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Abstract: Real-time process data are the foundation for the successful implementation of intelligent
manufacturing in the chemical industry. However, in the actual production process, process data may
randomly be missing due to various reasons, thus affecting the practical application of intelligent
manufacturing technology. Therefore, this paper proposes the application of appropriate matrix
completion algorithms to impute the missing values of real-time process data. Considering the
characteristics of online missing value imputation problems, this paper proposes an improved
method for a matrix completion algorithm that is suitable for real-time missing data imputation.
By utilizing real device data, this paper studies the impact of algorithm parameters on the effect of
missing value imputing and compares it with several classical missing value imputing methods. The
results show that the introduced method achieves higher accuracy in data imputation compared
to the baseline method. Furthermore, the proposed enhancement significantly improves the speed
performance of algorithms.

Keywords: missing data; matrix completion; chemical process data; data cleaning

1. Introduction

As intelligent manufacturing in the chemical industry gains momentum, the signif-
icance of real-time process data escalates. However, transmission interruptions, sensor
failures, or database issues may cause random missing data in real-time process data during
the actual production process [1], thereby reducing the representativeness of real-time data
and affecting the implementation of intelligent manufacturing in the chemical industry [2].
Therefore, the imputation of missing values is critically essential for the successful execution
of intelligent manufacturing within the chemical industry.

We commonly use three methods for the analysis of data with missing values: the
deletion method, the imputation method, and the model-based method [3]. Commonly
used deletion methods for handling missing data include listwise and pairwise. Listwise
deletion involves removing all data associated with time points that exhibit anomalies.
This method may lead to the deletion of significant amounts of data, thus diminishing
statistical efficiency and potentially introducing more uncertainty and bias into parameter
estimates [4]. On the other hand, pairwise deletion may lead to inconsistent data lengths
due to the varying time points of the deleted data, making it impossible to reconstruct and
represent the complete dataset as a matrix. This inconsistency affects the application of
numerous algorithms, complicating subsequent tasks in process modeling and statistical
inference for monitoring.

The data processed using deletion methods are illustrated in Figure 1.
Thus, when a significant amount of data is missing and the correlation between

variables is affected, it is not advisable to use deletion methods. To maximize the number of
samples and preserve statistical characteristics for subsequent data mining, it is advisable
to employ the strategy of estimating and imputing missing data. While manually selecting
values for imputation is possible, automated methods become indispensable for processing
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the real-time data involved in the deployment of intelligent manufacturing [5]. Common
strategies for imputation involve using statistical values, such as the mean or median
values of variables [6], or employing a similar pattern from complete data, such as hot-deck
imputation [2]. Model-based methods often involve algorithms, such as the Maximum
Likelihood (ML) algorithm [7] and the Expectation-Maximization (EM) algorithm [8].
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To address the issue of missing values in chemical process data, this paper employs
a method from machine learning: the Matrix Completion Method (MCM). Due to its
remarkable ability to discover and leverage latent patterns or structures, the MCM has
found applications in recommendation systems, image restoration, analytical chemistry,
thermodynamics, and quantum chemistry. In chemical engineering, the MCM has been
used to predict the thermodynamic properties and the models of mixtures. For example,
it has been incorporated into the UNIQUAC model to predict activity coefficients at any
temperature and composition, surpassing the performance of the best physical models
for predicting activity coefficients [9]. Additionally, the MCM has been used to predict
Henry’s law coefficients based on the sparsity of experimental data matrices, outperforming
traditional state equations [10]. It has also found application in calculations involving
quantum and variational effects [11].

This paper will introduce existing methods for imputing missing data in Section 2.
Section 3 briefly introduces the principle of matrix completion and improves the existing
Matrix Completion Method according to the characteristics of the online data imputing
problem. Section 4 will evaluate the efficacy of the MCM in processing missing data, thus
providing a comparative discussion with other methods. Finally, Section 5 concludes
this study.

2. Established Methods for Data Imputation

In handling chemical process data, routine methods for imputing missing values
involve utilizing existing data for imputation or employing model-based methods. The
former includes mean imputation, median imputation, and hot-deck imputation. These
methods aim to recover or estimate missing data values based on available information,
thus enhancing the accuracy of portraying the genuine characteristics of the data for further
analysis and exploration. The latter encompasses various model-based methods, including
the ML and EM algorithms. These methods impute missing values by establishing models
and generating data that adhere to specific distributions for imputation. The selection of
each method depends on the particular data characteristics and analytical requirements.
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2.1. Mean and Median Replacement

Imputing missing data using the mean of data from different time points on the same
sensor offers fast processing speed. Let xobs represent the mean of the observed data. The
missing data xmis are formulated as follows:

xmis = xobs (1)

Imputing missing data using the median of data from different time points on the
same sensor provides a processing speed similar to mean imputation. Let Meobs represent
the median of the observed data. The missing data xmis are given by:

xmis = Meobs (2)

2.2. Hot-Deck Replacement

The hot-deck imputation method for processing missing data involves identifying
an object in the existing data that is most similar to the missing data and then imputing
the missing values with the values from this similar object. In defining similarity, this
experiment treats the data obtained from each time point as individual entities. Comparing
the absolute average differences in the observed data xobs among different entities serves
as the measure for determining similarity. Assuming there are n sensors of observed data
from time point 1 and time point 2, we can express their level of similarity Xs as follows:

Xs =
∑|xobs1 − xobs2|

n
(3)

When Xs is small, indicating a higher level of similarity, the strategy involves using
xobs2 from time point 2 to impute the missing data xmis1 for time point 1.

