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Abstract: The prediction of the glass-forming ability (GFA) of metallic glasses (MGs) can accelerate
the efficiency of their development. In this paper, a dataset was constructed using experimental
data collected from the literature and books, and a machine learning-based predictive model was
established to predict the GFA. Firstly, a classification model based on the size of the critical diameter
(Dmax) was established to determine whether an alloy system could form a glass state, with an
accuracy rating of 0.98. Then, regression models were established to predict the crystallization
temperature (Tx), glass transition temperature (Tg), and liquidus temperature (Tl) of MGs. The R2 of
the prediction model obtained in the test set was greater than 0.89, which showed that the model
had good prediction accuracy. The key features used by the regression models were analyzed using
variance, correlation, embedding, recursive, and exhaustive methods to select the most important
features. Furthermore, to improve the interpretability of the prediction model, feature importance,
partial dependence plot (PDP), and individual conditional expectation (ICE) methods were used
for visualization analysis, demonstrating how features affect the target variables. Finally, taking Zr-
Cu-Ni-Al system MGs as an example, a prediction model was established using a genetic algorithm
to optimize the alloy composition for high GFA in the compositional space, achieving the optimal
design of alloy composition.

Keywords: metallic glass; glass-forming ability; machine learning; optimal design

1. Introduction

Solid-state structure can be categorized into crystalline, quasi-crystalline, and amor-
phous states based on the arrangement of particles. Crystalline structures exhibit a regular
and ordered arrangement of particles in three-dimensional space, demonstrating long-
range order and translation symmetry. These structures possess lower energy and higher
stability, which explains why most everyday solid materials showcase crystalline structures.
Quasi-crystalline structures, on the other hand, possess long-range orientational order
but lack long-range translational order. Amorphous structures, characterized by a lack
of ordered particle arrangements, do not exhibit periodicity or translational symmetry.
Although they exhibit short-range order, they display long-range disorder. Metallic glass
(MGs) serves as a typical example of amorphous materials. Due to the unique particle
arrangement in MGs, which is less susceptible to lattice defects, they possess exceptional
properties that are not commonly found in crystalline structures. These properties include
high strength [1], high wear resistance [2], high elastic limits [3], corrosion resistance [4],
and excellent soft magnetic properties [5]. Consequently, MGs hold vast potential for nu-
merous applications. However, the glass-forming ability (GFA) of MGs plays a crucial role
in limiting their application as conventional materials. The GFA refers to a metal’s ability
to form an amorphous glassy state during the cooling process. A higher GFA indicates a
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greater ease of achieving the amorphous state, resulting in improved processability and
performance enhancements.

The prediction of GFA plays a crucial role in understanding the behavior of MGs,
particularly in investigating the impact of composition on the GFA. Traditionally, research
on GFA has primarily focused on experimentation, where the GFA is obtained by ad-
justing the composition of MGs. This approach heavily relies on empirical knowledge
and experience. However, the process of finding MGs with high GFA through trial and
error can be time-consuming and resource intensive. To address this challenge, machine
learning approaches have gained significant attention in the field of GFA. By leveraging
large amounts of experimental data, machine learning techniques have been applied to
analyze and predict the GFA of MGs. These approaches enable researchers to develop
models that can accurately predict the GFA of new compositions, thereby reducing the need
for extensive experimentation. Currently, most GFA predictions are based on estimating
the critical diameter (Dmax) [6–13]. While Dmax provides a direct measure of GFA, it is
influenced by various factors, including fabrication processes, sample shape, and testing
methods. Consequently, even MGs with identical compositions can exhibit significant
variations in Dmax, resulting in low prediction accuracy when developing models. This
limitation impedes the wider application of machine learning in the field of metallic glasses.
Researchers have discovered strong correlations between the GFA and the crystallization
temperature (Tx), glass transition temperature (Tg), and liquidus temperature (Tl) of MGs,
which can be reliably measured using thermal analysis techniques. Tx refers to the tem-
perature at which a material transitions from a solid or amorphous state to a crystalline
state. Tg represents the temperature below which an amorphous material, such as glass or a
polymer, becomes rigid or solid-like. This is the point where the material transitions from a
supercooled liquid to a glassy state. Tl refers to the temperature at which a substance com-
pletely melts and turns into a liquid phase. It is the highest temperature at which both solid
and liquid phases coexist in equilibrium. Therefore, it is reasonable to explore alternative
parameters that can capture GFA as a composite of these temperature-related properties,
thus overcoming the limitations associated with Dmax. Turnbull et al. [14] introduced the
reduced glass transition temperature (Trg = Tg/Tl) based on the crystallization kinetics
of supercooled liquids as a way to characterize GFA. Higher Trg values are indicative of
greater GFA. Chen et al. [15] and Inoue et al. [16] proposed that the supercooled liquid
region (∆Tx = Tx − Tg) of MGs reflects the stability of the supercooled liquid, and can thus
serve as a measure of the GFA. Lu et al. [17] combined Trg and ∆Tx to introduce a novel
GFA parameter γ, where γ = Tx/(Tg + Tl). Experimental results have demonstrated that γ
is an effective indicator of the GFA.

