [14,18,25] primarily focus on latent variable models from the perspective of
multivariate statistics. In the 2003 article [14], there is no mention of the term “machine
learning”. In the 2009 article [25], there is only one vague reference to the term, appearing
in the second line of the article, with a contextualizing meaning. By the 2012 article [18],
the term “machine learning” starts to gain prominence, although it is presented as an
alternative approach to the main methodology being discussed:

“A related category of nonlinear data-driven methods suitable for process monitoring is
from the machine learning literature including neural networks [310] and support vector
machines (SVM) [312]. Work in this area is rich by itself and a significant amount of
work related to process monitoring is reviewed in Venkatasubramanian et al. [313]” [18].

It is noteworthy that in an article titled “Survey on data-driven industrial process
monitoring and diagnosis,” the author allocates thirteen pages to methodologies related
to PCA and PLS, while dedicating only one paragraph to machine learning techniques.
Furthermore, the author directed readers seeking more detailed information on machine
learning to a review paper that was nearly a decade old at the time of publication.

Two years later, in a perspective article [19], more attention was directed towards
machine learning methods in the context of PSE. The article highlights the differences be-
tween machine learning and multivariate statistics, acknowledging the need to incorporate
advances achieved in other areas into PSE:

“Although multivariate statistical approaches have been the favorite choice in the most
recent 2 decades, it should be noted that data have been an integral part of process
engineering solutions since time models have been used for process optimization and
control. (. . . ) However, these aforementioned data analytics and practice in process
systems engineering have apparently not connected to the recent development in machine
learning, data mining, and big-data analytics. They differ not only in terms of sizes but
also in how and what data should be used in solving real operation problems. In some
ways, process systems engineering solutions are confined to one set of principles that
are believed to be sound, whereas the machine learning and data-mining communities
take the other way and achieve unexpected results and solutions that defy conventional
wisdom” [19].

https://scholar.google.com/citations?user=gaNz7RUAAAAJ&hl=en
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In the most recent work [16], a noticeable shift in discourse is observed. Machine
learning has taken center stage in the discussion, as evident from the title, “Advances and
opportunities in machine learning for process data analytics”. Latent variable models,
which were once the core focus, are now categorized as part of the suite of machine
learning techniques:

“Although we consider multivariate latent variable methods as a subset of the statistical
learning methods, the field of machine learning has grown tremendously in the last two
decades (. . . ) Depending on the characteristics of data and models, such as linear, collinear,
or nonlinear data, there are respective supervised and unsupervised learning methods
to choose from. To deal with collinearity in the data, for example, PCA is unsupervised
learning and PLS is supervised learning” [16].

Considering multivariate statistical models as a subset of machine learning techniques
is a conceptually elegant approach and holds theoretical validity. However, in the current
study, we have made a deliberate choice to maintain rigor in describing the historical
development. Consequently, it was considered more appropriate to present the techniques
in separate sections.

In the subsequent portion of this section, an extensive overview of neural network
models, considered one of the most successful models in machine learning, is presented
from a historical and didactic standpoint, specifically in the context of process monitoring.
Following that, a concise summary and review of other methods will be provided.

4.1. Artificial Neural Networks
4.1.1. Fundamentals

Artificial neural networks constitute a category of learning techniques that draw loose
inspiration from the functioning of the human brain [314,315]. In the brain, neurons are
interconnected through synapses, which act as connections between dendrites (inputs) and
axons (outputs). These synapses undergo modulations in response to external stimuli, and
it is through these modulations that the learning process occurs in living organisms [315].

Figure 6 illustrates the architecture of an artificial neuron. Within the network, each
neuron k acts as a local processing unit that receives n inputs (x1, x2, . . . , xn) and generates
an output (yk). The connections between the inputs and the neuron are assigned weights,
represented as wik for each connection i. The term bk is referred to as the bias and serves as
a parameter that is independent of the inputs. It is analogous to the intercept in a linear
regression model.
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Figure 6. Artificial neuron model.

The output (yk) of the neuron can be expressed as follows:

yk = ϕ

(
n

∑
i=1

wikxi + bk

)
, (21)
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where ϕ is a non-linear activation function applied to the weighted sum of its inputs plus
the bias term. In the neural network, the connections between multiple neurons form the
network architecture. Similar to the learning process in living organisms, learning in this
case occurs by adjusting the weights associated with the connections. There are several
algorithms used for training neural networks, which can be categorized according to four
basic learning rules, enumerated below [316]:

• Error correction learning (delta rule): in this type of supervised algorithm, the weights
are adjusted to minimize the network prediction error, which consists of the difference
between the network output and the expected result.

• Competitive learning: In this unsupervised algorithm, the weights are adjusted
through competitive interactions between neurons. The objective of each neuron is to
achieve the highest representation power relative to the patterns in the learning data.

• Boltzmann learning: In this unsupervised algorithm, the weights are adjusted based
on the principle of energy minimization. The goal is to capture statistical dependencies
in the data and create a model capable of generating samples similar to the training set.

• Hebbian learning: In this unsupervised learning method, weights are adjusted based
on Hebb’s principle. According to this principle, if neurons downstream and upstream
of a connection are activated simultaneously, the connection should be strengthened.
Conversely, if the activation is asynchronous, the connection should be weakened.

Among the four types of learning mentioned, error correction learning is the most
extensively applied and will be the primary focus of this section. In this context, the
perceptrons are the simplest neurons capable of making decisions. A perceptron is a type
of neuron that employs the binary step function as its activation function, defined as:

f (u) =

{
0, if u ≤ 0
1, if u > 0.

(22)

By utilizing this activation function, it is possible to train the weights (w) of the neuron
to create a binary classifier. To accomplish this, a straightforward algorithm known as the
perceptron learning rule is employed. The perceptron learning rule guarantees convergence
for cases where linear separability exists, and further details can be found in the work by
Russell and Norvig [284].

To introduce greater complexity and flexibility in classification tasks, perceptrons
can be connected in a network configuration, as depicted in Figure 7, which illustrates a
network with two hidden layers.

Input layer Hidden layers Output layer

Figure 7. Perceptron network with hidden layers.
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It can be theoretically demonstrated that any function can be computed using percep-
tron networks, no matter how complex they may be [317,318]. In this sense, perceptron
networks are computationally universal, meaning that any computational operation can be
represented through a network of perceptrons. Despite this strong theoretical guarantee,
neural networks were not widely used in the scientific community for many years due
to the lack of an efficient training algorithm. However, the landscape changed with the
pioneering work of Rumelhart et al. [319], who introduced the sigmoid neuron and the
backpropagation algorithm. It is worth noting that the backpropagation algorithm has been
independently invented multiple times over the years in various domains, with its origins
traceable back to the work of Werbos [320] in behavioral sciences [321].

The process of training a neural network using the delta rule involves adjusting its
weights to minimize prediction errors, aiming to achieve the desired output within a
minimal margin of error. For successful training, it is crucial that the relationship between
the weights and the output is smooth, meaning that small changes in the weights should
result in small changes in the output [317]. However, when using perceptrons as neurons,
the binary step activation function (Equation (22)) introduces discontinuity, leading to an
abrupt and discontinuous relationship between weights and outputs.

To address this issue, Rumelhart et al. [319] proposed the sigmoid neuron, which
utilizes the sigmoid function as its activation function. It is worth noting that there is
evidence suggesting the use of sigmoid activation functions in biological neurons [321].
The sigmoid function is defined as:

f (u) =
1

1 + exp(−u)
. (23)

Figure 8 demonstrates the comparison between the binary step and sigmoid activation
functions. The sigmoid function can be interpreted as a smoothing of the binary step
function, thereby facilitating the training process.

Binary step
Sigmoid

Figure 8. Comparison between the binary step and sigmoid activation functions.

Another major contribution from Rumelhart et al. [319] was the development of the
error backpropagation algorithm. This algorithm consists of two stages in each iteration: a
forward pass and a backward pass. During the forward pass, the network calculates its
output, while during the backward pass, the contribution of each layer to the error of the
preceding layer is determined (this process occurs in reverse, from output to input). The
outcome of this backward pass is an efficient measurement of the error gradient throughout
the network, enabling the application of the gradient descent algorithm to minimize errors.

Although the proposals made by Rumelhart et al. [319] generated significant interest
in the scientific community regarding the utilization of artificial neural networks, challenges
associated with training networks with multiple layers persisted for an extended period. It
is only in recent times that these difficulties have been overcome through advancements
in the field of deep learning. Deep learning is a methodology that uses multiple layers of



Processes 2024, 12, 251 21 of 75

information processing to represent complex concepts by associating simpler ones [298].
This approach is inspired by the way biological neural networks process information [321].
In the context of artificial neural networks, deep networks are characterized by having more
than one hidden layer. Notable contributions in this field include those by Hinton et al. [322],
who introduced a per-layer training strategy utilizing graphics processing units (GPUs),
and Glorot and Bengio [323], who proposed alternative activation functions (in addition
to the popular sigmoid) and new weight initialization strategies to address the problem
of vanishing or exploding gradient across layers. Cutting-edge advancements in machine
learning, such as the victory of the AlphaGo system in the complex Chinese board game
Go [324,325] and the development of large language models like the generative pre-trained
transformer (GPT) [326], predominantly rely on the application of deep neural networks.

One common criticism of methods in this class is the lack of interpretability of the
results by humans, resulting from a limited understanding of the internal modeling mech-
anisms [285]. Recent studies [327,328] aim to address this concern through systematic
investigations using carefully selected models. The issue of interpretability and its impor-
tance for future research is further discussed in Section 8.

For an extensive review of the field of deep learning, the reader is referred to Sengupta
et al. [329]. Yu and Zhang [1] offer a review specifically focused on the application of
deep learning in process monitoring. Zhou and Zhu [330] provide a critical review of the
application of deep neural networks in modeling dynamical systems.

It is important to note that besides the realm of deep learning, other types of ad-
vancement have been proposed in traditional training algorithms. One notable example is
the concept of extreme learning machines (ELM) introduced by Huang et al. [331]. ELM
facilitates the rapid learning of neural networks by employing a random selection process
for the nodes where the weights are trained.

4.1.2. Neural Network Architectures

A variety of architectures can be proposed for neural networks [315,332]. The most
common distinction lies between feed-forward (or acyclic) networks and recurrent (or
cyclic) networks. In feed-forward networks, information flows unidirectionally, from
input to output, as illustrated in Figure 7. Conversely, recurrent networks process inputs
sequentially, transforming them into hidden states, which are then retrofed back into the
network. This enables the interaction of an input provided at time t with inputs provided
at previous times (t − 1, t − 2, . . . ). Consequently, recurrent networks prove particularly
valuable for modeling time series, textual sentences, or biological sequences [315].

Attention mechanisms, proposed by Bahdanau et al. [333], aim to enhance the per-
formance of deep neural networks by assigning weights to and combining input data
based on their relevance to the given task. Particularly, self-attention, introduced by Cheng
et al. [334], enables each position in the input data to independently relate to all other
positions. This concept has revolutionized the field of deep learning, particularly in the
context of sequential data, enabling the development of feed-forward architectures capa-
ble of modeling long-range dependencies using parallelizable training algorithms [335].
The Transformer architecture [336], widely employed in large language models such as
GPT [326], is built upon self-attention mechanisms.