xmis1 = xobs2 (4)

2.3. Model-Based Methods

Model-based methods include ML (Maximum Likelihood) and EM (Expectation-
Maximization) algorithms. The ML algorithm assumes that we have a dataset X with a
distribution described by parameters Θ. The parameter Θ is dictated by the statistical
distribution of the data. Given observed data xobs and missing data xmis, the marginal
probability density of xobs is defined as follows:

P(xobs

∣∣∣∣Θ) =
∫

P(xobs, xmis

∣∣∣Θ(m))dxmis (5)

The likelihood definition of Θ based on xobs is as follows:

L(xobs|Θ) ∝ P(xobs|Θ) (6)

If the likelihood function is differentiable and Θ is known, the estimate of xmis can be
obtained by solving the problem illustrated in Equation (7):

∂ log[L(Yobs|Θ)]

∂Θ
= 0 (7)

The EM algorithm consists of two steps: an E-step and an M-step. In the E-step, the
expectation of the log-likelihood function is calculated. This expectation is equivalent to the
conditional distribution of xmis given xobs under the estimation of Θ(m), and it is expressed
as follows:

E(xmis

∣∣∣xobs, Θ(m)) = E[log L(xobs, xmis

∣∣∣Θ(m))] (8)
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During the M-step, the goal is to determine the parameters Θ(m+1) that maximize the
expectation E. The formula is given by:

Θ(m+1) = argmax
Θ

E(Θ|Θ(m)) (9)

The EM algorithm iterates between these two steps until the estimated values con-
verge.

The methods previously discussed, such as mean and median imputation, are simple
to calculate but lack accuracy. These methods do not utilize information beyond the data
collected by the current sensor, leading to inefficient utilization of information. Hot-deck
imputation utilizes information beyond the current sensor. It still uses existing values to
impute missing ones, potentially resulting in a single observed value being used to impute
multiple time points. For real-time data, it is difficult for us to predict their distribution
in advance, and the formulation of the likelihood function in the ML algorithm becomes
complex to derive without a definite data distribution. While the EM algorithm does not
require the likelihood function expression, it still assumes a specific data distribution and
has a slow computation speed.

The MCM can effectively address the issues with the previously mentioned algorithms.
The MCM leverages the hidden relationships within the data to calculate new values for im-
puting missing ones, thus eliminating the need to derive expressions or make assumptions
about data distribution.

3. Data Imputation with Improved Matrix Completion Methods
3.1. Principles of Matrix Completion

Matrix completion problems can be considered a type of matrix recovery problem.
Specifically, they involve restoring the missing elements in the matrix based on a limited
number of known elements [12,13]. Typical applications include estimating missing data,
generating recommendations, uncovering hidden structures, conducting image restoration,
and classification [14–16].

Matrix completion aims to recover the entire matrix using a limited amount of ob-
served data. We record the positions of the observed data with Ω and search for a matrix X
that has the same values as the input data matrix M at the known positions and has the
minimum rank. Low-rank matrices preserve a substantial amount of redundant informa-
tion, which we can use to recover the missing data in the matrix. The operator PΩ sets all
elements not in Ω in the matrix to zero, and the elements in Ω are PΩ (X) = X. Therefore,
we can formulate the above problem as follows:

minimize
X

rank(X), s.t. PΩ(X) = PΩ(M) (10)

However, the previously discussed problem is an NP-hard problem [17], which is com-
putationally complex and difficult to solve directly. Consequently, it requires replacement
with a problem that is easier to solve.

There are various models for matrix completion. These include, for example, models
based on nuclear norm relaxation, in which Ma [18] and Toh [19] relaxed the standard
problem into a matrix LASSO model. Additionally, the SVT algorithm proposed by Cai
et al. [20] enhances the stability of solving matrix completion problems. Another model is
based on matrix factorization. For example, the SOR algorithm proposed by Wen et al. [21]
can handle large-scale matrix completion problems faster than traditional nuclear norm
minimization algorithms. However, this approach requires an initial rank estimate, and
due to the non-convex nature of the model, it cannot assure global convergence. Finally,
models based on non-convex function relaxation are also an option. These include, for
example, the algorithm proposed by Nie et al. [22] using Schatten p-norm and Lp-norm,
and the FGSR algorithm proposed by Fan et al. [23]. Moreover, the FGSR algorithm avoids
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SVD decomposition, resulting in higher computational efficiency, and is insensitive to the
choice of initial rank.

Due to the challenge of estimating the initial rank of the target data, this study selects
the SVT (Singular Value Thresholding) algorithm, which does not require initial rank
estimation, and the FGSR (Factor Group-Sparse Regularization) algorithm, which is not
sensitive to the initial rank. We improve these algorithms by incorporating features for
online use to impute missing values.