These studies suggest that parameters like Tx, Tg, and Tl are effective indicators of
the GFA of MGs. However, there is currently limited research focused on predicting these
temperature parameters. In this study, we gathered a substantial amount of the GFA data for
MGs from literature sources and utilized machine learning techniques to develop predictive
models. Furthermore, we conducted feature selection and interpretability analysis to
identify the key factors influencing these parameters. We proposed composition strategies
to enhance the GFA of MGs and combined them with a genetic algorithm to explore novel
MGs. These findings provide valuable insights for the future design of MGs.

2. Materials and Methods
2.1. Machine Learning Model Framework

In this study, a machine learning-based prediction model was developed to estimate
the GFA of MGs. This study aimed to investigate the impact of key feature variables on GFA,
providing theoretical and model support for optimizing and designing MG compositions.
The research process followed a specific framework, as illustrated in Figure 1. The frame-
work involved several steps, including data processing, feature construction, construction
of classification and regression models, analysis of key factors, and optimization design.
During the data processing phase, a comprehensive dataset was compiled by collecting
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Dmax, Tx, Tg, and Tl values of different alloy compositions from the literature and books.
The chemical formulas of the alloys were then transformed into machine-learning-friendly
features through careful feature construction. These transformed features were utilized to
establish a classification model to determine whether Dmax was greater than 0. For alloys
with Dmax greater than 0, separate regression models were developed to predict Tx, Tg, and
Tl. To further refine the models, feature selection techniques were employed to simplify
and optimize their performance. Finally, a synergistic combination of the predictive models
and a genetic algorithm was utilized to explore the compositional space and identify novel
alloys with high GFA.
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2.2. Dataset Establishment

The dataset used in this study was primarily compiled by Ward et al. [18] and included
experimental data on the GFA of MGs up until 2018. The data were sourced from books [19]
and the literature [20–29]. Subsequently, additional experimental data published from
2018 to the present [10,12,30–65] were collected and incorporated into the dataset. This
combination of sources formed the basis of the new dataset for this study. Figure 2 shows
the distribution of elements contained in the data set in the periodic table of elements. The
dataset primarily consists of the chemical formulae of MGs and their corresponding Dmax,
Tl, Tx, and Tg. The sample quantities for Dmax, Tl, Tx, and Tg are 10,194, 751, 791, and
846, respectively.

2.3. Feature Construction and Selection

Given that the dataset solely considers the impact of chemical formulas on the GFA,
the process of feature construction primarily revolves around the composition of MGs.
Firstly, the chemical formulas are transformed into elemental compositions. Subsequently,
the physical and chemical properties of each element are taken into consideration, and a
weighted average is computed based on the elemental composition, as shown in Table 1.
Moreover, in order to enhance the dimensionality of the features and mitigate overfit-
ting [66], statistical features, such as the maximum value, minimum value, and absolute
deviation of elemental properties, are incorporated. This results in the generation of
132 descriptors, which collectively form the input data for forecasting the GFA.