Convolutional networks are a type of neural network characterized by their sparse
architecture, where filters are selectively applied to activate only the neurons essential for
optimal learning [285]. This unique design has proven to be highly successful, particularly
in computer vision applications, where convolutional networks have recently surpassed
human capabilities [337]. By being inherently sparse, convolutional networks excel at
learning and recognizing local patterns, which can be identified at various positions within
different samples. In the context of image processing, these patterns can encompass edges,
curves, and other geometric shapes, allowing convolutional networks to effectively capture
the visual characteristics of images. This capacity to detect and extract meaningful features
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from images has made convolutional networks a cornerstone in various computer vision
tasks, such as object recognition, image classification, and segmentation.

Autoencoders are neural networks specifically designed to generate, with certain con-
straints, output data that closely resembles input data [338]. The utility of this methodology
results from the nature of these constraints. For instance, if the hidden layer contains
fewer neurons than the input layer, the network is compelled to represent the data in a
lower-dimensional latent space, referred to as the “code.” This behavior is reminiscent
of the latent variable modeling and dimensionality reduction process observed in the
PCA model [339]. For a comprehensive examination of the application of autoencoders in
process monitoring, please refer to Qian et al. [340].

Generative adversarial networks (GAN’s), originally proposed by Goodfellow et al. [341],
are composed of two neural networks: the generator and the discriminator. These networks
are jointly trained to produce synthetic data that progressively resembles real data. The
generator network aims to generate data that closely resembles real data and receives
feedback from the discriminator network. The discriminator network, on the other hand,
is trained to maximize its ability to distinguish between real and synthetic data. GANs
have shown promise in various applications, including time series analysis and anomaly
detection. Comprehensive reviews on the application of adversarial generative networks
to these specific problem domains have been published [342,343].

Restricted Boltzmann machines utilize the Boltzmann learning rule along with topol-
ogy constraints to enhance the efficiency of the training process [344]. A prominent class
of deep learning networks that employ unsupervised learning is known as deep belief
networks, which are constructed by composing restricted Boltzmann machines [345]. More-
over, restricted Boltzmann machines are commonly employed in the pre-training phase of
conventional (supervised) deep networks [315].

Self-organizing maps combine the principles of competitive learning and Hebbian
learning to create typically two-dimensional representations of complex patterns while
preserving the topological structure of input data [346,347]. These representations facilitate
pattern visualization, particularly in tasks such as clustering or latent variable modeling.

Fuzzy architectures, also known as neuro-fuzzy systems, employ neural networks
as a learning mechanism to adapt parameters within a fuzzy logic system [15]. Fuzzy
logic represents a generalization of Boolean logic, where the truth values of variables can
take continuous values within the range of 0 (false) to 1 (true). It is important to note that
fuzzy logic, independent of neural networks, can be utilized to design learning systems, as
demonstrated by applications described in Section 4.2.

4.1.3. Applications in Process Monitoring

Applications of neural networks for monitoring purposes can be historically catego-
rized into two approaches. The first approach, classified as supervised learning, involves
assigning a scenario (normal or faulty) to each output node of the network. The net-
work is then trained to classify a given dataset according to these scenarios [310,348,349].
In the second approach, classified as unsupervised learning, neural networks are inte-
grated into traditional methods such as principal component analysis (PCA) to introduce
nonlinearity [82,83]. Advancements in this second approach include the utilization of neu-
ral networks to extract nonlinear features independently from the formalism of traditional
techniques, as proposed by Zhao and Lai [350].

There are works involving applications of process monitoring using several network ar-
chitectures, such as recurrent networks [351–367], convolutional networks [299,349,368–382],
autoencoders [282,365,379,383–405], generative adversarial networks [406–416], Transform-
ers [417–425], restricted Boltzmann machines/deep-belief networks [345,412,426–432], self-
organizing maps [433–441], neuro-fuzzy networks [442–451] and extreme learning ma-
chines [452,453], including recently in unsupervised form [454–456].

Besides specific works on process monitoring, ample perspectives on general applica-
tions of neural networks in chemical engineering have been published [332,457–459].
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4.2. Other Techniques

The field of machine learning encompasses a rich body of literature, presenting nu-
merous other techniques that deserve mention, including:

• k-nearest neighbors (k-NN): This method involves classifying a point in variable
space based on the classes of its closest k neighbors. It is a simple and effective machine
learning technique commonly used for datasets that are not excessively large and
lack known probability distributions [15]. Several applications have utilized k-NN
classification in the field of process monitoring, such as application to a semiconductor
manufacturing process [460]; identification of faults that affect the entire plant through
the application of the k-NN method for estimating delays [461]; diagnostic methods
inspired by the ideas of reconstruction and contribution [462,463]; use of Dynamic
time warping (DTW) algorithm [464–466] to define the Mahalanobis distance between
the time series to be used in the k-NN technique [467]; and dealing with variable
sample rates through sample grouping [468].

• Support vector machines (SVMs): Support vector machines, originally proposed by
Boser et al. [469], aim to identify hyperplanes that can effectively separate the variable
space into distinct regions of interest [15,321]. These hyperplanes are determined
based on a small subset of observations known as support vectors. To accomplish
this, a concept called margin is defined, representing the distance between the hyper-
plane and the support vectors. The training process involves solving an optimization
problem: in classification tasks, the goal is to maximize the margins, while in re-
gression tasks, the objective is to minimize them. To introduce nonlinearity, SVMs
utilize mappings through kernel functions [99] to transform the data into alternative
mathematical spaces where hyperplanes can be employed to address the specific task
at hand. Two methods have been proposed to expand the application of SVM to
unsupervised classification scenarios: support vector domain description (SVDD) and
one-class SVM (1C-SVM). SVDD, initially proposed by Tax and Duin [470], utilizes
a hyperplane as the geometric form for separation, while 1C-SVM, introduced by
Schölkopf et al. [471], employs a sphere. Recent applications of SVM in the field of
process monitoring include: methodologies to select Gaussian kernel parameters for
applications in fault detection [472]; integration of the SVM with Fisher discriminant
analysis and wavelets for application in multiscale problems [236]; integration of the
SVM with the recursive feature elimination technique for variable selection [473,474];
an adaptive methodology for application in non-stationary processes [475]; outlier
treatment through a pruned SVDD algorithm [476]; a two-step SVDD method with
genetic algorithm optimization to deal with dynamic, non-linear and non-Gaussian
features [477]; development of an SVDD methodology to deal with incomplete data
coming from industrial units with multiple local units [478]. It is worth noting that
support vector machines (SVMs) have found broader applications in the field of me-
chanical engineering compared to chemical engineering [479,480]. This discrepancy
may be attributed to the inherent characteristics of data generated by mechanical
machines, which typically exhibit less redundancy and collinearity compared to data
from chemical processes.

• Tree-based methods: The decision tree model constitutes a tree-like representation that
encompasses various possible decision paths and their corresponding outputs [481].
The direct utilization of decision trees as machine learning models offers the signifi-
cant advantage of complete transparency and interpretability regarding the decision-
making process. Due to its simplicity, the application of decision trees in the field of
process monitoring is relatively limited, with more prevalence in the realm of quality
control [482,483]. A commonly employed strategy involves utilizing an ensemble of
trees, such as in the random forest algorithm where multiple trees are trained using
random subsets of the training data. The final result is determined by aggregating the
values from each tree, often through averaging. This approach finds extensive use in
process monitoring applications [484–495].
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• Manifold learning: Within this category of techniques, the aim is to reduce the dimen-
sionality of the data while preserving the underlying nonlinear relationships between
its elements [496,497]. These methods operate by projecting the data onto manifolds,
which are local topological subspaces that can be treated as approximately Euclidean.
This mechanism proves valuable in capturing the local geometric structure of the
data, surpassing the limitations of traditional latent variable models such as PCA,
which only consider global Euclidean structures for dimensionality reduction. Specific
models include t-SNE [498], which models similarities between data points using prob-
ability distributions, and UMAP [499], which uses a combination of graph-based and
probabilistic approaches to achieve better global structure representation and compu-
tational efficiency. Examples of applications in the process monitoring field include: a
method based on kernel functions specially designed for batch processes [500]; use of
manifold learning in conjunction with clustering methods for temporal alignment and
phase identification of batch processes [501]; a new monitoring index for control charts
based on manifold learning [502]. A recent trend is the proposition of methodologies
that simultaneously represent local and global structures in the data [503–509].

• Sparse dictionaries: Initially introduced by Olshausen and Field [510] for image
recognition tasks, the concept of learning through sparse dictionaries involves the
use of bases with dimensions greater than that of the original space, enabling the
creation of a sparse representation of the data [511]. The basis itself is referred to as
a dictionary, with each constituent element termed an atom. According to Mairal
et al. [511], the utilization of sparse representation facilitates the capture of high-
order correlations more effectively. Although the application of this methodology to
monitoring problems is relatively recent, it holds promising potential. Examples of
work in the field of process monitoring related to sparse dictionaries include: a sparse
representation classification method for fault detection and diagnosis [512]; application
of dictionaries to a semiconductor manufacturing process [513]; generation of sparse
contribution graphs [514]; fault detection in multimodal processes [515]; use of kernel
functions to capture nonlinearity [516]; a robust methodology for monitoring processes
with multimodality, noise and outliers [517]; a methodology for decomposing large
systems into modules, in order to facilitate the detection of small faults [518]; a
distributed computing methodology to deal with big data [519]; an adaptive technique
to deal with multimodal processes [520]; and a method for linear and nonlinear
variable partition applied to dynamic process monitoring [521].

• Bayesian networks: Bayesian networks are graphical models represented by directed
acyclic graphs (DAGs) that capture probabilistic dependencies among a set of vari-
ables [15,522]. This modeling framework excels in handling uncertainty and offers
causal inference capabilities, enabling the description of relationships between causes
and symptoms [523,524]. Examples of works in the field of process monitoring related
to Bayesian networks include: use of specialist knowledge to build a Bayesian network
for monitoring a tubular reactor [525]; construction and causal decomposition of the
T2 control chart [526]; monitoring of dynamic processes for propagation identification
and root cause diagnosis [527]; use of Bayesian networks to filter the smearing-out
effect that occurs in contribution methods for fault diagnosis [528]; development of
a robust Bayesian network to deal with low-quality data [529]; development of a
Bayesian classification network based on statistical alarms to deal with the effect of
noise [530]; detection of kicks of hydrocarbons in drilling operations [531]; combina-
tion of mechanistic and state transition analysis to recognize propagation paths of
process faults [532]; a graphical way to represent the causal interactions of a process
using an interpretable Bayesian network [533]. A recent trend involves integrating
Bayesian networks with traditional methods such as PCA and ICA [534–536]. For a
tutorial review on applying Bayesian models to the process monitoring problem, refer
to Raveendran et al. [537].
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• Methods based on fuzzy logic: Fuzzy logic serves as an extension of Boolean logic,
allowing for variable truth values to range continuously between 0 (representing false)
and 1 (representing true). Monitoring systems that leverage fuzzy logic have been de-
veloped in various studies, including the proposal of an adaptive classification system
capable of incorporating information about different modes of operation [538]; a fuzzy
logic-based clustering algorithm applied to the Tennessee Eastman benchmark [539];
a combination of genetic algorithms and fuzzy logic-based clustering techniques to
identify patterns in multivariate time series data [540]; the proposal of a novel cluster-
ing algorithm by integrating k-NN techniques with fuzzy k-means [541]. It is worth
noting that fuzzy logic systems can be integrated with the learning capabilities of
neural networks, as discussed in Section 4.1.2.