The SVT algorithm applies convex relaxation to the problem (10), transforming it into
the following problem:

minimize
X

∥X∥∗, s.t. PΩ(X) = PΩ(M) (11)

This optimization problem involves regularization, resulting in the construction of a
Lagrangian function. Finally, we use the alternating iterative method to solve the optimiza-
tion problem, expressing it in the following form:{

Xk = Dτ(Yk−1)
Yk = Yk−1 + δkPΩ(M − Xk)

(12)

In this context, Y is the Lagrange multiplier, δk is the step size, and the operation
Dτ(Yk−1) is represented by the following equation:

Dτ(Yk−1) =


[U, S, V] = SVD(Yk−1)
S = sgn(S) · max(|S| − τ, 0)
Xk = U ∗ S ∗ VT

(13)

where ε is the convergence error, the condition for ending the iteration is:∥∥∥PΩ(M − Xk)
∥∥∥

F
∥PΩ M∥F

< ε (14)

The FGSR algorithm uses other parameters as proxies for rank, transforming problem
(10) into the following form:

minimize
X

FGSR(X), s.t. PΩ(X) = PΩ(M) (15)

FGSR(X) can be expressed as follows:

FGSR(X) =
2

3α1/3 min
AB=X

∥A∥2,1 +
α

2
∥B∥2

F (16)

A and B can be represented as follows:
[UX , SX , VX ] = SVD(X)

A = α
1
3 UXS

2
3
X

B = α−
1
3 S

1
3
XVT

X

(17)

The problem can be represented as follows:

minimize
X

∥A∥2,1 +
α

2
∥B∥2

F, s.t. X = AB, PΩ(X) = PΩ(M) (18)

We can solve the matrix completion problem by addressing the problem (18).
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3.2. Data Imputation Based on Matrix Completion

The MCM is used to impute missing values within chemical processes. The funda-
mental principle is that data from chemical processes include control variable data Xcon
and display variable data Xvar. The data are in matrix form, with one dimension repre-
senting time and the other representing sensor identification. The display variable data
Xvar are returned after being collected by sensors at various positions in the production
device, which include observed data xobsv and missing data xmis caused by transmission
or sensor failure. Control variable data Xcon are set manually and contain observed data
xobsc. Consequently, the raw data can be perceived as a matrix M with missing elements
composed of xobsv, xobsc, and xmis. The form of matrix M is shown in Figure 2.
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Figure 2. The form of input matrix data M, composed of xobsv, xobsc, and xmis.

From this perspective, the problem of filling in missing values in chemical process
data can be transformed into a matrix completion problem, as follows:

X = f MCM(M) (19)

Here, X represents the dataset after filling, and the specific process of data processing
is shown in Figure 3:
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Given that the equipment in chemical plants operates continuously, generating a
constant stream of new data, we have adopted a moving window strategy for online data
cleansing in this study. A moving window can reduce the size of the input matrix, thereby
accelerating the speed of matrix completion for data processing.

In terms of the selection of parameters used in the algorithm, considering the balance
between accuracy and computation time, the convergence error ε of the algorithm is set to
ε < 10−6, and the maximum number of iterations is set to 300.

The parameters of the SVT algorithm include the step size δ and the parameter τ.
The conventional range of step size δ is 0~2, and this study uses the middle value δ = 1.
And, the parameter τ is selected empirically, following reference [20]. The literature sets
the parameter τ for an n × n matrix as 5n. In this study, for a matrix of size n1 × n2, the
parameter τ is determined as 5 × qrt(n1 × n2).

For the FGSR algorithm, parameters include λ, d, and α. Step size λ is set at 0.3.
Parameter d represents the rank of the factor matrix after matrix decomposition, and its
selection range is d ≤ min (n1, n2), where n1 and n2 are the row and column numbers of
the matrix. In this study, d = min (n1, n2). Parameter α, which adjusts the scale of the
two-factor matrices following matrix decomposition, is chosen from the range α > 0. In this
experiment, we set α = 2. The reasons for parameter selection refer to Section 4.3.

3.3. Improved Matrix Completion for Online Computing

In the application of the matrix completion algorithm, there is a need to initialize some
data involved in the iterative computation. When processing data using a sliding window,
most of the data in two adjacent windows are the same. Consequently, we consider using
the data from the last iteration of the previous window’s computation as the initial data for
the next window to reduce the number of iterative computations for the new window.

We posit that the data window currently under processing is the i-th window. The
Dτ operation from Equation (13) of the SVT algorithm is improved, leading to the Dnτ

operation, as shown in Equation (20).

Dnτ(Yk−1) =


[U, S, V] = SVD(Yk−1), if i = 1, 3, 5 . . .
[U, S, V] = Ui−1, Si−1, Vi−1, if i = 2, 4, 6 . . .
S = sgn(S) · max(|S| − τ, 0)
Xk = U ∗ S ∗ VT

(20)

Ui−1, Si−1, and Vi−1 represent the final iteration of the prior window. By implementing
this improvement and capitalizing on the advantages of online processing, we minimize
the number of SVD decompositions, thus lowering the overall time expenditure while
ensuring precision. We will identify the SVT algorithm incorporating these changes as the
ISVT (Improved Singular Value Thresholding) algorithm in the following text.

For the FGSR algorithm, we begin iterative computation upon each window transition
and use Ai−1 and Bi−1 from the concluding iteration of the prior window when initializing
matrices Ai and Bi for the i−th window’s computation (i ̸= 1) according to (17). The
modified initialization of A and B can be denoted by Equation (21).

[A, B] = [Ai−1, Bi−1], if i ̸= 1
[UX , SX , VX ] = SVD(X), if i = 1

A = α
1
3 UXS

2
3
X

B = α
1
3 SXVT

X

(21)

Such a practice can effectively decrease the frequency of SVD decompositions and
accelerate the computational speed. In the subsequent sections, we will refer to the modified
FGSR algorithm as the IFGSR (Improved Factor Group-Sparse Regularization) algorithm.
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4. Performance Evaluations
4.1. Studied Case

The experimental data are derived from the DCS system of an atmospheric–vacuum
distillation unit in a particular refinery. The atmospheric–vacuum distillation unit, an essen-
tial device that finds wide application in areas including petroleum and chemical engineer-
ing, plays a significant role in improving oil refining optimization and economic efficiency.