To identify the key features that influence the GFA of MGs, it is essential to conduct fea-
ture selection on the constructed dataset. Firstly, a variance filter is applied to identify and
eliminate features with low variances. Subsequently, F-tests [67] are utilized to detect and
remove highly correlated features. Additionally, an embedding method [68] is employed to
further refine the feature selection process. This method evaluates the contribution of each
feature to the model by assigning weights during training and automatically eliminates
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features with low importance below a predefined threshold. Following the embedding
method, a recursive feature elimination [69] technique is used to iteratively remove features.
The criterion of threshold selection in the embedding method is to increase the threshold
and reduce the number of features of the model without affecting the accuracy of the
model as much as possible. The recursive method constructs different feature subsets to
train the model, uses MAE as the evaluation index of the model, and gradually selects the
features that are beneficial to the model performance, thus realizing the feature selection.
The criterion of feature number selection in recursion is that when the number of features
continues to increase, the accuracy of the model does not improve, and it is considered that
this is the best feature number. This iterative process effectively reduces the dimensionality
of the features. Finally, an exhaustive search [70] is conducted on the remaining features to
identify the key features that significantly influence the GFA. The exhaustive method is to
combine the features selected by the recursive method, select R2 and MAE as evaluation
indexes, calculate the performance of the model under various combinations, and obtain
the best performance feature combination.
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Table 1. Feature name and description.

Feature Name Description Feature Name Description

Number Atomic number N(s,p,d,f) valence Number of electrons in (s,p,d,f) level

Mendeleev number Mendeleev number N(s,p,d,f) unfilled Number of unfilled electrons in (s,p,d,f) energy level

Atomic weight Atomic weight N unfilled Number of unfilled energy layer electrons

Melting temperature Melting point GS volume_pa Average volume of atoms

Column Column of the element GS bandgap Band gap of elements

Row Row of the element GS magmom Magnetic moment of element

Covalent radius Covalent bond radius Space group number Group serial number

Electronegativity Electronegativity of elements N valence Energy layer electron number

2.4. Machine Learning Model and Feature Analysis

The construction of the machine learning model involves two main steps. Firstly,
the classification stage uses Dmax > 0 or Dmax = 0 as the criterion, and commonly used
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classification algorithms such as Support Vector Machine (SVC), Extremely Randomized
Trees (ETC), XGBoost (XGC), and Naive Bayes (GNB) are applied to determine whether
an alloy’s composition can be transformed into Bulk Metallic Glasses (BMGs). Then, in
the regression stage, regression algorithms, including Decision Tree Regression (DTR),
Extremely Randomized Trees Regression (ETR), Multi-layer Perceptron Regression (MLP),
and Linear Regression (LR), are employed to analyze the characterization parameters of
BMGs’ GFA. This aims to establish a predictive model that can estimate the relationship
between composition and GFA. The data set is divided into the training set and test set
according to 8:2. The training set is used to train the model, and the subsequent test set
is used to verify the generalization ability of the model. In the comparison of regression
algorithms, in order to avoid the problem of under-fitting or over-fitting models caused by
randomly dividing training data, K-fold cross-validation is used to calculate the evaluation
indexes of different models [71,72]. K-fold cross-validation involves dividing the dataset
into k subsets, using k-1 subsets for training and one subset for testing in each iteration. The
model is then run k times, and the average of the k results is considered the final evaluation
metric. In this study, a five-fold cross-validation approach was adopted to ensure reliable
model performance assessment.

For different machine learning models, classification and regression tasks require the
use of different evaluation metrics. In the case of classification models, particularly binary
classification models, the performance is typically assessed using a confusion matrix. The
values within the confusion matrix [73] represent the model’s classification predictions and
include True Positive (TP), False Positive (FP), True Negative (TN), and False Negative
(FN), as shown in Table 2. These values enable the calculation of various evaluation metrics,
including Accuracy, Precision, Recall, and F1 score. The formulas for these metrics are
presented in Equations (1)–(4).

Accuracy =
TP + TN

TP + FN + FP + TN
. (1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2× Precision× Recall

Precision + Recall
(4)

Table 2. The confusion matrix of binary classification.