In addition to traditional methodologies, a recent trend has emerged in which tech-
niques that are less limited by predefined model structures are employed. These approaches
prioritize the exploration of intrinsic patterns inherent in the data itself. Several notable
methods within this trend include:

• Clustering: In this approach, which is one of the most popular unsupervised learning
methodologies, data is divided into clusters based on some similarity measure [542].
In the realm of process monitoring, various applications have emerged, including a
fuzzy methodology to perform clustering based on wavelets and the PCA model [543];
a hybrid method that combines Euclidean and PCA-based similarity measures [544]; a
new clustering algorithm combining the techniques kNN and fuzzy k-means [541].

• Logical analysis of data (LAD): The LAD technique, introduced by Hammer [545],
involves the binarization of data followed by the discovery of interpretable patterns
using boolean modeling approaches [546]. The key advantage of this technique lies in
its ability to produce patterns that can be readily interpreted, facilitating the transfor-
mation of information into human understanding and knowledge. Applications of
LAD in the field of monitoring have been recently proposed [362,547–551].

• Empirical machine learning: This approach revolves around the density of data
in the variable space and yields algorithms that are entirely data-driven, devoid of
probabilistic models and user-defined hyperparameters [552–556]. The theory intro-
duces novel concepts such as cumulative proximity (a centrality measure), eccentricity
(an anomaly measure), and typicality (a density measure). Applications in process
monitoring have been developed [557–561].

• Recurrence matrices and distance matrices: Recurrence matrices and distance ma-
trices are two-dimensional representations of data distance patterns. Applications
of this methodology in process monitoring have been proposed in combination with
various techniques, such as convolutional neural networks [371], recurrence quantifica-
tion [562–565] and texture analysis [566–568]. Melo et al. [569] have recently proposed
a novel methodology for visual process data analytics and process monitoring based
on a direct analysis of distance matrix patterns.

5. Exploration, Characterization and Treatment of Process Data

In classical statistics, the theory is primarily developed based on the assumption that
the data being analyzed originate from experiments specifically designed to test particular
statistical hypotheses. On the other hand, historical process data arises from unplanned
observations of real-world events, and the classical statistical literature strongly discourages
the analysis of such data [570]. Consequently, applying classical techniques directly to
historical data may not yield satisfactory results.

The field of statistics and data science that aims to explore and characterize data
independent of any specific model is known as exploratory data analysis (EDA) [5]. In
EDA, according to Morgenthaler, “one is free to choose any procedure to analyze the data,
and the primary aims are to look at the data and to think about the data from many points
of view”. The application of EDA to process data has been discussed in the literature
over the years. Pearson [570] described simple procedures, including quantile-quantile
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plots, data comparison plots, box plots, and moment characterizations, emphasizing the
importance of such exploration. It was argued that unexpected data characteristics, such
as outliers from different sources, can significantly invalidate results obtained through
process monitoring techniques, particularly those based on quadratic error criteria. The
author’s main recommendations encompassed the following: (i) conducting adequacy
tests for specific distributions, with particular emphasis on the Gaussian distribution,
and comparing distributions across different datasets; (ii) employing robust statistical
characterization methods, such as using the median instead of the mean, MAD (median
absolute deviation from the median) instead of the standard deviation, and Spearman’s
correlation coefficient instead of Pearson’s correlation coefficient; (iii) utilizing visualization
methods such as box plots to compare variables. Abonyi [571] utilized box and quantile-
quantile plots to analyze real historical data from a polyethylene production plant. The
objective was to examine various manufacturing processes for a specific product and
investigate the connections between different operational factors and the final product
quality. Zhang et al. [260] proposed a data characteristics test to automate the selection of
process monitoring techniques. Deviations from Gaussianity and linearity were used as
indicators to aid the decision-making process regarding combinations and variations in the
PCA and ICA models.

In addition to exploring process data, preliminary treatment procedures are crucial to
ensure the effectiveness of modeling. In this context, Xu et al. [572] conducted an extensive
review of the treatment of industrial data, referred to as data cleaning in their study. Four
key steps in the data cleaning process were identified: filling in missing values, detecting
outliers, removing noise, and performing time alignment/delay estimation. A wide range
of methods available in the literature for each of these challenges was presented. The
authors emphasized that the choice of data processing methods should be guided by the
specific properties of the dataset itself, such as the proportion of missing data, as well as the
existing knowledge about the process, such as the availability of a known model. Moreover,
the methods employed should preserve and reveal the characteristics of regular data while
effectively identifying the mechanisms that contribute to contamination, such as the nature
of outliers.

In the context of robust methodologies, particularly concerning outliers and missing
data, Zhu et al. [154] conducted a review from the perspective of big data. They examined
commonly employed techniques for data preprocessing, as well as robust variants of PCA
and other monitoring techniques.

An important step prior to applying a monitoring technique is the selection or gen-
eration of input variables. The area of machine learning that deals with this question
is known as feature engineering. A notable approach gaining attention in recent years
is statistical pattern analysis (SPA), proposed by Wand and He [573,574]. In SPA, sta-
tistical measures of process variables (mean, variance, autocorrelation, cross-correlation,
among others) are selected as input variables for the modeling techniques (typically, PCA),
which in many cases improves detection and diagnosis performance. Recent research
on variable selection includes: the application of a criteria based on mutual information
for variable selection [575]; an efficient technique based on sequential analysis of fault
contributions [576]; a technique to extract non-stationary variables and its application to
fouling detection [577]; the integration of variable selection methods with moving window
techniques for multimodal monitoring, achieving good results on a particularly challenging
fault in the TEP benchmark [578]; a comparison of shallow and deep learning methods for
selecting variables in an industrial test platform focused on big data and Internet of Things
concepts [579]; and the application of causality-based methods for feature selection in the
TEP benchmark and in an oil platform fiscal metering plant [580]. Peres and Fogliatto [4]
published a review on this subject, highlighting that the most used methods are LASSO
regression, the genetic algorithm and regression by direct selection (forward selection).

Siang et al. [581] described good practices for acquiring and preparing process data.
The authors emphasized the importance of (i) understanding the nature of the data through
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exploratory analysis; (ii) appropriately selecting the data subset to be used in the modeling;
(iii) paying attention to open or closed loop conditions; (iv) align sampled signals at
different rates; and (v) adjust the choice of metrics to the practical needs of the business
problems.

Thibault et al. [582] conducted a review of data processing methodologies employed
in process industries, focusing specifically on the pulp and paper sector. The authors
divided these methodologies into three main categories: data cleaning, steady-state de-
tection, and operating regime detection. Interviews with process specialists and software
developers were conducted, leading to interesting insights regarding the gap between
research advancements and practical implementations, among other points.

On the broad theme of exploration, characterization and treatment of process data, it is
also worth highlighting the recent works by: Li et al. [583], which proposed dataset division
based on the nature of the correlation (linear or non-linear) detected between variables and
the application of a hierarchical strategy in these datasets to monitor linear and non-linear
characteristics at different levels; Thomas et al. [584], who presented an integrated approach
to data clustering and feature extraction, as an aid to increase knowledge about process data;
Parente et al. [585], who proposed the application of the Monte Carlo technique to increase
the amount of data used in training a monitoring model for a paper production process;
Offermans et al. [586], which compared different methods for dynamically synchronizing
process variables; and Rhyu et al. [587], which proposed an integrated methodology for
automated outlier detection and missing data estimation.

6. Computational Tools And Benchmarks
6.1. Softwares

A wide range of computational tools exists for applying data-driven process monitor-
ing techniques, with most of them being commercially developed. However, there is a lack
of open-source options available. These options could significantly contribute to scientific
progress, as exemplified by the remarkable advancements in the broader open ecosystem
of data science and machine learning. This section specifically focuses on open-source
tools for process monitoring within the field of PSE. Additionally, Appendix B provides a
non-exhaustive list of some key commercial tools.

Open tools for PSE-based process monitoring are commonly developed as extensions
within the Matlab environment. Camacho et al. [588] introduced MEDA, a specialized
toolbox for multivariate analysis in the realm of chemometrics, featuring PCA and PLS
methods, along with various monitoring applications. Jiang et al. [589,590] proposed
the DB-KIT, designed for handling key performance indicators (KPIs) using regression
algorithms and latent variable modeling. For batch processes, Gonzalez-Matínez et al. [591]
introduced MVBatch, which offers notable functionalities such as data preprocessing,
model cross-validation, and development on the GitHub platform. Yi et al. [592] presented
Pre-Screen, a dedicated toolbox for pre-processing process data. Additionally, Villalba
et al. [593] developed a graphical interface tutorial to facilitate comprehension of PCA-
based monitoring. Schaeffer and Braatz [594] created a didactic Matlab application to aid
in understanding latent variable models and regression. Melo et al. [5] proposed KydLIB,
an open-source Python exploratory analysis package specially designed for historical
process data. Rhyu et al. [587] made available in a GitHub repository a set of routines for
automated outlier detection and missing data estimation. Furthermore, Sun et al. [595] and
Alizadeh et al. [596] reported the existence of Matlab toolboxes for latent variable methods
and causality analysis, respectively. However, the specific names of these tools and their
download links were not provided in the referenced sources, and we were unable to locate
them through internet searches.

As is apparent, there is a lack of open computational tools in the field of PSE industrial
process monitoring, especially when compared to the wide range of options available in
the data science environment. Moreover, the existing tools are mostly extensions of the
Matlab environment, which hinders collaborative development due to its closed nature

https://se.mathworks.com/matlabcentral/fileexchange/65348-db-kit
https://github.com/jogonmar/MVBatch
https://github.com/
https://se.mathworks.com/matlabcentral/fileexchange/47169-a-benchmark-software-for-mspc
https://github.com/afraniomelo/KydLIB
https://github.com/JinwookRhyu/Automated-Outlier-Detection-and-Estimation-of-Missing-Data
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and restricts their usage in industries without the required software licenses. This issue is
further discussed in Section 8.

6.2. Benchmarks

Benchmarks are standardized tests used to evaluate and compare the performance
of computational systems, encompassing both hardware and software components [597].
In the field of PSE, a variety of open benchmarks exist to assess novel fault detection and
diagnosis techniques. These benchmarks provide researchers with standardized datasets or
simulation models that enable them to evaluate the efficacy and efficiency of their proposed
methods. The remainder of the section provides a compilation of these benchmarks along
with concise descriptions.

The Tennesse Eastman Process (TEP) is a chemical process simulation developed by
Eastman Chemical Company to serve as a benchmark for evaluating process control and
monitoring applications [49]. Originally, the TEP model was available as a Fortran-based
process simulator, but it has now been implemented on different platforms. It continues to
be the most widely used benchmark for process monitoring in the field of PSE [5].

PenSim is a simulation framework designed for studying the production process
of penicillin. It incorporates an unstructured model of penicillin fermentation, initially
introduced by Bajpai and Reub [598] and subsequently expanded by Birol et al. [599]. This
particular process is the leading benchmark for evaluating methods developed specifically
for batch processes [5].