The DCS system records assorted data from the apparatus, including the feed temper-
ature, tower top pressure, and side draw flow rate of the distillation column within the
unit. The data referenced in this paper are logged every five minutes, with the initial data
being complete. The initial data are divided into two groups: control variable data Xcon
and display variable data Xvar. The temperature (TI), pressure (PI), and flow rate (FI) data
gathered by the DCS serve as display variable data Xvar, while the input data PIC, TIC, and
FIC for the control system function as control variable data Xcon.

All data preprocessing and subsequent processing tasks are accomplished using
MatlabR2021b. The program is operated on a laptop with a 3.20 GHz CPU and 16 GB
of memory.

4.2. Evaluation Procedures

This study selects three common methods for processing missing values: mean impu-
tation, median imputation, and hot-deck imputation. Additionally, four matrix completion
algorithms, SVT, ISVT, FGSR, and IFGSR, are used to impute the missing values.

In the experiment, we selected data from 600 time points, which formed an original
data matrix of size ns × 600, where ns represents the number of sensors. The window size
for processing the data is determined by the matrix’s row count, which corresponds to the
sensor number ns. The window size ranges from [0.8ns] to [2.0ns], where [·] represents
rounding up. The missing rate for variable data ranges from 10% to 80%, and the positions
of the missing data are randomly determined.

The number of sensors displaying variable data for temperature, pressure, and flow
rate differs. The specific details are shown in Table 1.

Table 1. Table of variable types and number of sensors.

Variable Type Variable Data Control Data Total

Temperature 245 25 270
Pressure 38 17 55
Flow rate 33 60 93

As different variables have data of different scales and the range of data values
varies, we need to perform experiments on each variable independently to evaluate the
performance of algorithms.

The detailed steps of the experiment are as follows:

1. First, we convert the complete dataset into a matrix form suitable for algorithm
processing. Each column of the data represents the measured values of the variables
collected at the current time, and each row represents the sensor number transmitting
these variable data.

2. The experiment determines the relevant parameters and the size of the moving win-
dow.

3. We set the missing rate and randomly generate missing data in the complete display
variable data Xvar. After preprocessing, the data we obtain will serve as experimental
data.

4. We use the MCM to fill in the experimental data.
5. We compare the output with the original data to evaluate the effects of different

methods.
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Concerning the selection of normalization methods, this experiment opted for quantile
normalization. The formula for this approach is provided as follows:

Xscaled =
X − Q1(X)

Q3(X)− Q1(X)
(22)

where Xscaled represents the normalized data, X denotes the original data, and Q1 and Q3
are quartiles. Quantile normalization scales data using quartiles, which effectively reduces
the impact of outliers on the data.

The evaluation criterion employed is MAPE (Mean Absolute Percentage Error), which
measures the relative error between imputed values and actual values. MAPE results are
expressed in percentage, with smaller values indicating higher prediction accuracy. When
MAPE equals 0, it signifies perfect accuracy in imputed values. The average MAPE for
all data within a single time point represents the MAPE for that time point, denoted as
MAPEt. Its formula is as follows:

MAPEt =
100%

n

n

∑
i=1

∣∣∣∣Xi − Xp

Xi

∣∣∣∣ (23)

where Xi represents the actual values of the data, Xp represents the imputed values after
MCM processing, and n represents the total count of data points. Subsequently, the MAPE
for all time points is computed, denoted as MAPEa, with the following formula:

MAPEa =
∑nt

t=1 MAPEt

nt
(24)

where nt represents the number of time points after matrix completion processing.
Finally, using MAPE as the standard for evaluating the accuracy of missing value

imputation, the MCM is compared with other methods.

4.3. Results and Discussion

In the section on results and the discussion, we divide the algorithms into the MCM,
statistical value imputation methods, and the hot-deck method. The initial step involves
performing a sensitivity analysis of the parameters within the four algorithms implemented
in the MCM.

For the SVT and ISVT algorithms, parameter testing is conducted using the SVT
algorithm and by applying the same parameter settings to both in subsequent experiments.
We use the standard parameter setting range from reference [20] to adjust and test the value
of parameter τ and the size of step length δ. Figure 4 illustrates the results of the test.

As depicted in Figure 4, the errors in pressure and temperature data tend to stabilize
when δ > 0.25. Similarly, the error in flow rate data stabilizes after δ > 0.75, reaching a
lower value around δ = 1. Therefore, we choose δ = 1 as the step size for the SVT and ISVT
algorithms for subsequent testing.

For the FGSR and IFGSR algorithms, parameter testing is conducted using the FGSR
algorithm and by applying the same parameter settings to both in subsequent experiments.
The parameters of the FGSR algorithm include γ, α, and step size λ. The initial parameter
settings are α = 1 and step size λ = 0.03. The parameter γ is related to the initial rank
estimation. According to reference [23], the initial rank estimation has a slight effect on
the FGSR algorithm, so we directly choose its maximum selectable value, that is, min(n1,
n2), representing the smaller value between the number of rows and columns within the
window of the data matrix.

In the selection of parameters, this study chooses parameters that exhibit stable perfor-
mance in processing three types of variable data.
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When λ = 0.03, we evaluate the influence of changing the parameter α on the data
processing results. The results are illustrated in Figure 5.
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Figure 5. The impact of parameter α on the effectiveness of the FGSR algorithm.

As shown in Figure 5, the MAPE of the three variables after processing does not
change significantly after α > 0.5. In this study, we choose the midpoint value of 2 from the
range of 0~4 as the value of α for the following experiments.