Actual
Predicted

Positive Negative

Positive TP FN

Negative FP TN

In order to further assess the effectiveness of different classification models, the Re-
ceiver Operating Characteristic (ROC) curve was employed to compare their generalization
ability. The ROC curve illustrates the relationship between the TP and the FP of a classifier.
In the ROC curve, the FP is plotted on the horizontal axis, and the TP is plotted on the
vertical axis. Each point on the ROC curve corresponds to the TP and FP values obtained
at a specific threshold used for classification. A classifier with a ROC curve closer to the
top-left corner demonstrates better performance. Moreover, the area under the ROC curve
serves as an indication of the model’s performance, with a larger area suggesting better
performance.



Processes 2023, 11, 2806 6 of 18

For regression models, evaluating the performance involves comparing the predicted
values with the actual values. As such, Mean Squared Error (MSE), Mean Absolute Error
(MAE), and Coefficient of Determination (R-squared, R2) serve as common evaluation
metrics to assess the accuracy of the model. The formulas for these metrics are presented in
Equations (5)–(7).

MSE =
n

∑
i=1

1
n
(ŷi − yi)

2. (5)

MAE =
n

∑
i=1

1
n
|ŷi − yi| (6)

R2 = 1−

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − yi)

2
(7)

where yi represents the actual value, ȳi represents the average of the actual values, and ŷi
represents the predicted value. MAE and MSE measure the gap between the predicted and
actual values, with a smaller value indicating smaller prediction errors. The R2 quantifies
the level of fit between the predicted and actual values. A value closer to 1 implies a better
fit between the predictions and the actual values.

Most machine learning models are often considered black box models, as they can
establish the mapping between input features and output results without providing explicit
expressions. This lack of interpretability is a common issue. To address this, the current
paper introduces Partial Dependence Plots (PDP) and Individual Conditional Expectation
Plots (ICE) [74–77]. The fundamental concept underlying PDP is to assess the impact of
a single feature on the output while keeping the other features constant. This analysis
helps reveal the nonlinear relationships present in the model’s output. PDP is based on a
straightforward observation: in many cases, the model’s output depends not solely on the
value of an individual variable but rather on the simultaneous changes in the combination
of different variables. By simplifying this multivariate relationship, PDP can effectively
describe the effect of a single feature on the model’s output. Conversely, ICE plots are
primarily employed to illustrate the relationship between the variable values of individual
samples and their corresponding response values. ICE plots effectively reveal the nonlinear
relationships and trends within the model’s output. The calculation of ICE plots involves
determining the changes in the model’s predicted output for each individual sample as the
feature values vary. The x-axis represents the arrangement of individual variable values,
while the y-axis represents the predicted output for each sample. For each feature value,
ICE plots visually capture the nonlinear changes in the specific feature by plotting the
response values for each individual sample within a single graph.

2.5. Composition Optimization

Due to the huge search space, it is unrealistic to use enumeration to find the best
point, so genetic algorithm is used to optimize the composition. NSGA-II [78,79] is a classic
multi-objective optimization algorithm based on genetic algorithms. NSGA-II evaluates
and selects individuals using non-dominated sorting and crowding distance to solve multi-
objective optimization problems. The basic principles of the NSGA-II algorithm are as
follows: Non-dominated Sorting, Crowding Distance Assignment, Selection, Crossover,
Mutation, and Termination. The NSGA-II algorithm combines non-dominated sorting and
crowding distance to find a set of non-dominated solutions in multi-objective optimiza-
tion problems while maintaining the diversity and convergence of the population. This
algorithm has the ability to maintain a diverse set of solutions and explore the solution
space effectively. The non-dominated sorting ensures that the algorithm can find a balance
between different objectives, rather than just searching for a single optimal solution. The
crowding distance is used to measure the density of individuals within each non-dominated
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level, reflecting the distribution of individuals in the objective space. By considering both
non-dominated sorting and crowding distance, the NSGA-II algorithm is able to maintain a
diverse population and avoid converging to local optima. This algorithm has been widely
used and was proven to be effective in various applications.