DAMADICS (Development and Application of Methods for Actuator Diagnosis in
Industrial Control Systems) is a benchmark comprising both a process simulator and real
datasets representing electro-pneumatic actuators used in a sugar production process [600].
The original simulator was developed using the MATLAB environment, while the real
data was collected from the Lublin Sugar Factory in Poland. Due to its focus on a single
equipment component, the DAMADICS benchmark is particularly suitable for evaluating
model-based process monitoring techniques. However, there have also been studies that
explore data-driven approaches within this benchmark [5].

The Benchmark Simulation Model No. 1 (BSM1) is a comprehensive specification of a
simulation environment specifically created for evaluating control strategies in wastewater
treatment plants [601]. Unlike the previous examples, BSM1 is a model specification, requir-
ing users to implement it in their preferred programming language or simulation platform.

IndPenSim is a phenomenological model specifically designed to depict the fermen-
tation process of Penicillium chrysogenum [602,603]. Unlike the conventional PenSim
benchmark, IndPenSim stands out due to its industrial-scale representation, utilizing vol-
umes of 100,000 L instead of the typical 100 L vessels employed in PenSim. Additionally, it
benefits from the availability of real historical data and employs a structured model [604]
that encompasses crucial aspects such as growth, morphology, metabolic production, and
biomass degeneration.

The Cranfield Multiphase Flow Facility serves as a real-data benchmark for developing
and validating statistical process monitoring procedures [129,605]. It represents a pilot-
scale three-phase flow separation process, encompassing pipelines, a gas-liquid two-phase
separator, and a water-oil-air three-phase separator.

The PRONTO (Process Network Optimization) heterogeneous benchmark
dataset [606,607] builds upon the Cranfield benchmark, expanding its scope to address
challenges associated with diverse data acquisition and storage formats. This dataset was
specifically designed to incorporate a range of data types, including process measurements
(such as high-frequency ultrasonic flow and pressure sensors), alarm records, events and
change logs, an operation log, and video recordings.

The 3W dataset [608] offers a comprehensive collection of data encompassing real,
simulated, and hand-drawn samples, which represent both normal and faulty operation
periods of offshore oil wells across multiple well locations and operational timeframes. This
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benchmark dataset presents unique challenges inherent to real-world scenarios, including
a substantial number of missing observations and frozen or incomplete variables.

BDsim is a biodiesel production process simulator that focuses on the continuous
transesterification of oil with methanol [609]. It offers a comprehensive range of potential
faults at different levels, including process, sensor, and actuator. Notably, BDsim surpasses
existing simulators by providing previously unexplored scenarios like intermittent faults
and equipment degradation.

The FCC Fractionator is a model designed to simulate a refining process that incorpo-
rates a fluidized bed catalytic cracker and a fractionator [610]. This recent proposal holds
significant potential for fostering innovation in the field of process monitoring.

The Arc Loss Challenge is a benchmark that focuses on data from an industrial-scale
mining and pyrometallurgy process [611]. This unique challenge introduces a compre-
hensive benchmarking workflow, featuring submission and evaluation pipelines in a
competitive format.

For an extensive review and in-depth exploration of process monitoring benchmarks,
the reader is referred to Melo et al. [5].

7. Industrial Applications

This section focuses on the application of data-based process monitoring in real
industrial settings. It provides an overview of the historical development of industrial
implementations in this field and describes the main works that have contributed to
its advancement.

The application of the PCA technique in industrial settings dates back to the late
1980s. Wise et al. [11] introduced the use of PCA for process monitoring and demonstrated
its efficacy through an application to data obtained from a ceramic smelter used for re-
processing waste in the nuclear industry. This study revealed that employing PCA on
historical data could enhance the understanding of an industrial process, primarily by
examining the contribution of each variable to the generation of principal components.
Real-time industrial application results pertaining to this equipment were subsequently
reported [612].

In the next years, numerous studies described the application of PCA and PLS in
various industrial systems. Notably, Slama [613] investigated the operation of a catalytic
cracking fluidized bed and the fractionation section of a refinery, shedding light on practical
aspects associated with the analysis of real data. The study examined crucial factors such
as the validity of data assumptions (e.g., absence of autocorrelation), sampling time, and
its relationship with process time constants, among others. The findings of this work
significantly contributed to advancing the understanding of the process. For instance,
it revealed variations between different operating periods and identified a drift in the
overall dynamics of the plant, despite the products being within the desired specifications.
However, the presence of nonlinearities posed challenges to the performance of real-time
monitoring systems.

During that period, a prominent area of application involved the utilization of multi-
block and multi-way methods in batch and semi-batch polymerization systems, with
many studies using real data [12,170,614]. However, these works primarily focused on the
methodology and mathematical aspects of the techniques, rather than emphasizing their
practical implementation. In contrast, notable contributions from the company DuPont
stood out during the same period for their strong emphasis on case studies [63,615,616].
For instance, Piovoso and Kosanovich [616] addressed challenges related to the lack of rep-
resentative data and the resistance of operating staff to conduct planned experiments that
encompassed the entire operational range. This resistance primarily resulted from concerns
about producing an excessive amount of products that fell outside the desired specifications.

In a survey conducted by Kourti and MacGregor [617], the applications of PCA and
PLS methods up to that point were examined. The authors also introduced two novel
applications specifically in continuous and semi-batch polymerization processes. The
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survey highlighted the rapid acceptance and adoption of multivariate statistical moni-
toring techniques within the industry. One of the case studies presented in the survey
demonstrated how the application of these methodologies promptly identified variables
that led to low purity and/or recovery. This task had previously consumed a significant
amount of time and effort for the plant engineers. In another study, a fault resulting from a
typing error made by an operator was successfully detected. However, it is important to
note that real-time implementations of these methodologies were not presented in the case
studies discussed.

In a highly influential article, Wise and Gallagher [13] provided a comprehensive and
didactic presentation of the monitoring methodology using the chemometric approach
to the process control community. This work served as a consolidation of the research
conducted by the group in previous years. The article included several application ex-
amples to illustrate the methodology. These examples encompassed various domains,
including (i) the ceramic melting equipment, which had been previously studied by the
same authors [11,612]; (ii) monitoring the mitigation of nuclear waste in storage tanks,
where subtle trends were identified through principal component analysis; (iii) monitoring
a batch process utilizing near-infrared spectrometry (NIR), employing evolving factor
analysis and multivariate curve resolution techniques. These application examples illus-
trated the effectiveness and versatility of the chemometric approach in process monitoring
and control.

Following the influential work of Wise and Gallagher [13], there was a notable increase
in the variety of research papers featuring examples of industrial applications using latent
variables models. An example of this trend is demonstrated by Ignova et al. [618], who
applied multi-way PCA and PLS to data from a fermentation bioprocess. Their study
revealed that substantial cost reductions were possible by utilizing the developed models
to determine feed quality and predict the concentration of the final product. Subsequent
works reported the real-time application of the methodology, which was integrated into an
expert system called the G2 real-time expert system [619,620].

Gurden et al. [621] reported the introduction of chemometric techniques in an indus-
trial pilot plant. Several noteworthy results were achieved, including fault detection and
diagnosis, the utilization of principal components to generate process trajectory graphs
for monitoring plant operation, and the application of latent variables in cross-correlation
analysis to enhance the interpretive capacity of analyzing time-delay effects. The authors
highlighted the significance of their findings, as the gained experience and improved
process understanding empowered plant personnel to propose the installation of new
sensors and analyzers. This proactive approach was driven by the anticipated competitive
advantage that these advancements would provide.

Taylor [622] documented the application of PCA for detecting instabilities in a blast
furnace of British Steel. Notably, the implementation of PCA-based monitoring led to a
significant increase in anticipation time compared to traditional detection methods. This
work stands out for two interesting characteristics: firstly, it provides a detailed account
of the real-time implementation within the plant, offering more comprehensive insights
than previous studies; secondly, it is a notable industrial work conducted without the
participation of university specialists as authors, marking a departure from the trend
observed since the DuPont studies in the early 1990s.

Neogi and Schlags [623], from the Air Products and Chemicals company, applied
MPCA and MPLS to analyze an emulsion polymerization batch process. A novel approach
was adopted, where the trajectories of each batch were compared based on reaction extent
rather than batch time, marking a significant departure from previous practices. Although
real-time implementation was not carried out, the application of monitoring methods to
historical data yielded successful fault detection and diagnosis. Additionally, a PLS model
was developed, enabling the prediction of product viscosities. This enhanced process
understanding and contributed to increased operational efficiency.



Processes 2024, 12, 251 31 of 75

Martin et al. [624] presented an application of the PCA technique to data from a
fluidized bed reactor and addressed crucial aspects that they believed were necessary for the
widespread industrial adoption of these techniques. These aspects included: (i) developing
monitoring schemes that require minimal amounts of process data; (ii) exploring the use of
multi-block techniques to monitor the entire plant; (iii) developing generic models capable
of monitoring multiple products or grades; (iv) investigating the impact of dynamics and
control loops on the performance of monitoring systems and the potential for masking
faults; (v) assessing the sensitivity of PCA and PLS and evaluating the suitability of
their confidence limits; and (vi) extending the use of density-based confidence limits for
monitoring dynamic processes.

Bissessur et al. [625] explored two approaches for fault detection in a papermaking
plant. The first approach involved monitoring specific equipment using neural networks
applied to vibration data. The second approach utilized PCA to monitor the overall
process. Interestingly, the authors made an important observation that faults were better
detected by analyzing the lower-order principal components. This finding challenged the
conventional belief that higher-order principal components contain the most important
information. In this case, the first components primarily captured variations in mass and
energy balances as well as movements of setpoints in the plant. This insight highlighted
the significance of considering the lower-order principal components for effective fault
detection, contrary to the usual assumption about the relative importance of principal
components in PCA analysis.

Dudzic et al. [626] described with unprecedented detail the implementation of PCA
and PLS techniques in industrial processes at Dofasco, a steel production company. The im-
plementation of these techniques has been ongoing since 1993, as described by the authors
who were all employees of the company. The report focused on two specific applications:
(i) continuous casting machine monitoring, and (ii) a control system for determining the
optimal amount of reagents required for sulfur removal from pig iron. The authors empha-
sized the progression from offline analyses to online implementations throughout the 1990s,
which was supported by close collaboration with the Advanced Control Consortium at
McMaster University. The employed techniques offered a balance between ease of develop-
ment and insights into the process, surpassing the limitations of purely phenomenological
or empirical models. Additionally, these techniques demonstrated robustness against noise
and missing data. The report highlighted the significance of data pre-treatment, including
the selection and application of filters, grouping of measurements to eliminate trends, and
handling of missing data. In the monitoring of the casting process, PCA was applied to
reduce the dimensionality of the training matrix from 240 to 10 variables, considering the
application of delays for dynamic treatment. The authors provided the operators with
two control charts based on the T2 index and one based on the Q index, implementing a
progressive alarm scheme with yellow and red colors, respectively. The authors reported
impressive results, including a 50% reduction in downtime after two years of operating the
monitoring system and achieving the highest productivity in the machine’s 12-year history.