Setting α = 2, we evaluate the influence of the step increment λ on the results. The
results are illustrated in Figure 6.
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Figure 6. The impact of step size λ on the effectiveness of the FGSR algorithm.

As illustrated in Figure 6, after λ > 0.2, the MAPE of the three variable data does not
change significantly. The MAPE of the pressure data slightly decreases as λ increases, and
the MAPE of the flow rate data has a slight fluctuation and is at a lower level near λ = 0.3.
In this study, we chose λ = 0.3 as the value of λ for subsequent experiments.

The experimental results reveal that the MAPE in the imputation of flow rate data is
substantially higher than that in temperature and pressure data. This is a consequence of
the data’s characteristics, with the flow rate data used in the experiment showing a larger
range of change than the other two variables.

After determining the parameters, we then test the size of the data processing window
and use a fixed window size in subsequent tests. The subsequent experimental data will be
presented in Tables A1–A6 in Appendix A, corresponding, respectively, to Figures 7–12.
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seen in Figure 7b, the time consumption of the SVT, FGSR, and IFGSR algorithms in-
creases significantly after the window size is 1.8n, and the time consumption of the ISVT 
algorithm shows little change between the window sizes of 1.8n and 2n. Considering these 
factors, to achieve higher accuracy and reduce time consumption, we choose 1.8n as the 
window size for subsequent experiments. 

  
(a) (b) 

Figure 8. Influence of window size on the processing of pressure Data. Subfigure (a) represents the 
MAPE after data imputation, subfigure (b) represents the time consumption. 

As illustrated in Figure 8a, when we test the pressure data using MAPE  as the eval-
uation standard, the MAPE  of the ISVT algorithm and the hot-deck algorithm remains 

Figure 7. Influence of window size on the processing of temperature data. Subfigure (a) represents
the MAPE after data imputation, subfigure (b) represents the time consumption.



Processes 2024, 12, 659 12 of 19

Processes 2024, 12, 659 13 of 20 
 

 

  
(a) (b) 

Figure 7. Influence of window size on the processing of temperature data. Subfigure (a) represents 
the MAPE after data imputation, subfigure (b) represents the time consumption. 

As shown in Figure 7a, when we test the temperature data using MAPE   as the 
evaluation standard, the statistical value imputation methods and the hot-deck algorithm 
exhibit an increase in MAPE  with the growing window size. The MAPE  of the ISVT 
algorithm gradually decreases with the increase in the window size. The FGSR, IFGSR, 
and SVT algorithms have the smallest MAPE  when the window size reaches 1.8n. As 
seen in Figure 7b, the time consumption of the SVT, FGSR, and IFGSR algorithms in-
creases significantly after the window size is 1.8n, and the time consumption of the ISVT 
algorithm shows little change between the window sizes of 1.8n and 2n. Considering these 
factors, to achieve higher accuracy and reduce time consumption, we choose 1.8n as the 
window size for subsequent experiments. 

  
(a) (b) 

Figure 8. Influence of window size on the processing of pressure Data. Subfigure (a) represents the 
MAPE after data imputation, subfigure (b) represents the time consumption. 

As illustrated in Figure 8a, when we test the pressure data using MAPE  as the eval-
uation standard, the MAPE  of the ISVT algorithm and the hot-deck algorithm remains 

Figure 8. Influence of window size on the processing of pressure Data. Subfigure (a) represents the
MAPE after data imputation, subfigure (b) represents the time consumption.

Processes 2024, 12, 659 14 of 20 
 

 

relatively stable. The MAPE  values for the FGSR, SVT, and IFGSR algorithms all de-
crease with an increase in the window size. As seen in Figure 8b, as the time window 
increases, the time consumption of the hot-deck algorithm and the MCM gradually in-
creases. When the window size is 2n, the time consumption of the IFGSR algorithm is 
halved compared to the FGSR algorithm and is close to the hot-deck algorithm. For better 
accuracy, in subsequent experiments, we use 2n as the window size to process data. 

  
(a) (b) 

Figure 9. Influence of window size on the processing of flow rate data. Subfigure (a) represents the 
MAPE after data imputation, subfigure (b) represents the time consumption. 

As shown in Figure 9a, the MAPE  of MCMs exhibits fluctuations with an increase 
in the window size when different algorithms are applied. The MAPE  of ISVT, FGSR, 
and IFGSR maintains a low level when the window size is 1.6n. The precision of the SVT 
algorithm remains stable once the window size exceeds 1.6n. As seen in Figure 9b, the 
time consumption of the MCM does not change much after the window size is 1.4n. There-
fore, based on the above results, we select a window size of 1.6n for future experiments 
on flow rate data. 

In summary, through testing on three variables, we have chosen 1.8n as the window 
size for temperature data, 2n as the window size for pressure data, and 1.6n as the window 
size for flow rate data for subsequent experiments. 

After determining the parameters and the size of the test window, we use the same 
experimental data to test the performance of various methods under different data loss 
rates. The evaluation metrics include accuracy and time consumption. The results are as 
follows. 

As shown in Figure 10, we first test the temperature data. With a fixed window size, 
we test the results with a data loss rate of 10% to 80%. 

Figure 9. Influence of window size on the processing of flow rate data. Subfigure (a) represents the
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We fix the missing rate of the variable data at 40%, generating missing data randomly.
The range for the window size is from 0.8n to 2.0n (where n represents the number of sensors
for the current variable, as detailed in Table 1, and the chosen window size is rounded up).
We first conduct tests on the temperature data, and Figure 7 presents the results.