3. Results
3.1. Classification Model Evaluation and Feature Selection

Figure 3 shows the performance comparison of four classification models. Figure 3a
shows a comparative analysis of four classification models in terms of performance metrics.
The ETR and XGC models demonstrate superior performance compared to the SVC and
GNB models. Both the ETR and XGC models exhibit accuracy, precision, recall, and
F1-score values above 0.98, indicating their high accuracy in classifying various labels.
Furthermore, Figure 3b shows an examination of the ROC curves for the four models,
revealing that the ETC and XGC models yield curves positioned more towards the upper-
left corner, encompassing larger areas. The ETC model has an enclosed area of 0.99, while
the XGC model achieves a perfect score of 1. This signifies the superior performance of both
models compared to XGC. Consequently, the XGC model was selected for the subsequent
development of the classification model.
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3.2. Regression Model Evaluation and Feature Selection

This study investigated the GFA of BMGs using three characterization parameters: Tl,
Tg, and Tx. Multiple machine learning algorithms were applied to predict these parameters,
and a five-fold cross-validation method, similar to the previous evaluation, was employed
for performance assessment. Figure 4 shows the performance of Tl, Tg, and Tx on different
regression models. It can be observed that among the four regression models, the ETR
model exhibits the highest R2 and the lowest MSE and MAE. Overall, the results indicate
that the ETR model demonstrates the best performance, and therefore, it was selected for
subsequent predictions. Figure 5 compares the predicted and experimental values of Tl,
Tg, and Tx using the ETR model. The predicted values closely align with the diagonal line,
indicating excellent accuracy of the model predictions. At the test set: the R2 of Tl reaches
0.98, with a MAE of 23.21 K and a MSE of 1481.73 K2. For Tg, the R2 is 0.89, with a MAE of
22.72 K and a MSE of 3786.02 K2. As for Tx, the R2 is 0.98, with a MAE of 12.19 K and a
MSE of 413.13 K2. Table 3 presents the calculation formulas and corresponding prediction
accuracies of the previous studies related to the GFA parameters. Two categories of GFA
parameters were identified: the direct use of Dmax and mixed mathematical expressions
involving Tl, Tg, and Tx. However, both approaches yield relatively low prediction ac-
curacies. In contrast, this study achieved R2 values greater than 0.91 for Tl, Tg, and Tx
predictions. Therefore, utilizing this study’s method to predict Tl, Tg, and Tx followed by
corresponding parameter calculations can effectively enhance the prediction accuracy.
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Table 3. GFA parameters and corresponding prediction accuracy.

No Criteria Formula R2 Ref.

1 Trg Trg = Tg/Tl 0.24168 [80]

2 δ δ = Tx/(Tl − Tg) 0.34638 [81]

3 βr βr = (TxTg)/(Tl − Tx)2 0.45692 [82]

4 w w = Tl(Tl + Tx)/[Tx(Tl − Tx)] 0.48693 [83]

5 ∆Tx ∆Tx = Tx − Tg 0.44805 [16]

6 γ γ = Tx/(Tg + Tl) 0.50375 [17]

7 βl βl = Tx/Tg + Tg/Tl 0.51967 [84]

8 γm γm = (2Tx − Tg)/Tl 0.52861 [85]

9 υ υ = TxTg(Tx − Tg)/(Tl − Tx)3 0.59435 [86]

10 wB wB = (2Tx − Tg)/(Tl + Tx) 0.53842 [87]

11 γc γc = (3Tx − 2Tg)/Tl 0.55126 [88]

12 γn (5Tx − 3Tg)/Tl 0.26394 [89]

13 w1 Tg/Tx − 2Tg/(Tg + Tl) 0.24006 [24]

14 χ χ = [(Tx − Tg)/(Tl − Tx)][Tx/(Tl − Tx)]1.47 0.60217 [90]

15 Gp Gp = Tg(Tx − Tg)/(Tl − Tx)2 0.5999 [6]

16 Dmax - 0.70566 [9]

17 Dmax - 0.795 [91]
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Table 3. GFA parameters and corresponding prediction accuracy. 

No Criteria Formula R2 Ref. 