Albert and Kinley [627] investigated the application of PCA and PLS techniques to
monitor the biosynthesis of the antibiotic tylosin during batch fermentation. The authors
encountered interesting challenges associated with poor data quality and variations in data
quality across different locations within the plant. These issues posed significant obstacles
for data pre-treatment and highlighted the difficulties in integrating monitoring technology
into the plant since the variation in data quality added an extra layer of complexity to the
monitoring process.

Karim et al. [628] documented their experience with the implementation of data-based
methods in the bioprocess industry. The study shed light on specific challenges faced in
this field, such as extracting biologically meaningful information from a limited number
of real-time process measurements. One of the complications arises from the fact that the
measured data primarily reflects the conditions inside the bioreactor, while the desired
information pertains to the physiological state of the cells, which traditionally necessitates
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expensive offline analyses. The authors demonstrated how the utilization of MPCA helped
alleviate these limitations by enhancing data interpretation capabilities.

Kumar et al. [629] reported the implementation of PCA in a high-pressure polymer-
ization process. The study demonstrated that the technique effectively identified various
multivariate faults, characterized by correlations, which were not detectable using uni-
variate charts, where individual variables remained within their normal operating ranges.
Notably, transitions in product grades and process changes were more clearly observed
in the latent variable space. While the study mentioned the installation of a monitoring
system at the plant, the specifics of the online operation were not described.

In 2003, a symposium titled “Abnormal situation detection and projection
methods—industrial applications” took place in Ontario, Canada. Kourti [630] provided a
comprehensive summary of the event, including descriptions of the presentations delivered.
The symposium was attended by professionals from companies such as Dofasco, DuPont,
Perceptive Engineering, and the COREM consortium (Mineral Research Consortium), as
well as researchers from various universities. The following are brief summaries of the four
lectures presented:

• Paul Nomikos from DuPont presented their successful experience with the utiliza-
tion of PCA and PLS for offline analysis. They highlighted the effectiveness of these
methods in tasks such as identifying and resolving sources of variability, enhanc-
ing phenomenological processes, and developing new control strategies. However,
Nomikos also emphasized the challenges associated with implementing these tech-
niques in an online setting. Specifically, the long-term maintenance of the models was
identified as a significant hurdle that needed to be addressed to enable successful
online implementation.

• Theodora Kourti provided practical recommendations for the application of data-
driven monitoring systems. She stressed the significance of operator acceptance,
noting that even within the same company, similar units may require different screens
based on operator preferences. Kourti suggested starting implementations with small-
scale problems rather than attempting to monitor the entire plant right from the
beginning. Furthermore, she emphasized the importance of process knowledge, as
it helps determine appropriate transformations and weights for variables, as well
as assess the quality of obtained data. According to her findings, a linear model is
typically sufficient for monitoring deviations. Kourti concluded her recommendations
by identifying three motivating factors for industries to adopt multivariable monitor-
ing systems: financial return, safety concerns, and compliance with environmental
regulations.

• Barry Lenox emphasized that numerous monitoring projects represent pioneering
endeavors within their respective industries. He noted that once the initial application
is successfully implemented, the transfer of the monitoring system to similar processes
becomes relatively straightforward. Lenox further shared his experience, indicating
that the confidence of operators, engineers, and managers in these systems can grow
to a point where automatic shutdowns or interventions can be programmed based
solely on the information provided by the monitoring systems.

• Vit Vaculik from Dofasco highlighted the potential risks associated with inadequately
developed monitoring applications. He discussed the various barriers that can hinder
the development process, including challenges related to data availability and quality,
the technical expertise of staff members, and the acceptance of new technologies
within the organization. Vaculik also pointed out the sometimes challenging decision
companies face when deciding between purchasing pre-existing monitoring systems
or developing their own solutions in-house.

Miletic et al. [631] from Dofasco and Tembec presented an industrial perspective on
the online implementation of PCA and PLS techniques. The authors proposed a com-
prehensive method for developing monitoring systems, consisting of offline and online
steps. The offline step involves data selection and model preparation, development, and
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evaluation. Despite being potentially overlooked by academic researchers, the authors
emphasized that data selection is an expensive and vital process for the success of the
application. The online stage focuses on system development, integration, and mainte-
nance. The authors highlighted the importance of close collaboration with operators during
this phase to understand their requirements and ensure a smooth interaction with the
monitoring system. To illustrate the proposed methodology, the authors provided three
application examples. First, they demonstrated the use of PCA for fault detection in a
continuous casting machine. Second, they applied PLS to develop predictive models for a
desulphurization process. Finally, they employed PCA for fault detection in a continuous
digester. These practical examples emphasized the importance of a systematic approach to
developing and implementing monitoring systems in real-world applications.

Kourti [632] presented a review of industrial monitoring applications utilizing mul-
tivariate statistical models. Interesting topics covered include dealing with future ob-
servations of missing data, adaptive models, monitoring batch processes, monitoring
transitions, control using multivariate statistical models, image analysis and archiving, and
data compression and reconstruction.

In the work conducted by Zhang and Dudzic [633], another implementation project at
Dofasco was described. This particular implementation introduced a novel trajectory syn-
chronization scheme for monitoring transition operations. Similar to previous publications
from the company, the study provided insightful details regarding the implementation
process, including the operation of alarms and control system screens.

Qin et al. [634] presented a hierarchical and comprehensive framework for the control
and monitoring of new-generation semiconductor factories at that time. One of the notable
findings highlighted in the study was the relatively greater significance of drifts compared
to sensor faults in semiconductor processes.

Chiang and Colegrove [635] presented a comprehensive application of robust PCA
within the industrial setting of Dow Chemical. The focus of their investigation was to
effectively monitor the production process of solid epoxy resins, a specific product manufac-
tured by the company. The authors provided valuable insights into practical considerations,
including model performance, maintenance and transfer. Notably, they detailed the im-
plementation of an online monitoring system, which soon after its deployment proved
instrumental in detecting quality issues with the raw materials.

Kano and Nakagawa [636] presented significant advancements and practical imple-
mentations of data-based monitoring in the steel industry, drawing on examples from the
operations of Sumitomo Metals Kokura. The researchers proposed a novel approach that ef-
fectively handled qualitative data, while also establishing connections between operational
conditions and production yield. Notably, their methodology enabled the simultaneous
analysis of multiple processing units, thereby offering a comprehensive perspective on the
manufacturing process.

Miletic et al. [637] provided further insights and experiences about online applications
at Dofasco. The authors specifically highlighted the development of a flexible computa-
tional framework that facilitated data manipulation and integration of new models. This
framework enabled seamless incorporation of various techniques beyond PCA and PLS,
such as Bayesian networks and image analysis techniques.

AlGhazzawi and Lennox [638] presented a study focusing on the development of a
monitoring system for an oil refining process at Saudi Aramco. The primary objective
of the study was to effectively monitor the non-stationary dynamics of the process. To
achieve this, the researchers employed a recursive PCA method and also a multiblock
approach for improved fault isolation. Notably, the authors emphasized the significance of
incorporating the domain knowledge of plant personnel to ensure proper development
and implementation of the monitoring system. It is worth mentioning that a real-time
implementation of the system was not reported in this study.

Vanhatalo [639] provided a description of the application of the PCA technique for
monitoring a pilot-scale blast furnace. The engineers overseeing the project acknowledged



Processes 2024, 12, 251 34 of 75

several advantages of this approach. Firstly, the application of PCA provided a comprehen-
sive overview of the equipment’s thermal state, thereby enabling a standardized evaluation
of its condition. Additionally, it facilitated the establishment of formal criteria for deter-
mining the appropriate timing of control actions. However, the engineers also highlighted
a few drawbacks. They mentioned the high costs associated with manpower required
for model development, maintenance, and interpretation. Moreover, they noted that the
multivariate representations used in PCA introduced unnecessary levels of abstraction,
potentially making it more challenging to interpret the results accurately.

Darkow et al. [640] detailed the utilization of the PCA method for early detection
of blockages or obstructions in an industrial stripper. The authors identified several key
factors contributing to the success of the application. Firstly, they emphasized the impor-
tance of implementing preprocessing steps prior to model generation, such as variable
selection based on expert knowledge and removal of univariate outliers through visual
inspection. Secondly, they highlighted the significance of involving both plant personnel
and information technology experts from the project’s inception, ensuring a collabora-
tive approach that incorporated domain expertise and technical knowledge. Lastly, the
researchers underscored the development of a user-friendly graphical interface that catered
to the needs of different users.

Dumarey et al. [641] presented an application of the PCA method for real-time mon-
itoring of the continuous synthesis of an active pharmaceutical ingredient. The authors
addressed the challenges surrounding the adoption of real-time monitoring methods within
the pharmaceutical industry, highlighting the hurdles associated with integrating such
methods into existing rigid quality control systems. Despite these challenges, the proposed
application of PCA yielded significant benefits. It led to an enhanced understanding of
the synthesis process, including a deeper comprehension of natural variability. Addition-
ally, the monitoring system facilitated the identification of different fault types and their
underlying causes.

Patwardhan et al. [642] discussed various applications of data science within the
context of Saudi Aramco. Notably, some applications were related to process monitoring,
including the assessment of controller performance and predictive maintenance of equip-
ment. The authors emphasized the significance of utilizing data analysis techniques in
effectively managing alarms, thereby enhancing the overall efficacy of monitoring systems
when working in conjunction with operators.

Klanderman et al. [643] presented a case involving the application of the PCA tech-
nique to develop an adaptive monitoring methodology specifically designed for effluent
treatment plants. The authors discussed several practical aspects related to this application.
Firstly, they highlighted the enhanced understanding of process changes achieved by oper-
ators. However, it was noted that there could be instances where the results obtained from
the monitoring system contradicted the operators’ assessments, even when the methods
were functioning as expected. As a recommendation, the authors suggested that operators
and specialists should review the training data beforehand. Additionally, it was advised to
reset the monitoring system after detecting a fault in order to prevent contamination with
non-normal data.

Kumar et al. [644] described the development and application of a replicable system
that utilizes multivariate statistical models for monitoring reformers in hydrogen produc-
tion plants. The authors emphasized the significance of regularly retraining the models to
ensure their effectiveness. To achieve this, they proposed a methodology that incorporates
user feedback regarding false positives.

Based on the descriptions provided in the preceding paragraphs, it is clear that the
main publications documenting practical applications of monitoring techniques were
published during the 2000s. Subsequently, there has been a significant increase in studies
on process monitoring from the 2010s onwards, with a growing emphasis on the utilization
of real-world data. However, most of these studies primarily focus on offline analysis of
new techniques or variations in traditional techniques applied to such data, while paying



Processes 2024, 12, 251 35 of 75

limited attention to practical implementation aspects. Furthermore, despite the increasing
use of real data, simulated data, particularly from the TEP benchmark, remains prevalent
in most research works. It is also worth noting that the main articles describing practical
implementations predominantly rely on multivariate statistical models, particularly PCA
and PLS, indicating a limited adoption of alternative techniques in this field.