As shown in Figure 7a, when we test the temperature data using MAPE as the
evaluation standard, the statistical value imputation methods and the hot-deck algorithm
exhibit an increase in MAPE with the growing window size. The MAPE of the ISVT
algorithm gradually decreases with the increase in the window size. The FGSR, IFGSR,
and SVT algorithms have the smallest MAPE when the window size reaches 1.8n. As seen
in Figure 7b, the time consumption of the SVT, FGSR, and IFGSR algorithms increases
significantly after the window size is 1.8n, and the time consumption of the ISVT algorithm
shows little change between the window sizes of 1.8n and 2n. Considering these factors, to
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achieve higher accuracy and reduce time consumption, we choose 1.8n as the window size
for subsequent experiments.

As illustrated in Figure 8a, when we test the pressure data using MAPE as the eval-
uation standard, the MAPE of the ISVT algorithm and the hot-deck algorithm remains
relatively stable. The MAPE values for the FGSR, SVT, and IFGSR algorithms all decrease
with an increase in the window size. As seen in Figure 8b, as the time window increases, the
time consumption of the hot-deck algorithm and the MCM gradually increases. When the
window size is 2n, the time consumption of the IFGSR algorithm is halved compared to the
FGSR algorithm and is close to the hot-deck algorithm. For better accuracy, in subsequent
experiments, we use 2n as the window size to process data.
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As shown in Figure 9a, the MAPE of MCMs exhibits fluctuations with an increase
in the window size when different algorithms are applied. The MAPE of ISVT, FGSR,
and IFGSR maintains a low level when the window size is 1.6n. The precision of the SVT
algorithm remains stable once the window size exceeds 1.6n. As seen in Figure 9b, the time
consumption of the MCM does not change much after the window size is 1.4n. Therefore,
based on the above results, we select a window size of 1.6n for future experiments on flow
rate data.

In summary, through testing on three variables, we have chosen 1.8n as the window
size for temperature data, 2n as the window size for pressure data, and 1.6n as the window
size for flow rate data for subsequent experiments.

After determining the parameters and the size of the test window, we use the same
experimental data to test the performance of various methods under different data loss
rates. The evaluation metrics include accuracy and time consumption. The results are
as follows.

As shown in Figure 10, we first test the temperature data. With a fixed window size,
we test the results with a data loss rate of 10% to 80%.

As shown in Figure 10a, when we use MAPE as the evaluation standard, it can be seen
that MCMs have the smallest MAPE at any missing rate, ISVT’s MAPE is slightly larger
than SVT, and the accuracy performance of IFGSR and FGSR is almost the same. As shown
in Figure 10b, the highest time consumption in the MCM is the SVT and FGSR algorithms.
In comparison, both ISVT and IFGSR show improvements in time consumption.

In summary, the MCM consistently exhibits the smallest MAPE when processing
temperature data. Among them, SVT has the lowest MAPE but the highest time con-
sumption; ISVT’s accuracy is slightly lower than SVT, and the time consumption is lower.
The accuracy of FGSR and IFGSR is almost the same, with both slightly underperforming
the SVT algorithm. IFGSR has a lower time consumption compared to FGSR, and both
significantly reduce time consumption compared to SVT and ISVT.

For pressure data, Figure 11 shows the results of testing data with missing rates
ranging from 10% to 80% at a fixed window size.

As shown in Figure 11a, processing pressure data with MAPE as the evaluation
metric reveals that FGSR and IFGSR consistently exhibit the smallest MAPE. Moreover,
the difference in MAPE between IFGSR and FGSR is insignificant across all missing rates.
Figure 11b illustrates that the IFGSR algorithm consumes less time than the FGSR algorithm,
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and its time consumption exceeds only those of the two statistical value imputation methods
at high missing rates.

In conclusion, when processing pressure data, the IFGSR algorithm achieves a slight
reduction in accuracy compared to the FGSR algorithm but significantly reduces the pro-
cessing time. Compared to other methods, it also demonstrates higher accuracy and
advantages in time consumption.

For flow rate data, Figure 12 shows the results of testing data with missing rates
ranging from 10% to 80% at a fixed window size.

Figure 12a illustrates that the MCM exhibits the highest accuracy in processing missing
values for flow rate data. The overall accuracy ranking is SVT > FGSR > IFGSR ≈ ISVT. As
shown in Figure 12b, considering time consumption, ISVT and IFGSR save a substantial
amount of time compared to SVT and FGSR.

In conclusion, when using the MCM to impute the missing values of temperature,
pressure, and flow rate data, the SVT, FGSR, and IFGSR algorithms in the MCM consistently
demonstrate superior accuracy under any conditions compared to traditional methods,
thus validating the applicability of matrix completion for real-time missing data impu-
tation. Furthermore, a comparison between the IFGSR and FGSR algorithms reveals a
minor difference in accuracy but a significant reduction in computation time for IFGSR,
demonstrating the effectiveness of the improvement method proposed in this paper for
matrix completion algorithms used for real-time missing data imputation.

5. Conclusions

This study describes a method for using the MCM to fill in missing values in chemical
process data. This method employs matrix completion and sliding windows to process
missing data in real-time chemical process data. The fundamental principle involves using
the MCM to restore matrices that contain missing values within the chemical process data.
In addition, an improvement method is proposed, which enhances the performance of
the matrix completion algorithm used for real-time missing data imputation. The results
show that the MCM performs well in solving the problem of real-time data missing value
imputation in chemical processes, and the proposed improvement method also significantly
enhances the computational speed of matrix completion algorithms.