1 Trg Trg = Tg/Tl 0.24168 [80] 

2 δ δ = Tx/(Tl − Tg) 0.34638 [81] 

3 βr βr = (TxTg)/(Tl − Tx)2 0.45692 [82] 
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Figure 5. The comparison of predicted values and experimental values of Tl, Tx, and Tg by ETR model.

In order to simplify the model and identify the key features that affect the GFA, it
is necessary to perform feature selection on the input features of the model. Figure 6
illustrates the process of feature selection for three representative parameters: Tl, Tx, and
Tg. Each parameter’s input features are subjected to variance filtering, correlation filtering,
embedded method filtering, recursive filtering, and exhaustive filtering. This gradual
process of dimensionality reduction ensures that the model’s accuracy is not compromised.
The changes in feature dimensionality throughout this process are depicted in Figure 7.
After applying these dimensionality reduction methods, the input feature dimensions for
all three parameters are reduced to 4, greatly simplifying the model. Additionally, the key
features that significantly influence the GFA are identified and presented in Table 4. These
features can be broadly categorized into two classes: basic properties, such as melting point,
volume, column, and Mendeleev Number, as well as electronic characteristics, such as
electronegativity, unfilled electron number, and magnetic moment.

Analyzing the selected features can provide insight into their impact on the target
variable. After several decades of research on MGs, researchers have identified several
principles that contribute to improving the GFA, including the Inoue empirical rules [16],
the similar atom substitution principle [92], and the electron concentration principle [93,94].
According to the Inoue empirical rules, the formation of MGs with high GFA should
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follow three principles: (1) the alloy system should consist of three or more elements;
(2) the atomic size difference between the primary alloy components should exceed 14%;
(3) and the mixing enthalpy between the primary composition elements in the alloy system
should be negative. These rules indicate that the GFA is linked to the composition of
elements, atomic size, and mixing enthalpy. On the other hand, the Miedema model [95,96]
establishes relationships between the basic properties of elements (e.g., melting point,
volume, column) and these parameters, providing partial insights into the GFA. The
electron concentration principle proposes criteria for determining equivalent electron
concentration, while electronic characteristics, such as electronegativity, unfilled electron
number, and magnetic moment, can effectively explain variations in electron concentration,
thereby influencing the GFA.
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Table 4. The key features after screening. 

 Key Feature Description 

Tl 

Mean GSvolume_pa Mean atomic volume 
Mean Electronegativity Average electronegativity of elements 

Mean Gsmagmom Average magnetic moment of elements 
Avg_dev MendeleevNumber Average deviation of Mendeleev number 

Tx 
Mean Electronegativity Average electronegativity of elements 

Avg_dev MendeleevNumber Average deviation of Mendeleev number 
Mean GSvolume_pa Mean atomic volume 

Figure 6. The feature screening process of Tl, Tx, and Tg.
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Table 4. The key features after screening.

Key Feature Description

Tl

Mean GSvolume_pa Mean atomic volume

Mean Electronegativity Average electronegativity of elements

Mean Gsmagmom Average magnetic moment of elements

Avg_dev MendeleevNumber Average deviation of Mendeleev number

Tx

Mean Electronegativity Average electronegativity of elements

Avg_dev MendeleevNumber Average deviation of Mendeleev number

Mean GSvolume_pa Mean atomic volume

Mean NdUnfilled Average orbital number of electrons in d layer
that are not filled

Tg

Mean MeltingT Average melting point of elements

Mean Column Mean column of elements

Mean Gsmagmom Average magnetic moment of elements

Mean NdUnfilled Average orbital number of electrons in d layer
that are not filled

3.3. Analysis of Key Features

(1) Feature importance analysis

In order to comprehend the impact of features on the ultimate target value, an analysis
was performed to determine the importance of each feature in the established prediction
model, as illustrated in Figure 8. The results indicated that the average orbital number
of electrons in d layer that are not filled, the average atomic volume, and the average
electronegativity emerged as the most significant features for Tg, Tx, and Tl, respectively.
Consequently, when devising the composition of MGs, these features should be given
particular consideration.