Regarding recent studies involving offline analysis of real historical data, there are
some noteworthy works that deserve highlighting, such as: the development of a method-
ology for detecting the decomposition of reagents in a copolymerization autoclave using
PCA [645]; the application of machine learning methods for decentralized monitoring of
an effluent treatment plant [646]; the application of PCA to monitor the physicochemical
properties of crude oil blends [647]; the application of CCA to historical process data for
detection and diagnosis of a sensor fault in a fiscal metering station of an oil processing
plant, highlighting the potential for economic gains which may result in such a real-time
application [648]; the application of different latent variable models to develop a strategy
aimed at an increasing understanding of biorefineries processes [649]; the extension of
recursive PCA with big data methodologies for monitoring a fluorochemical plant [650];
the development of a virtual sensor based on machine learning to predict faults in a metal-
lurgical process [651]; the development of a system that combines various techniques such
as recurrent neural networks and PCA to predict abnormal conditions in catalytic cracking
processes [652]; the application of neural network-based nonlinear PCA for fault detection
in gas turbines [653]; and the application of autoencoders for unsupervised monitoring of
blast furnaces [405].

8. Perspectives and Challenges

The main perspectives and challenges in process monitoring research for the com-
ing years are described in this section. These challenges can be broadly categorized into
three key areas: system performance, significance/usefulness, and development environ-
ment. We believe that these categories encompass the primary obstacles encountered by
researchers and practitioners in the field of process monitoring. Figure 9 shows a schematic
illustration of the perspectives described along the section.
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Data
characteristics Open development

and collaboration

Model
interpretability

Benchmark
diversity
and use

Data patterns over
model structures Interaction with other

domains

System performance Development environment

Significance and usefulness

Figure 9. Schematic illustration of the perspectives for process monitoring divided into three overlap-
ping categories.
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8.1. Data Characteristics

The process monitoring research community primarily focuses on addressing chal-
lenges posed by specific data characteristics. Many studies have presented inventive
approaches or modifications to existing methods, with a focus on specific data traits like
dynamic behavior, nonlinearity, and non-Gaussianity. Several of these studies have al-
ready been discussed in the preceding sections of the present article. However, while
it is important to introduce new techniques, we feel that the research community often
overemphasizes this aspect, potentially overshadowing other critical challenges that also
demand attention. The following subsections highlight these additional challenges.

8.2. Hybrid Modeling

The fusion of diverse data-driven methods, or the integration with other process
monitoring approaches such as knowledge-based or phenomenological methods, has
been widely discussed as a promising future direction in various review and perspective
articles [15,165,654–661]. Md Nor et al. [15] conducted a comprehensive review of hy-
brid methodologies, emphasizing the necessity for such approaches due to the inability
of individual methods to handle all potential faults that a process may encounter. Bi
et al. [654] emphasized the challenges associated with integrating different methods, partic-
ularly in terms of leveraging the strengths of each methodology and establishing a robust
decision-making process. Severson et al. [165] assert that hybrid approaches hold the
most promise for addressing complex scenarios within the context of process monitoring.
Sansana et al. [660] drew interesting conclusions from their literature review, for example,
identifying that data-driven models have been used to enhance phenomenological models,
but the reverse path of using phenomenological models to improve data-driven models
is not yet fully explored. Bradley et al. [659] conducted an extensive review focusing on
methodologies that integrate data-driven and phenomenological approaches, categorizing
them into three key areas: hybrid modeling, physics-informed machine learning, and
model calibration. Hybrid modeling involves constructing models that combine different
phenomenological and data-driven submodels. Physics-informed machine learning en-
tails incorporating physical knowledge into the structure of data-driven models. Model
calibration refers to using data-driven models to adjust computer simulations and align
them with experimental data. The authors provide a comprehensive comparison of these
methodologies, emphasizing their respective advantages and limitations.

In addition to enhancing performance, the utilization of mechanistic models holds
significant importance in improving model interpretability, a topic that is further discussed
in the next subsection.

8.3. Model Interpretability

The importance of model interpretability as a research subject for the future has been
recognized in various surveys [16,654,662–665]. Yan et al. [662] specifically highlighted
the challenge of developing a generalized methodology to incorporate interpretability
into deep learning methods. They emphasized the significance of achieving this objective
to create optimal diagnostic models while acknowledging the trade-off between model
interpretability and performance. Bi et al. [654] acknowledged the need for incorporat-
ing both human and machine intelligence to develop smart systems, emphasizing the
role of interpretability to make humans trust in machine intelligence. The authors iden-
tified three approaches to achieve interpretability: intrinsic interpretable models, such
as Bayesian neural networks [533]; enhancing black-box models, like deep neural net-
works, with interpretability capabilities [327,328,666–668]; and employing model-agnostic
methods [390,669,670] such as LIME (local interpretable model-agnostic explanations) [671]
and SHAP (Shapley additive explanations) [672]. Several recent publications have surveyed
interpretability techniques for machine learning models [673–679]. In particular, Carter
et al. [679] specifically examined applications in the process industries, focusing on risk
management and standardization issues.
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Among recent research on model interpretability, it is worth highlighting the works
of: Sivaram et al. [327] and Das et al. [328], who investigated hidden representations in
neural networks applied to classification and regression tasks, respectively; Harinarayan
and Shalinie [680], who utilized the SHAP method to explain the results of a XGBoost [681]
model applied to the TEP benchmark; Yang et al. [533], who developed an unsupervised
Bayesian network model for monitoring processes at both global and local levels; Bhakte
et al. [682], who proposed a methodology using alarm limits for explaining process
monitoring results from deep learning models; Ye et al. [683], who combined the use
of frequency spectra inputs with a layer-wise relevance propagation strategy to explain
predictions of convolutional neural networks; and Melo et al. [569], who proposed a visual
and interpretable methodology based on distance matrix patterns.

8.4. Data Patterns over Model Structures

New models that prioritize intrinsic patterns in data rather than specific mathematical
structures and hypotheses are increasingly being utilized in process monitoring research,
as discussed in Section 3.4. This approach has been extensively discussed by Angelov
and Gu [556], who highlighted the shift from an assumptions-centered approach to a
data-centered approach. According to the authors, this transition offers several advantages,
including enhanced autonomy in the modeling process, adaptability to dynamic changes,
and improved interpretability. We believe that the process monitoring community would
greatly benefit from more research conducted with this mindset, as it can help address the
challenges that arise when model assumptions do not align with the specific characteristics
of process data.

8.5. Real-World Implementations

The process monitoring literature is dominated by articles focusing on proposing new
mathematical models, while the scarcity of studies reporting real-world implementations is
evident. Additionally, as discussed in Section 7, most of these implementations revolve
around multivariate statistical models, particularly the PCA model, which suggests the
existence of unexplored opportunities concerning the practical application of more recently
developed techniques such as deep neural networks.

Unfortunately, many researchers lack access to real industrial facilities that enable the
study of practical implementations, thereby aggravating the challenge of bridging the gap
between industries and academia. In this context, Bi et al. [654] highlights the criticality of
high-quality data availability over model complexity, despite the research community’s
predominant emphasis on the latter. To mitigate this issue, one potential solution could
be to use the real-world dataset benchmarks proposed in recent years more frequently [5].
This matter is further discussed in the next subsection.

8.6. Benchmark Diversity and Use

In recent years, several new benchmarks for process monitoring have been proposed,
as discussed in Section 6.2. However, despite these alternatives, the research community
continues to predominantly rely on the well-established TEP benchmark [5]. This raises
an important question: why does the TEP benchmark remain the preferred choice, even
though the underlying problem it represents has already been addressed by solutions
proposed over more than two decades of research?

One potential explanation for the continued popularity of TEP lies in its familiarity and
ease of use. Researchers and practitioners have become accustomed to working with this
benchmark, making it a comfortable and convenient choice for assessing new models and
techniques. Furthermore, the extensive documentation and well-established methodologies
contribute to its widespread adoption. However, it is important to critically evaluate
whether this reliance on TEP hinders progress in the field. For instance, a significant portion
of the literature primarily focuses on achieving marginal performance improvements in
fault detection and diagnosis metrics. The proliferation of new models that offer only
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incremental enhancements may not truly benefit the research community and industry.
Moreover, it is important to acknowledge that the TEP benchmark is based on simulated
data, which presents significantly fewer challenges compared to real-world data.

Therefore, it may be more beneficial to explore alternatives that introduce challenges
beyond those extensively investigated with the TEP benchmark. By shifting attention to
new benchmarks, the research community can study different aspects of process monitoring,
thereby expanding the field’s knowledge in a more comprehensive manner. The alternative
benchmarks encompass various data characteristics, such as nonlinearity, dynamics, and
non-Gaussianity, which tend to be more pronounced compared to TEP. Additionally, real-
world data substantially differ from simulated data, particularly in terms of data quality
and variability. These are important aspects that should be addressed in future research
through the utilization and development of more diverse benchmarks. For a more thorough
discussion, the reader is referred to Melo et al. [5].

8.7. Open Development and Collaboration

Open development greatly accelerates scientific progress by promoting collaboration
among researchers, facilitating synergistic contributions, and avoiding redundant work,
among other advantages. In the field of PSE, a particular benefit is the potential to bridge the
gap between academia and industry. For example, when implementing process monitoring
procedures, companies heavily rely on commercial software solutions that often have
limited connections to the cutting-edge methodologies developed in academia [582].

By embracing open development practices, universities and research centers can create
open-source tools accessible to both academics and industry professionals. This can lead to
the utilization of more advanced techniques in industrial applications, driving innovation,
and enhancing the practicality of academic research. This phenomenon is already observed
in domains such as data science and machine learning, where major corporations like
Google and Facebook actively promote the development of cutting-edge and widely used
tools such as Keras [684] and PyTorch [685].

An example of institutional support for open development in the process industries
is Petrobras’ Connections for Innovation program. This program aims to integrate the
company with the open innovation ecosystem. One of this program’s components, the
Open Lab Module, is particularly relevant in the present context as it promotes collaboration
to address challenges in the oil, gas, and energy sector through open-source projects. The
3W Project, mentioned in Section 6.2, is an example of an initiative within the Open
Lab Module.

Specifically in the domain of PSE, Matlab has historically been the dominant pro-
gramming language for developing innovative methodologies [686]. However, Matlab’s
proprietary nature, closed-source code, and licensing requirements make it less suitable
for the open innovation paradigm. Therefore, we believe that transitioning to open-source
tools like Python would be advantageous for the PSE community. This shift would not
only facilitate the adoption of research findings by the industrial sector but also promote
cross-domain integration, a topic discussed in the following subsection.

8.8. Cross-Domain Integration

In the field of PSE, the term process monitoring has been often used interchangeably
with the term fault detection and diagnosis [20]. However, in other domains, such as
signal processing and medical data analysis, the same concept is known by different
names, such as anomaly detection [687–709], novelty detection [710–724] and change-
point detection [725–741]. Although these three terms refer to variations in the same
fundamental problem (at least from a computational and mathematical perspective), there
is a noticeable lack of information exchange between the communities focused on these
studies and the process system engineering community. This subsection highlights the
potential opportunities for fostering interaction between these groups.

https://conexoes-inovacao.petrobras.com.br/en/connections-innovation
https://conexoes-inovacao.petrobras.com.br/en-US/modulo-open-lab
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The differences in nomenclature contribute, at least partially, to the limited communi-
cation aforementioned. Moreover, the relative isolation can be attributed to the nature of the
analyzed data and the methodologies utilized to address these problems. For instance, in
the field of disease diagnosis from medical data, methods are typically developed for batch
analyses [729], since the detection of a disease (anomaly) most often does not require the
real-time and online analysis of a sequence while it is being generated. Moreover, medical
data is often univariate, involving variables such as heartbeats [736]. These two conditions
are not typical of PSE problems. Furthermore, process data exhibit specific characteristics,
in particular high redundancy and collinearity between variables [24].