The MCM proposed in this paper does not rely heavily on long-term historical data. It
does not need to rely on long-term historical data for detailed modeling of specific devices
and then use the model to calculate missing data. It only needs short-term data to obtain
relatively accurate results for missing value recovery. This method exhibits good versatility
and is applicable to different production devices. The MCM can also predict future data of
production devices, and, when combined with appropriate constraints, it can identify and
replace outliers.
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Appendix A

Table A1. The influence of window size on the processing of temperature data.

Method\Window
Size

Error and Time
Consumption 0.8ns 1.0ns 1.2ns 1.4ns 1.6ns 1.8ns 2.0ns

Mean imputation
MAPE/% 0.429689 0.436732 0.435803 0.436275 0.439029 0.443191 0.448638

Time/s 0.170502 0.12856 0.130309 0.206899 0.090882 0.109137 0.100491

Median
imputation

MAPE/% 0.429191 0.435274 0.432243 0.431291 0.433602 0.436931 0.44047
Time/s 0.201265 0.096462 0.075046 0.235175 0.113331 0.0966 0.060941

Hot-deck
MAPE/% 0.368026 0.370244 0.371674 0.369868 0.372333 0.372959 0.372206

Time/s 0.321434 0.418652 0.58801 0.895145 0.929394 1.342582 1.954099

SVT
MAPE/% 0.330692 0.330586 0.328675 0.327193 0.325432 0.324194 0.327919

Time/s 2.759206 3.91747 4.31461 4.770563 5.054205 4.797185 6.812804

ISVT
MAPE/% 0.374091 0.368559 0.361274 0.356427 0.350504 0.342927 0.33737

Time/s 1.743603 2.402995 2.642217 2.927075 2.322131 4.203153 4.477385

FGSR
MAPE/% 0.347781 0.346603 0.345447 0.343482 0.341073 0.33999 0.34509

Time/s 1.269798 1.605816 1.98593 2.384596 2.812689 2.657019 4.498306

IFGSR
MAPE/% 0.343915 0.342529 0.342109 0.339652 0.338637 0.338905 0.344688

Time/s 1.013055 1.208337 1.51925 1.903469 2.269553 2.185626 3.625262

Table A2. The influence of window size on the processing of pressure data.

Method\Window
Size

Error and Time
Consumption 0.8ns 1.0ns 1.2ns 1.4ns 1.6ns 1.8ns 2.0ns

Mean imputation
MAPE/% 0.46116 0.468882 0.478266 0.481818 0.487873 0.493975 0.498029

Time/s 0.006626 0.008727 0.012539 0.018682 0.016906 0.026218 0.024772

Median
imputation

MAPE/% 0.461145 0.468343 0.473304 0.47683 0.484212 0.489664 0.495333
Time/s 0.012414 0.010906 0.018815 0.005472 0.020775 0.01809 0.023827

Hot-deck
MAPE/% 0.306717 0.303902 0.303436 0.302407 0.302331 0.303755 0.303662

Time/s 0.006375 0.009966 0.018106 0.020586 0.028261 0.043914 0.046188

SVT
MAPE/% 0.237668 0.228656 0.228244 0.226121 0.226222 0.224198 0.22248

Time/s 0.145216 0.143519 0.153234 0.161981 0.24699 0.375339 0.382238

ISVT
MAPE/% 0.378499 0.37748 0.379664 0.377244 0.37791 0.37764 0.37548

Time/s 0.089936 0.09314 0.091471 0.098333 0.145666 0.215231 0.190195

FGSR
MAPE/% 0.231582 0.225196 0.221528 0.216968 0.217246 0.213067 0.209774

Time/s 0.028133 0.031491 0.036807 0.054531 0.057873 0.067387 0.095115

IFGSR
MAPE/% 0.254744 0.255588 0.233928 0.231192 0.230023 0.228048 0.226329

Time/s 0.020926 0.021267 0.025544 0.038162 0.039157 0.033097 0.045742
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Table A3. The influence of window size on the processing of flow rate data.

Method\Window
Size

Error and Time
Consumption 0.8ns 1.0ns 1.2ns 1.4ns 1.6ns 1.8ns 2.0ns

Mean imputation
MAPE/% 0.952342 0.971453 0.986896 0.99851 1.012467 1.029958 1.044433

Time/s 0.027833 0.022236 0.058512 0.039126 0.044706 0.04536 0.051778

Median
imputation

MAPE/% 0.960008 0.981177 0.997188 1.008103 1.024871 1.043059 1.060312
Time/s 0.035634 0.029653 0.038005 0.037985 0.029285 0.029558 0.038445

Hot-deck
MAPE/% 0.986663 0.981268 0.984567 0.980568 0.979232 0.94581 0.943907

Time/s 0.022614 0.032845 0.058058 0.075891 0.083756 0.101958 0.124636

SVT
MAPE/% 0.831948 0.831894 0.829771 0.830461 0.821872 0.821781 0.821165

Time/s 0.350121 0.512551 0.589402 0.64564 0.65025 0.663364 0.666758

ISVT
MAPE/% 0.929614 0.929827 0.921077 0.926509 0.919068 0.928503 0.944799

Time/s 0.215114 0.308748 0.348895 0.401168 0.392368 0.406407 0.414813

FGSR
MAPE/% 0.854404 0.852655 0.856774 0.861344 0.85159 0.853464 0.85124

Time/s 0.160431 0.220477 0.23072 0.299942 0.264435 0.285232 0.30906

IFGSR
MAPE/% 0.887159 0.902684 0.885102 0.90192 0.884778 0.904824 0.893551

Time/s 0.114031 0.175019 0.194166 0.242649 0.220073 0.223618 0.217471

Table A4. The influence of miss rate on the processing of temperature data.