Processes 2023, 11, 2806 12 of 18

Processes 2023, 11, x FOR PEER REVIEW 12 of 19 
 

 

Mean NdUnfilled 
Average orbital number of electrons in d layer 

that are not filled 

Tg 

Mean MeltingT Average melting point of elements 
Mean Column Mean column of elements 

Mean Gsmagmom Average magnetic moment of elements 

Mean NdUnfilled 
Average orbital number of electrons in d layer 

that are not filled 

3.3. Analysis of Key Features 
(1) Feature importance analysis 

In order to comprehend the impact of features on the ultimate target value, an anal-
ysis was performed to determine the importance of each feature in the established predic-
tion model, as illustrated in Figure 8. The results indicated that the average orbital number 
of electrons in d layer that are not filled, the average atomic volume, and the average elec-
tronegativity emerged as the most significant features for Tg, Tx, and Tl, respectively. Con-
sequently, when devising the composition of MGs, these features should be given partic-
ular consideration. 

Mean MeltingT

Mean Column

Mean NdUnfilled

Mean GSmagmom

0.0 0.1 0.2 0.3 0.4
Feature importance

(a)

 

Mean GSvolume_pa

Mean Electronegativity

Mean GSmagmom

Avg_dev MendeleevNumber

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Feature importance

(b)

 
(a) Tl (b) Tx 

Mean Electronegativity

Avg_dev MendeleevNumber

Mean GSvolume_pa

Mean NdUnfilled

0.0 0.1 0.2 0.3 0.4
Feature importance

(c)

 
(c) Tg 

Figure 8. Rank of feature importance corresponding to Tg, Tx, and Tl. 

(2) Analysis of PDP and ICE plots 
In order to provide a more visually informative illustration of how these features 

impact the target value, we utilized PDP and ICE plots for feature analysis. The PDP plot 
showcases the influence of a single variable on the average target value. Figure 9 shows 
the PDP plot analysis of key features versus Tl. As Mean GSvolume_pa increases, Tl con-
sistently decreases, with a brief spike when Mean GSvolume_pa reaches 20, followed by 
a continued decline. Conversely, Tl increases steadily as Mean electronegativity rises until 

  

 

Figure 8. Rank of feature importance corresponding to Tg, Tx, and Tl.

(2) Analysis of PDP and ICE plots

In order to provide a more visually informative illustration of how these features
impact the target value, we utilized PDP and ICE plots for feature analysis. The PDP
plot showcases the influence of a single variable on the average target value. Figure 9
shows the PDP plot analysis of key features versus Tl. As Mean GSvolume_pa increases, Tl
consistently decreases, with a brief spike when Mean GSvolume_pa reaches 20, followed by
a continued decline. Conversely, Tl increases steadily as Mean electronegativity rises until it
reaches 1.8, after which, Tl begins to decline. Figure 9c shows the combined effect of Mean
GSvolume_pa and Mean electronegativity on Tl. Specifically, Tl tends to be smaller when
Mean GSvolume_pa ranges from 25 to 28 and Mean electronegativity ranges from 1.3 to
1.4. Conversely, Tl tends to be larger when Mean GSvolume_pa ranges from 12 to 13 and
Mean electronegativity ranges from 1.6 to 1.9. Likewise, as Mean Gsmagmom increases, Tl
gradually increases as well, with a temporary dip when Mean Gsmagmom falls between
0.25 and 1, followed by a continuous rise. On the other hand, Tl initially increases with
the growth of Avg_dev MendeleevNumber and then steadily decreases. Figure 9f shows
the combined influence of Mean Gsmagmom and Avg_dev MendeleevNumber on Tl. It
reveals that Tl tends to be relatively small when Mean Gsmagmom ranges from 0 to 0.2
and Avg_dev MendeleevNumber ranges from 22.5 to 27.5. Conversely, Tl tends to be larger
when Minimum MeltingT ranges from 0.4 to 1.4 and Avg_dev MendeleevNumber ranges
from 7.5 to 12.5. Since the PDP plot solely showcases the impact of variables on the average
target value and does not capture the variations in each sample’s target value with respect
to the features, ICE plots were additionally employed. Figure 10 shows ICE plot analysis of
key features on Tl. While the target values differ across samples, they generally exhibit the
same overall trend as the average target value.
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Figure 9. PDP plot analysis of key features on Tl. (a) Mean GSvolume_pa. (b) Mean Electroneg-
ativity. (c) Mean GSvolume_pa and Mean Electronegativity. (d) Mean Gsmagmon. (e) Avg_dev
MendeleevNumb. (f) Mean Gsmagmon and Avg_dev MendeleevNumber.
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3.4. Composition Optimization Design