One could argue that this premise holds partially true, as the nature of problems in
different domains has not undergone significant changes. However, with the disruptive
phase that all domains are undergoing, particularly the industrial sector with the advent
of Industry 4.0, the almost complete segregation of their literature on the same topic
is becoming increasingly questionable. It is highly improbable that no potential for a
productive exchange of ideas exists, even if the specifics of solution methods differ. The
argument is also becoming increasingly unrealistic: works such as the one conducted
by Alippi et al. [726], which examines the theoretical limitations of change detection
methods applied to continuously generated multidimensional data, clearly share scope
with PSE problems.

It is worth noting that other fields in industry and engineering employ similar termi-
nology to address the monitoring problem, such as the term “fault detection and diagnosis”.
While communication between the PSE domain and these fields is generally better, we
believe that it remains unsatisfactory. Notable examples of such fields include mechanical
engineering [742–744], nuclear engineering [745,746], electrical engineering [747,748], and
mechatronics [749,750].

In the realm of data science, the analysis of continuously generated data is commonly
referred to as streaming data [751–753]. In this context, “concept drift” is a term used by
data scientists to describe the evolution over time of patterns and relationships captured
by machine learning techniques [754–759]. This idea could be of significant value for PSE,
as process drift constitutes one of the most important process states and can usually be
associated with process malfunctions [760]. This nomenclature has recently been adopted
by research in the PSE field [761,762]. A current trend is the utilization of ensembles of
methods to enhance efficiency in adapting to data evolution [763–766]. The streaming
data literature offers potentially valuable works on clustering [767], pre-processing [768],
outlier treatment [769,770], and event prediction [771], although we were unable to identify
mutual references in the analyzed literature.

Causality analysis is an example of an application based on a time series that has
gained prominence in the PSE field, as evidenced by numerous studies [580,772–782]. This
technique uses statistical tests, such as the Granger causality test, to determine whether a
given time series is useful in predicting another. Despite the significant advances made
in the PSE literature, there seems to be a lack of attention from other fields towards
causality-related works in PSE. This is particularly evident in recent reviews on causality
conducted by Shojaie and Fox [783] and Guo et al. [784], as they do not reference any recent
PSE studies.

Nonlinear dynamic analysis, with its rich history in both PSE [785–790] and time series
analysis [791–794], holds immense potential for further applications in the evolving era of
Industry 4.0. For instance, Aldrich [81] describes methods based on phase spaces, such as
correlation dimension, Lyapunov exponents, and information entropy, emphasizing that
adoption of these methods in industry is still limited due to the impact of noise on the
quality of the descriptions. However, the fact is that in the domain of process monitoring,
in particular, the potential use of nonlinear tools for the representation and evaluation of
process states remains largely unexplored. As a matter of fact, the nonlinear characteristics
of a time series can provide information about the process health, indicate possible process
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changes and suggest the use of different numerical tools for qualitative and quantitative
description of the process behavior [81].

9. Conclusions

This paper presented a comprehensive overview of research on data-driven process
monitoring in the PSE literature. Process monitoring has become increasingly important
in the context of digital transformation, attracting attention from both academia and in-
dustry. It was observed that a large part of academic research is dedicated to developing
data-driven models that can handle specific characteristics of process data, such as dy-
namic and nonlinear behavior. Furthermore, there is a recent trend toward exploring
innovative machine learning methodologies. However, industrial applications still rely
mainly on conventional statistical techniques, especially the PCA model. This reveals a gap
between academic and industrial practices, but also an opportunity for transferring novel
concepts and techniques from academia to industry. Furthermore, additional challenges
and directions for future research were identified, such as assessing the relevance and
applicability of academic proposals in real-world settings and fostering a collaborative and
supportive environment among researchers and practitioners that enables the adoption
and implementation of research results in practice.
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Appendix A. List of Surveys and Books on Data-Driven Process Monitoring

Table A1. Review and overview articles about process monitoring in PSE literature, in chronological
order.

Reference Description

MacGregor and Kourti (1995) [12] Distinguishes quality control (multivariate extensions of Shewhart charts) from process
control (latent variable models, PCA, and PLS).

Wise and Gallagher (1996) [13] Explores multivariate statistical models (PCA and PLS) and provides an in-depth analysis of
regression techniques, including less commonly cited methods such as rigid regression.

Dash and Venkatasubramanian
(2000) [795]

Reviews the challenges associated with industrial applications of process monitoring
techniques and provides an overview of the methods then available to address these
challenges.

Kourti (2002) [24] Examines multivariate statistical models (PCA and PLS) and covers practical aspects
including database characteristics, sampling frequency, and other relevant considerations.

Qin (2003) [14]
Explores multivariate statistical models, specifically PCA, with a focus on comparing
contribution and reconstruction methods, as well as investigating detectability,
reconstructibility, and identifiability in various studies.
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Table A1. Cont.

Reference Description

Venkatasubramanian et al.
(2003) [313]

Examines multivariate statistical models (PCA and PLS) along with qualitative trend
analysis, statistical classifiers, and neural networks. Compares these techniques with
model-based methods (observers, Kalman filters, parity, and qualitative model-based
methods) discussed in the previous parts of the article series.

Miletic et al. (2004) [631]
Explores multivariate statistical models (PCA and PLS) with a specific focus on their
industrial applications. Additionally, presents a methodology for developing effective and
sustainable industrial monitoring systems.

Ganesan et al. (2004) [796] Reviews strategies for process monitoring utilizing wavelets.

Kourti (2005) [632]
Explores multivariate statistical models (PCA and PLS) and addresses specific challenges
encountered in real-world applications, including in-line calculations, control and archiving
applications, as well as data compression and reconstruction.

Qin (2009) [25] Its scope is similar to the previous work by the same author [14].

Yao and gao (2009) [68] Reviews strategies for batch and multistage process monitoring.

Kadlec et al. (2009) [760] Explores techniques and applications based on data-driven soft sensors.

Kadlec et al. (2011) [797] Examines adaptive mechanisms for building data-driven soft sensors.

Ding et al. (2011) [798] Examines multivariate statistical models (PCA and PLS) and provides a comparison with
model-based methods such as Kalman filter, observers, and parity.

Sliskovic et al. (2011) [799]
In the context of models for application in soft sensors, it categorizes the methods into
multivariate statistical methods, artificial neural networks, support vector machines, hybrid
methods, and adaptive methods.

Das et al. (2012) [10]

Classifies data-driven methods into two categories: statistics-based (including univariate
methods and multivariate latent variable methods) and artificial intelligence-based
(including neural networks and fuzzy logic). Compares these techniques with methods
based on a priori knowledge such as parameter estimation, observers, and parity.

Qin (2012) [18] Its scope is similar to the previous works by the same author [14,25], with the addition of the
PLS model.

MacGregor and Cinar (2012) [26] Offers an overview of the application of multivariate statistical methods in the domains of
monitoring, fault-tolerant control, and optimization.

Ge et al. (2013) [800]
Provides a process-based classification of methods, categorizing them into continuous, batch,
non-Gaussian, nonlinear, time-variant/multimodal, and dynamic processes. Offers an
extensive collection of methodologies not commonly cited in previous reviews.

Dai and Gao (2013) [658] Reviews fault detection and diagnosis methods with a focus on data processing approaches.

Khatibisepehr et al. (2013) [801] Reviews the design of soft sensors utilizing bayesian methods.

Yin et al. (2014) [28]
Examines multivariate statistical models (mainly PCA and PLS, although other models are
mentioned) with a specific emphasis on modifications induced by industrial operating
conditions, particularly addressing issues of uncertainty and dynamic behavior.

Yin et al. (2015) [802] Focuses on multivariate statistical models and the integration with model-based techniques.

Severson et al. (2016) [165] Focuses on multivariate statistical models, with a brief mention of other approaches, notably
SVM.

Tidriri et al. (2016) [803]

Provides a comparative analysis between data-driven and model-based methods, with a
specific emphasis on exploring hybrid methodologies. Data-driven methods are categorized
into Bayesian networks, neural networks, univariate control charts, and multivariate
statistical methods (specifically PCA and PLS).

Weese et al. (2016) [17] Presents a review of machine learning methods, encompassing multivariate statistical
methods, for the generation of control charts applied across diverse domains.

Shu et al. (2016) [804] Explores challenges and perspectives in managing abnormal situations from the perspective
of big data.

Souza et al. (2016) [805] Reviews soft sensor methods for application in regression problems.
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Table A1. Cont.

Reference Description

Ge (2017) [130] Reviews strategies adopted for monitoring plant-wide processes, focusing on multivariate
statistical methods.

Reis and Gins (2017) [806] Explores perspectives and historical trends in the application of process monitoring
techniques, spanning from detection to diagnosis and prognosis.

Alauddin et al. (2018) [807] Bibliometric analysis of the data-driven process monitoring field, with a focus on
multivariate statistical methods.

Wang et al. (2018) [808] Presents a systematic review of the application of multivariate statistics in process
monitoring from 2008 to 2017, with a specific focus on Chinese literature.

Peres and Fogliatto (2018) [4] Reviews strategies employed for variable selection.

He and Wang (2018) [809] Presents perspectives and insights for process monitoring in the context of big data.

Quiñones-Grueiro et al.
(2019) [103] Reviews strategies adopted for multimodal processes.

Aldrich (2019) [81] Reviews strategies adopted for dynamic processes.

Jiang et al. (2019) [131] Reviews strategies adopted for distributed monitoring of plant-wide processes.

Reis (2019) [123] Reviews strategies adopted for multiscale process monitoring.

Rendall et al. (2019) [67] Reviews strategies for batch process monitoring, mapping them to a scale of modeling and
implementation complexity.

Md Nor et al. (2019) [15]
Classifies the approaches into multivariate statistical analysis and machine learning,
emphasizing the distinctions in method applications based on the type of fault being
analyzed.

Pilario et al. (2019) [101] Provides a review of the applications of the kernel technique for feature extraction in process
monitoring.

Diez-Olivan et al. (2019) [657] Reviews applications of data fusion and machine learning techniques in the context of
prognostic activities.

Gopaluni et al. (2020) [810] Reviews the applications of machine learning techniques for process monitoring and control.

Apsemidis et al. (2020) [99] Provides a review of the applications of the kernel technique in process monitoring.

Park et al. (2020) [656] Categorizes methods based on the type of system they are applied to, including dynamic,
nonlinear, non-Gaussian, multimodal/time variant, and non-stationary systems.

Qin et al. (2020) [665] Reviews multivariate statistical methods in the context of dynamic processes and introduces
a novel mathematical framework aimed at unifying existing approaches.

Cohen and Atoui (2020) [811] Provides a review of strategies for process monitoring utilizing wavelet analysis.

Ahmed et al. (2020) [812]
Conducts a bibliometric analysis focusing on techniques classified as based on Artificial
Intelligence, excluding multivariate statistical methods such as PCA and PLS/CCA
according to the authors’ criteria.

Jiang et al. (2020) [664] Presents a review of soft sensors, with a specific focus on their applications in process
monitoring and other related areas.

Liu and Xie (2020) [813] Provides a review of the application of kernel techniques for constructing data-driven soft
sensors.