Method\Miss Rate Error and Time
Consumption 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean imputation
MAPE/% 0.111415 0.221567 0.330508 0.442765 0.555371 0.669687 0.776217 0.890122

Time/s 0.064355 0.089104 0.100775 0.092744 0.124961 0.128273 0.083667 0.127447

Median imputation
MAPE/% 0.111443 0.218174 0.32526 0.437772 0.550006 0.66239 0.766547 0.879003

Time/s 0.0853 0.069159 0.095377 0.078869 0.096246 0.080675 0.078036 0.069624

Hot-deck
MAPE/% 0.089245 0.18221 0.275035 0.367849 0.464774 0.561281 0.653008 0.757046

Time/s 1.045313 1.420777 1.724894 1.318843 1.309674 1.30266 1.397718 1.169198

SVT
MAPE/% 0.075853 0.154787 0.237423 0.323773 0.415213 0.507319 0.602957 0.713683

Time/s 4.344451 5.987962 5.880589 5.619251 5.582199 5.668959 6.547173 5.714972

ISVT
MAPE/% 0.079767 0.163287 0.250239 0.34209 0.437198 0.534976 0.635493 0.747522

Time/s 2.774571 3.986273 3.783541 3.644063 3.635185 4.167742 4.274185 3.599238

FGSR
MAPE/% 0.082696 0.167274 0.253534 0.340791 0.428555 0.5173 0.607727 0.705739

Time/s 3.593545 4.609731 4.085753 3.306966 2.857307 2.472233 2.248525 1.738816

IFGSR
MAPE/% 0.08226 0.166069 0.252763 0.338917 0.426536 0.513926 0.606955 0.706588

Time/s 3.248033 4.216341 3.613562 2.67005 2.195556 1.792113 1.629194 1.265752
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Table A5. The influence of miss rate on the processing of pressure data.

Method\Miss Rate Error and Time
Consumption 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean imputation
MAPE/% 0.125369 0.25891 0.386006 0.50069 0.635019 0.763016 0.883618 1.040332

Time/s 0.031878 0.030032 0.031171 0.024268 0.03043 0.031451 0.028735 0.02203

Median imputation
MAPE/% 0.1232 0.258929 0.386007 0.50005 0.628795 0.759014 0.880959 1.041563

Time/s 0.026002 0.023958 0.019762 0.014444 0.016118 0.016942 0.018383 0.020368

Hot-deck
MAPE/% 0.070259 0.146991 0.22211 0.299001 0.390197 0.491641 0.626109 0.786883

Time/s 0.042708 0.042116 0.04238 0.04279 0.0541 0.051913 0.051356 0.051745

SVT
MAPE/% 0.046817 0.100516 0.157676 0.226004 0.310759 0.420588 0.550662 0.748993

Time/s 0.297998 0.299693 0.299347 0.298905 0.356411 0.358202 0.354957 0.354273

ISVT
MAPE/% 0.087438 0.176265 0.283108 0.380976 0.505853 0.645433 0.787063 1.007307

Time/s 0.180578 0.180712 0.180289 0.182614 0.214508 0.213438 0.214417 0.213874

FGSR
MAPE/% 0.045819 0.096758 0.153544 0.212478 0.288276 0.375787 0.475559 0.640863

Time/s 0.077745 0.075804 0.07524 0.073885 0.088261 0.076434 0.065284 0.0532

IFGSR
MAPE/% 0.051439 0.107375 0.167297 0.229239 0.303 0.392865 0.499357 0.666309

Time/s 0.039649 0.040591 0.038836 0.033879 0.034644 0.038104 0.039615 0.035125

Table A6. The influence of miss rate on the processing of flow rate data.

Method\Miss Rate Error and Time
Consumption 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mean imputation
MAPE/% 0.239366 0.479715 0.5937 1.020246 1.498838 1.665591 1.82332 2.043651

Time/s 0.036863 0.032585 0.037025 0.033544 0.040757 0.03932 0.032436 0.049352

Median imputation
MAPE/% 0.240111 0.484099 0.597288 1.027179 1.51114 1.68408 1.840259 2.071771

Time/s 0.02477 0.049942 0.056303 0.046061 0.051352 0.017915 0.031472 0.042276

Hot-deck
MAPE/% 0.251902 0.463079 0.642777 0.89669 1.407212 1.681455 1.648385 2.049117

Time/s 0.027612 0.028242 0.028666 0.028087 0.025683 0.02345 0.023301 0.026054

SVT
MAPE/% 0.215222 0.415987 0.559695 0.951196 1.382286 1.537685 1.727861 1.922707

Time/s 0.422097 0.418632 0.413529 0.415509 0.40398 0.431114 0.355944 0.3587

ISVT
MAPE/% 0.229068 0.464872 0.594999 1.024654 1.513273 1.722914 1.924457 2.27328

Time/s 0.257354 0.255716 0.253206 0.256194 0.262943 0.251303 0.214986 0.258442

FGSR
MAPE/% 0.231652 0.438877 0.610154 0.988806 1.385793 1.575441 1.748605 1.937884

Time/s 0.207726 0.207422 0.198418 0.193925 0.179496 0.169473 0.163923 0.118877

IFGSR
MAPE/% 0.246612 0.463556 0.640926 1.03057 1.425174 1.60768 1.801965 1.964265

Time/s 0.170172 0.184834 0.15303 0.140324 0.135162 0.113417 0.105556 0.08579
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