Based on the depicted figure, it is evident that there are shared key features for Tl,
Tx, and Tg, and these features exert varying influences on the parameters. Taking the
previously mentioned γ = Tx/(Tl + Tg) as an example, to optimize the GFA of MGs, it
is essential to maximize γ. This, in turn, requires a compositional design approach that
simultaneously maximizes Tx and 1/(Tl + Tg).

Taking the Zr-Cu-Ni-Al system as an example, the search range for each element is as
follows: Cu: 5~20 wt.%, Ni: 5~20 wt.%, and Al: 5~10 wt.%. Each element is systematically
varied within the compositional search space with a step size of 0.01 wt.%. The NSGA-II
algorithm is utilized to simultaneously optimize Tx and (Tl + Tg) with the following specific
parameter settings: the initial population size is 200, and the number of evolution genera-
tions is 300. It utilizes the polymutation mutation operator with a mutation rate of 0.02. The
XOVR crossover operator is employed with a crossover rate of 0.9. The chromosomes are en-
coded using the RI encoding method. The primary objective is to identify a non-dominated
set of compositions that maximize Tx and 1/(Tl + Tg), thereby facilitating the swift design
of metallic glass compositions. Figure 11 visually presents the distribution of both the raw
and optimized data for Tx and 1/(Tl + Tg) within the Zr-Cu-Ni-Al system. The optimized
data’s Pareto front shifted towards the upper right corner compared to that of the raw
data. This shift signifies that the application of a non-dominated genetic algorithm yielded
superior composition designs. Three representative composition points are identified as
Alloy 1: Zr61.46Cu8.96Ni19.98Al9.60, Alloy 2: Zr68.43Cu15.68Ni10.40Al5.49, and Alloy 3:
Zr62.81Cu15.01Ni13.45Al8.73.
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4. Conclusions 
(1) By developing a discriminative model based on alloy composition, the XGC model 
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The rapid design of alloys with high GFA is realized by machine learning, which
effectively saves time and resources. However, the designed alloys need to be verified by
experiments to prove the accuracy of the prediction model.

4. Conclusions

(1) By developing a discriminative model based on alloy composition, the XGC model
exhibits superior performance compared to the other three commonly employed
classification models. With an impressive classification accuracy of 98%, it effectively
determines GFA.

(2) In the context of alloys capable of forming metallic glasses, the ETR algorithm is
utilized to establish predictive models for Tl, Tx, and Tg. The R2 values associated
with these models all exceed 0.91, thereby demonstrating their exceptional predictive
accuracy.
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(3) To enhance the simplicity of the models, various feature selection techniques, in-
cluding variance, correlation, embedding, recursive, and exhaustive methods, are
employed. These techniques enable the identification of crucial features for Tl, Tx,
and Tg. While ensuring the preservation of model accuracy, the dimensionality of the
features is effectively reduced, resulting in the final selection of four key features for
each property.

(4) The interpretability analysis of the predictive models for Tl, Tx, and Tg is performed by
employing feature importance, PDP, and ICE. Through this comprehensive analysis,
the influence patterns of each key feature on the target variables are uncovered,
offering valuable insights for future alloy design. These findings serve as crucial
reference directions for subsequent endeavors in alloy design.

(5) In the case of the Zr-Cu-Al-Ni system, the GFA of MGs is evaluated through the
parameter γ(Tx/(Tl + Tg)). The primary goal is to maximize γ by extensively exploring
the compositional space of the Zr-Cu-Al-Ni system using a genetic algorithm. This
innovative approach is aimed at enhancing the efficiency of MG development.
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