Curreri et al. (2020) [814] Reviews variable selection methods utilized in the development of soft sensors.

Jiao et al. (2020) [815] Provides a review of the application of machine learning methods for ensuring the health
and safety of processes.

Arunthavanathan et al.
(2021) [816]

Presents an overview of three essential aspects for ensuring process safety: fault detection
and diagnosis, risk assessment, and management of abnormal situations.

Taqvi et al. (2021) [817] Reviews various methods with a specific emphasis on the distinction between supervised
and unsupervised approaches.
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Table A1. Cont.

Reference Description

Okada et al. (2021) [655] Divides the approaches into signal analysis, model-based, data-based, and hybrid
methodologies.

Sun and Ge (2021) [818] Provides a review of deep learning methods for applications in soft sensors.

Pani (2022) [102] Reviews extensions of the PCA model using the kernel technique for nonlinear monitoring.

Zhao (2022) [3] Reviews methods for non-stationary monitoring and provides perspectives for future
developments in the field.

Wang et al. (2022) [819] Reviews recursive techniques with a specific focus on multivariate statistical methods.

Qian et al. (2022) [340] Provides a review of the application of autoencoders for representation learning in the
context of process monitoring problems.

Bi et al. (2022) [654] Presents a comprehensive review of fault detection and diagnosis techniques, along with
perspectives and challenges for future development in the field.

Nawaz et al. (2022) [124] Applies bibliometric techniques to conduct a focused review of strategies adopted for
multiscale monitoring.

Kong et al. (2022) [2] Reviews the application of multivariate statistical methods in the context of big data.

Webert et al. (2022) [820] Reviews strategies for fault handling in the context of detection, classification, and
prioritization activities.

Melo et al. (2022) [5] Reviews open benchmarks for the assessment of process monitoring techniques, conducting
an extensive exploratory analysis and critical discussion of their effectiveness and limitations.

Perera et al. (2023) [663] Presents a critical review of the industrial application of soft sensors based on artificial
intelligence.

Yan et al. (2023) [662] Reviews methods for real-time fault diagnosis applied to equipment and process monitoring,
with a specific focus on machine learning techniques.

Palla and Pani (2023) [263] Reviews the application of the ICA model to process monitoring problems.

Yu and Zhang (2023) [1] Reviews the application of deep learning models to process monitoring problems.

Liu et al. (2023) [821] Presents a review and perspectives on the management of abnormal situations in chemical
processes.

Ramírez-Sanz et al. (2023) [822] Reviews works focused on semi-supervised methodologies and presents best practices for
applications in this context.

Lou et al. (2023) [823] Reviews the application of deep learning models for fault diagnosis and health monitoring.

Table A2. Comparison articles about process monitoring in PSE literature, in chronological order.

Reference Description

Westerhuis et al. (1999) [65] Compares various approaches to batch process monitoring.

Tien et al. (2004) [824] Compares variations in the PCA model, including conventional PCA, MPCA, APCA and
EWPCA.

Alcala and Qin (2011) [56]
Analyzes five commonly used diagnostic methods and proposes their unification into three
general methods, providing a comprehensive framework for diagnosis in various
applications.

Yin et al. (2012) [825] Compares the applications of various multivariate statistical methods to the TEP benchmark.

Zhang et al. (2015) [826] Compares the performances of KPI-based monitoring methods.

Jing and Hou (2015) [827] Compares the applications of PCA and SVM methods.

Li and Qin (2016) [48] Compares different monitoring schemes for processes with non-Gaussian distributions.

Askarian et al. (2016) [828] Compares different approaches for handling missing data, providing an analysis of their
performances in fault diagnosis applications.
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Table A2. Cont.

Reference Description

Rato et al. (2016) [829] Compares different PCA approaches for handling large-scale, time-dependent processes.

Zhang et al. (2017) [830] Compares the performance of statistics T2 and Q for detection of additive and multiplicative
faults.

Fuentes-García et al. (2018) [50] Proposes a methodology for conducting experimental comparisons between multiple
diagnostic frameworks in the context of applying the PCA model.

Zhang et al. (2018) [160] Compares the applications of PCA, CCA, and PLS, along with their dynamic extensions.

Vidal-Puig et al. (2019) [58] Compares diagnostic schemes applied to multivariate statistical models, specifically PCA
and PLS.

Shrivastava (2021) [492] Compares different strategies for ensembling models based on decision trees.

Lomov et al. (2021) [410] Compares the applications of different deep learning architectures.

Fernandes et al. (2022) [831] Compares dynamic models for multivariate statistical process monitoring.

Zheng et al. (2022) [832] Compares linear dynamic models for multivariate statisticaç process monitoring.

Hansen et al. (2023) [833] Compares PCA and deep learning models applied for fault detection in power plants.

Table A3. Books about process monitoring in PSE literature, in chronological order.

Reference Description

Fault Detection and Diagnosis in
Chemical and Petrochemical
Processes [834]

Describes applications in both data-driven and model-based approaches, including the
use of control charts, pattern recognition techniques, and parameter estimation
methods.

Data Mining and Knowledge
Discovery for Process Monitoring
and Control [835]

Covers a range of topics including signal processing techniques, feature extraction
methods, identification of operational states, and other related areas.

Fault Detection and Diagnosis in
Industrial Systems [20]

Describes multivariate statistical methods such as PCA, FDA, PLS, and CVA, and
applies them to the Tennessee Eastman model. In the final chapters, the author focuses
on analytical methods and knowledge-based methods.

Multivariate Statistical Process
Control with Industrial
Applications [836]

Describes various approaches for applying T2 statistics in the field of process
monitoring.

Statistical Monitoring of Complex
Multivariate Processes: With
Applications in Industrial Process
Control [27]

Provides a detailed description of PCA and PLS methods, covering their fundamental
principles and exploring recent advancements in these techniques.

Unsupervised Process Monitoring
and Fault Diagnosis with Machine
Learning Methods [314]

Presents the monitoring problem from the perspective of the machine learning field,
exploring various approaches such as neural networks, statistical learning theory,
kernel methods, tree methods, and other relevant techniques.

Multivariate Statistical Process
Control: Process Monitoring
Methods and Applications [837]

Similar to the review published in the same year by two of the same authors [800], the
book classifies and presents methods based on the type of process, categorizing them
into continuous, batch, non-Gaussian, nonlinear, time-variant/multimodal, and
dynamic processes.

Data-driven Design of Fault
Diagnosis and Fault-tolerant
Control Systems [164]

Addresses three main themes: (i) basic methods of multivariate analysis applied to the
monitoring problem; (ii) the data-driven design of input/output data models and
observer-based fault detection and isolation schemes; and (iii) the data-driven design of
fault-tolerant control systems, with a particular emphasis on managing the lifetime of
control systems.
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Reference Description

Chemometric Monitoring: Product
Quality Assessment, Process Fault
Detection, and Applications [47]

Focused on the context of chemometrics, the book explores a range of techniques
including PCA, PLS, SVM, clustering, and more. In addition to covering these methods,
it also addresses topics that may not have been extensively covered in previous books,
such as data generation and pre-processing. The book provides practical illustrations
with numerous real-world application examples.

Advanced methods for fault
diagnosis and fault-tolerant
control [838]

Covers both data-based and model-based techniques, with a specific emphasis on the
application of machine learning methods in the context of fault-tolerant control.

Appendix B. List of Commercial Tools Available for Industrial Process Monitoring in
the Context of PSE

• PLS_Toolbox: Developed in 1991 by Barry Wise, who introduced the application of the
PCA technique for process monitoring [11], the PLS_Toolbox stands as a pioneering
and widely utilized software in the field of chemometrics [839–842]. The toolbox
encompasses a broad range of techniques tailored to address chemometrics problems,
including exploratory analysis, classification, regression, and process monitoring.
It works as the toolbox of the Matlab computing environment and is sold by the
company Eigenvector Research. URL: http://eigenvector.com/software/pls-toolbox/
(accessed on 16 January 2024).

• AspenTech Suite: the company AspenTech offers a range of solutions, including:

– AspenOne Process Explorer: Provides real-time visualization, analysis, and moni-
toring of plant operation data. URL: https://www.aspentech.com/en/products/
dataworks/aspenone-process-explorer (accessed on 16 January 2024).

– Aspen ProMV: Enables the creation of alerts regarding process health, helping
to identify potential issues and ensure smooth operations. URL: https://www.
aspentech.com/en/products/apm/aspen-promv (accessed on 16 January 2024).

– Aspen OnLine: Offers the possibility to calibrate predictive models to monitor
processes in real time together with process simulations. URL: https://www.
aspentech.com/en/products/engineering/aspen-online (accessed on 16 January
2024).

– Aspen Process Pulse: Enables the generation of warnings about problems related
to product quality with optimization goals. URL: https://www.aspentech.com/
en/products/apm/aspen-process-pulse (accessed on 16 January 2024).

– Aspen Mtell: Focuses on predictive maintenance of equipment. URL: https:
//www.aspentech.com/en/products/apm/aspen-mtell (accessed on 16 January
2024).

• Aveva Insight: Marketed by the company Aveva, this software enables remote, real-
time monitoring of production assets. URL: https://www.aveva.com/en/products/
insight/ (accessed on 16 January 2024).

• Precognize: The company Precognize provides a homonymous software with specific
solutions for predictive maintenance and process monitoring. URL: https://www.
precog.co/ (accessed on 16 January 2024).

• Honeywell Forge: Offered by the company Honeywell, this platform brings together
several solutions in the field of digital transformation, which include monitoring,
diagnosing and predicting the performance of process plants. URL: https://www.
honeywellforge.ai (accessed on 16 January 2024).

• IBM Maximo Suite: Marketed by the company IBM, this platform offers solutions for
predictive maintenance based on process condition analysis. URL: https://www.ibm.
com/products/maximo/predictive-maintenance (accessed on 16 January 2024).
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https://www.ibm.com/products/maximo/predictive-maintenance
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• Braincube Suite: The company Braincube offers several applications for data visual-
ization, process condition monitoring and quality control. URL: https://braincube.
com/solutions/ (accessed on 16 January 2024).

• Seeq Suite: The company Seeq provides a platform for time series analysis that includes
several stages of the process monitoring pipeline, such as exploratory data analysis,
predictive modeling and alarm generation. URL: https://www.seeq.com/product
(accessed on 16 January 2024).

• Proficy CSense: Created by the company GE, this tool enables the identification of
issues, root cause analysis, prediction of future performance, and automation of
actions. URL: https://www.ge.com/digital/applications/proficy-csense (accessed on
16 January 2024).

• JMP Software: The company JMP offers a set of solutions for the entire industrial data
analysis flow, including statistical monitoring. URL: https://www.jmp.com/en_us/
software.html (accessed on 16 January 2024).

• Visplore: Marketed by the company Visplore GmbH, this software provides solutions
for exploratory data analysis, including visualization and correlation analysis, root
cause search, regression and comparison. URL: https://visplore.com/ (accessed on
16 January 2024).

• Statistica: Developed by the company TIBCO, this tool has a module for multivariate
statistical process control that makes available the PCA and PLS techniques, as well as
some of its variants. URL: https://community.tibco.com/s/article/TIBCO-Statistica-
Multivariate-Statistical-Process-Control (accessed on 16 January 2024).
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